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Performance Analysis of the MUSIC and Pencil-
MUSIC Algorithms for Diversely Polarized Array

Qi Cheng and Yingbo Hua, Senior Member, IEEE

Abstract—This paper presents an asymptotical analysis of the
MUSIC and Pencil-MUSIC methods for estimating 2-D angles
and polarizations using crossed dipoles. The explicit first order
expressions for the variances of the MUSIC and Pencil-MUSIC
estimates are derived. Both the theoretical and simulation results
are used to analyze and compare the performances of the MUSIC
and Pencil-MUSIC methods. A number of new insights into the
two methods are revealed. In particular, the MUSIC and Pencil-
MUSIC methods are shown to have comparable performances
near the Cramer-Rao bound, although the latter is much more
efficient in computation than the former.

1. INTRODUCTION

INCE the diversity in signal polarization can be exploited

to improve the accuracy of angle estimates, using diversely
polarized arrays for angle estimation has recently attracted
considerable attention. As a result, a number of angle estima-
tion techniques have been developed for diversely-polarized
array, which include specialized versions of the MUSIC [1],
[3] and ESPRIT [4]-[7], and ML [2], [8], as well as the
Cramer-Rao bound analysis [9], [10]. Both the MUSIC and
ESPRIT techniques require fewer computations than the ML.
But, for coherent signals, the MUSIC [1], [3] and ESPRIT
[4]1-[7] fail. However, the MUSIC and Pencil-MUSIC methods
proposed in [11] circumvent the coherent case.

We note that the “pencil” appears to be a key concept which
connects a class of estimation methods such as the pencil-of-
function method [19], the matrix pencil method [20], ESPRIT
[21], the state-space method {22] and the SURE method [12].
The Pencil-MUSIC will remind one of the Root-MUSIC [23].
While the Root-MUSIC method can be modified and applied
to the 2-D estimation problem shown in this paper, the Pencil-
MUSIC method is much more efficient in computation because
it solves a generalized eigenvalue problem of much smaller
size than the polynomial rooting required by the Root-MUSIC.
Another distinction between the Pencil-MUSIC and Root-
MUSIC is that the former uses the signal subspace and the
latter uses the noise subspace.

Although much work has been done in analyzing 1-D
estimation techniques [12], (131, etc., there has been no
comparable effort being put into the analysis of 2-D estimation
methods. In this paper, we study two 2-D angle estimation
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methods: the MUSIC and Pencil-MUSIC methods [11]. For
the MUSIC method, the analysis is made by means of the
Taylor series expansion of a multivariate function, which is
a generalization of the methodology used in [12], [13]. The
analysis for the Pencil-MUSIC method is a further extension
of the approach used for the SURE method in [12]. A better
understanding of the MUSIC and Pencil-MUSIC methods is
obtained as a result of the analysis.

The outline of the paper is as follows. Section II includes
the problem considered in [11] and the introduction of the
enhanced covariance matrix. Section III presents a brief review
of the MUSIC and Pencil-MUSIC methods, a discussion on
the consistency of the two methods and a couple of preliminary
results. Section IV contains theoretical results for the MUSIC
and Pencil-MUSIC estimates. Section V discusses numerical
examples. Section VI is the conclusion.

II. PROBLEM FORMULATION

Consider a rectangular array consisting of M x N pairs of
crossed dipoles, in the X-Y plane, with (1, 1) dipole pair
situated in the origin of the coordinate system. Interelement
distances along z-direction and y-direction are A, and A,
respectively. Suppose that I narrowband plane waves, centered
at frequency wy., with elevations 6y,---,6;, and azimuths
¢1,---. ¢, impinge on the array. Denote by z(m,n,t) and
y(m.n,t), respectively, the signal outputs at the (m,n)th z-
dipole (parallel to the z-axis) and y-dipole (parallel to the
y-axis), and by w,(m,n,t) and wy(m,n,t), respectively, the
noise at the same z- and y-dipoles, for the {th snapshot. Noisy
outputs at the (m,n)th z- and y-dipoles can be represented
as [11]

A

#(m.n,t) = x(m,n,t) + we(m,n.t)

I
=3 el T P i) + we(mym, t) (1)
i=]1

y(m,n.t) + wy(m.n,t)

A

glm.n.t)

gD T g s (1) + wy(m . t)

Il
M-

m=1,---M. n=1..--,N, t=1,---,T

(2)
where for ¢ = 1.---.1

eri = o8 b; cos d; siny; exp{jn;} —sing;cosy;  (3)

eyi = cosb; sin @, siny; exp{jn;} — cos;cosy;  (4)
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pi = exp{—jA wpsinb; cos ¢; } 5)

(6)

and s;(t) is the random signal. v; and 7; are polarization
parameters for the ith signal.

The ranges of parameters for the above data model should
be restricted. For the identifiability of 7;, 6, # 7/2 and ; # 0,
and ; # 7/2 when using the Pencil-MUSIC method. Later
we will see that, in the Pencil-MUSIC method, #; and ¢; are
computed from p; and g;. For the identifiability of ¢;,6; # 0;
to avoid ambiguity in #; and ¢;,0 < A;, A, < 7/wp and
0; is assumed in the upper half plane. Due to the above
consideration, we confine the ranges of 6;,v; to 0 < §; < 7/2
and 0 < r; < w/2. The ranges of ¢;,7; are unchanged,
—-m<¢; <mand —w < n; < 7.

