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ABSTRACT 

Many h e a r  methods have been proposed in the literature to 
blindly estimate the ARMA parameters of a time series using 
HOS. Nevertheless, they are mainly off-line and not much has 
been done in the adaptive cnse. The method proposed in this 
contribution is the adaptive version of the w-slice method. The 
recursion is based on the inversion lemma when attempting the 
solution of an undetermined matrix quation. The system 
impulse response can be recavered regardless of the ARMA or 
MA character of the system. The number of operations depends 
on the square of the system order and it is considuabily reduced 
with respect to previous approaches. Application to channel 
deconvolution is shown. 

1. INTRODUCTION 

Among the few adaptive methods, in [SI Swami and Mendel 
proposed a "Double Lattice" algorithm which was shown not to 
yield consistent estimates in a number of cases. On the other 
hand. Friedlander and Porat in [41 use the so-called 
"Overdetermined Recursive Instrumental Variable" (ORIV) [3] 
to compute recursive estimates of the Giannakis-Mendel (GM) 
method. The method solves an overdetermined system of 
equations using the inversion lemma. The drawbacks of the 
method arise from the use of 2nd and 3rd order statistics, which 
prevents from unbiased estimation in the case of colored 
Gaussian noise. Moreover. the method is valid only for the MA 
case. The method proposed below is the adaptive version of the 
w-slice method presented by these authors in [l]. The w-slice 
recursion is based on the inversion lemma when attempting the 
solution of an undetermined matrix equation. 

2. UNDETERMINED RECURSIVE LEAST sQUARES 

It was shown in [ l ]  that the w-slice algorithm allows 
identification of the impulse response of any linear system in 
two steps: 
' IUS w& hrr ;supported by ux spani~a under pant 
Trm~c05-04. 

S , w = l  h,= S ~ W  (1) 

where, if considering one 4th order bidimensional slice. 
matrices are defined as: 

["SI- 

A close view to this matrix reveals that the fourth-order 
quations (1) can be rewritten in the way: 

X,'[Z,- rr (O)T, - 2V,l w = 1 

h, = Y,' [Z, - rr (O)T, - 2V, 1 w (3) 

where matrices X. Y and Z are defined as: 

0 ... 0 x, - x, x ,  ... x p  
0 ... x, XI 

Y: - XI x2 . . ' X P + l  

x p  Xp+1 '.. x 2 p  

-x,-p %-,+I .,. Xt 

0 ... 0 xi .;XI . . x& 
0 ... x:xo x: x:x2 ... x:x,, 

x; x,xp+, ,_. x& 

5, x;+Ixpz " '  x;+Ixzp+l 

Matrices T and V account for the correlations tems in S: 
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The autocorrelation vector r must be computed recursively, so a 
possible choice is to use the following expression: 

I;' = krLl + x,uT 

All this matrices are updated as more data are available. The 
following notation is uzeful: 

The solution of equation (1) is done using pseudoinverse, 
leading to: 

H H - 1  H H H H -1  
w,=S,#l=S, (S,S,) l = N ,  X, (X,N,N, X, 1 

H H - I  
h, = Y, N, w, = Y, N, NFX; (X,N, NI X, ) 1 (7) 

This algorithm has been shown to be asymptotically consistent 
in [l]. The derivation of the method is mainly based on how the 
inverse matrix in equation (7) is performed. Let there be: 

(8) P, - CX, N, N, X, 1 

By substituting the relation (6) into (8) we will find a recursion 
for the inverse of P: 

H H -1 

p':l = x,+iN,+lN:lxBl = 
=[LX,N, +x~+IzL][~NYx? + z & x L ] =  (9a) 
= W l  +ae,,x:, +k+lfEi + ~ , + , ~ ~ ~ z , + ~ x , H * ,  = 

= Xzp;L + 4 1 + i G 1 4 B 1  

The use of the inversion lemma in equation (9): 

P,+I =[pt -pt$t+~(k'At+, +@EI~, '%+I )-'@Eipt]/a2 (9b) 

yields the complete recursion. Note that. unlike the approach in 
[4]. an undetermined matrix equation is being solved. and 
hence, the resulting recursion differs greately. Note also that 
equation (2) has been written by considering the use of 2p+l 
slices, but the number of slices can be chosen provided that the 
minimum set which guarrantees identifiability is included [61. 
Moreover, the approach is valid to estimate the impulse 
response of any MA or ARMA linear system, even if the true 
orders are overestimated. as it has been proven in [61. Both 

features are very important since the e x a t  nature of the 
underlying system is unknown in many applications. The total 
number of operations required depends the number of slices N 
used. When 2p+l slices are talcen into account. the total number 
of floating point operations is 23$f2+ S3pD + 16. The 
minimum set of slices to guarrantee identifiability have been 
found in 161. If the underlying system is ARMA. p corresponds 
to the maximum of the AR order and MA order of the model. A 
recursive algorithm can be derived for the third order statistics 
case, following the same principles. In this case. matrix N is 
modified so as to contain products of two samples of the input 
signal. 

3. SQUARE-ROOT UNDETERMINED RECURSIVE 
LEAST SQUARES 

The algorithm lacks of numerical stability as standard RLS. 
Note. however that the inversion lemma is computed as the sum 
of two non-positive definite matrices, and hence the symmetric 
characteristic of the inverse matrix P will be lost if the 
numerical accuracy is not high enough. In this case divergence is 
sure and fast. 
Square-root approaches depart from the update of the lower- 
triangular square-root of the matrix, instead of the matrix P 
itself. This point is common to all square root methods. 
However, the proposed approach differs in that one of the 
auxiliary matrices is indefinite as was remarked in [2]. Because 
of this, orthogonal transformations (like Givens rotations) are 
not enough to update such matrices and hyperbolic transforms 
are necessary. Let us clarify this point first. It is a fact that: 

where a= (Z:~Z,+~)~/* . Define the signature matrix of Af+l as 
being J and assume we can find a matrix Q such that it fits the 
so-called J-orthogonal property: 

(10) 
H 

QJN+,Q = J N + ~  

with the additional feature of Wig the triangulariziig 
operator of the matrix F. that is: 

where L, and L, are lower triangular matrices of dimensions 
(2x2) and ( N W  respectively and JN is defined as: 

Then, by using (4.18). and right-multiplying both sides of 
equation (4.19) by JN+zLH we can rewrite: 
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F JN+* f = L JN+z LH 
Hence, by substituting terms in (4.19) and equating both sides, 
we have: 

AJA" +4%4,+1 - hzA,+, +43',4,+1 - L1J& (12) 

P, = MJ,M" + L,L: (14) 

Decomposition in equation (12) always wrist since the 

signature of the matrix AJ,AH + ~ ~ l P , 4 , + 1  is J, [61. By taking 
(12) weget: 

Ptki = m&? (13) 

M - (L? )-I Jz 

Substituting it in (14) and by similarity with the inversion 
lemma in equation (9b): 

L,L: - P, - M J ~ M ~  - P, -P,O~+~ (~1: I-' J,L;~+:,P, = 

=PI -P141+l(~f+I  +4~lpf4f+l)-'4:lp, - ~zpf*l 

Hence, since 12 is lower txhgulnr. it is proportional to the 
square-root of P,, that is: 

PA: a-IL, 
"herefore. the process of updating the square-root matrix 
departs from the triangularization of F. Let us see how this 

may be achieved. Considering that matrix p:: is lower 
triangular. F has the following structure of zeros: 

1 x o x x x x  
x x x x x x  

0 0 x x 0 0 
o o x x x o  
o o x x x x  

(15) 

where the crosses denote possibly non-zero terms. The entries 
in the first row can be zeroed by using successive hyperbolic 
rotations [71. T h i s  rotations have to be applied to cancel the 
non-zero elements of the first row in equahon (15) because the 
J-orthogonality condition imposed to the triangularizing 
operator in equation (11). ThC rotations for the sccond row. 
must be orthogonal so that the complete triangularizing matrix 
be &orthogonal. Orthogonal (also called Givens or Jacobi) 
rotations have the identity matrix as signature. The fial URLS 
W d i c e  algorithm, written on its square root version, is shown 
in table 1. for the complex definition of the fourth order 
cumulant. The function J-ort( ) performs the triangularization 
algorithm. Computational cost is not increased with respect to 
the non square-root version. 
As a final comment, simulations on complex constellations 
signals have shown that performance is improved when using 
the complex defdtion of the fourth order cumulant: 

4SJMLLATIONS 
Simulations are devoted to consider the recursive approach 
above in a blind qualization framework. A * ta l  
communications c h d  is equalid. In a 25 dB of SNR 

error is supossed and the signal is sampled at one sample per 
symbol. The di- c h d  is given by the following FIR 
impulse response: 

Scenario. V-29 c~nstellrtioar used. NO SynchroniUtion 

H(~)=(O.sulsjO.~[l~o.~~+~.~~~~[l-(O. ~ 8 8 + j 0 . ~ 5 ) ~ ~ ' ]  
[1+(0.158+j0.42f3f 'I 

Once the impulse response has been estimated, the MSB 
equaliw taps are computed. Figure 1 shows the tracking of the 
MSE. versus the number of adaptation steps. dong with the 
tracing for the BemrenisteSroursat algorithm. All have been 
averaged over 15 independent realizations. 

USLS w4ir. 
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Figure 1. MSE tracings for the W-slice and BG equalizers. 

Rgure 2 displays the constellations prior and after equalization. 
at loo0 iterations. Note that as few as 4ooo iterations are 
needed to open the eye in the w-slice case and decission- 
directed algorithms may then be used. On the other hand. the 
Benveniste-Goursat algorithm is far from convergence. It 
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should be strewed. howevcr. that in convexgerm all  decision- [31 B. Friedlander. "The Overdetermined Recursive 
directed algorithms exhibit lower MSE. Phrsc rotations can also Instrumental Variable Methcd", BEE Trans. on 

be compensated wing the w-slice approach [61. Auromatk Control, vol. AC-29. no. 4. April 1984. 
[4] B. Friedlander and B. Porat, "Adaptive IIR Algorithms 

Based on I-hgber-Ordu Statistics". IEEE Trans. on 
Acoustics, speech and S i g d  Processink?. vol. 31. DO. 
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Figure 2. Eye patterns obtained for a V-29 constellation 
perturbed by a channel under 25 dB of SM. Bqualization by 
using URLS W-slice and BG algorithms after loo00 iterations. 
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