Define 2M N-element column vectors

¢; = exp{—jAywpsinb;sin ¢;}

z(t) = [vec(z(m, n,t)), vec(y(m,n, t))]T
w(t) = [vec(w,(m,n,t)),vec(wy(m,n,t))]T

7
with T denoting transpose and vec(r(m,n,t)) an MN-
element row vector defined as
vec(r(m,n,t))
= [T(l’ 17t)7 7'(2, 17 t)v T T(My 17 t)aT(L 2, t)a
T(2727t)7"'1T(M127L)7"'7T(17N7t)1

T(27N7t)v"'7T(MvNat)]' (8)

Then the array output has the vector form

a(t) £ 2(t) + w(t) = A's(t) + w(t) 9)
where
r_ €:19] ® P} €x1q7 ® P] (10)
equll®p& equlj’®plj IMNXI
s(t) = [s1(t),---,s1(t)]T an
with
pi = [Lps,- -, pM T (12)
qi= [17QIa7qlN_1]T (13)
and ® denoting the Kronecker product [17] defined as
.l‘lﬂlY -'L'l,nY
men ®kal = (14)
xm,lY zm,nY

mkxnl

Signals and noise are assumed circular Gaussian (see [18]
for the definition). s(t) for different ¢ are taken to be indepen-
dent random vectors. sx(t) and s;(t)(1 < k,I < I) may be
fully dependent on each other, which is the so-called coherent
case. We assume E[s(t)s¥(t)] are identical for different ¢
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(i.e., stationary) and unknown. The noise voltages w(t),t =
1,---,T are independent with zero means and covariance
matrix 02155 n. Furthermore, the signals are assumed to be
uncorrelated with noise.

Let

(M= J+1,1,1)
o(M— J+2,0,t)

bl

S(,1,8) 2(J+1,0,8) o(M,1,1)

I=1--,N (15)

beaJx(M—-J+1)(1 < J < M) Hankel matrix and (16), at
the bottom of this page bea K x (N - K +1)(1 < K < N)
Hankel block matrix. Y.(t), W.,(t) and W, (t) are defined
in the same way as X.(t). Introduce

a Xe(t)}
Z.(t) 2 a7
( ) [Ye(t) 2JKX(M—-J+1)(N-K+1)
W (¢ A [Wex(t)] (18)
( ) Yey(t) 2JK x(M—J+1)(N—K+1)

the enhanced covariance matrix defined in [11] can be ex-
pressed as

R = E[(Z.(t) + We(t)(Z7 (t) + W ()]

19)

where and E denote conjugate transpose and statistical
expectation, respectively.

Let 01,09, --,027K (arranged in decreasing order) be
eigenvalues of R., U, and U, be its orthonormal eigenvectors
corresponding to (01,02, -+,01) and (o141,07142," -, 027K )
respectively, and

L=(M-J+1)}N-K+1) (20)

we can write

R. = E[Z.()ZH (t)} + Lo 1y5¢ = U, B, UY + U, 2, U#
3}

where
23 = diag[Uh g2, aaI]
and

X, = diag [o741,0142, -, 027k]
diag[Lo?, Lo?,- -+, Lo?].

We assume that (1) I < min(M ~J+1,J,N-K+1,K)!
and (2) A (defined in Appendix A, having more rows than

"' The choice of J and K also affects the noise robustness of the MUSIC
and Pencil-MUSIC. However, it is not easy to determine the optimum J and
K which lead to the minimum estimation variance, even for one-signal case.
More details can be found in {20].

X (t) Xg(t)
2
X.(t) = e.(t) Xe.(t)

XK(t) XE+()

XN—K+1(t)
X?V—K+2(t)
‘ (16)

XN (t) JKx(M—J+1)(N—K+1)
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columns) has full column rank (a sufficient condition?® is
presented in Appendix B). Then E[(Z.(t)(ZH (¢)] will be of
rank [ irrespective of coherency among signals (see [11] for a
proof). We further assume that the first I principal eigenvalues
of R, are distinct.

In practical situations, R, is not available and we can only
obtain

T
1
Re £ 5> (Ze(t) + We(t)(ZE (1) + W (1))
t=1
203,07 +U,2,07 (22)
where 61 > G2 2 -+ 2 01 2 0141 2 0142 2 -7+ 2 O2jk
(arranged in decreasing order) are eigenvalues of R, X, =
diag[1,62,--+,61], 8, = diag[or+1,0142.- -, 627k]. Us

and U, are orthonormal eigenvectors corresponding to X,
and X,,, respectively. R

By multivariate central limit theorem, limr_ .. R. = R..
From [16] (Theorem 1.1, p. 167) £,/ =2°%,.5,"=27%,.
Since U, contain eigenvectors (associated with simple eigen-
values) of R., from [15, pp. 293-295], U, =™U,. U, U# =
Lk — OO =71, - UUH = U, UH. (Note that
one can NOT write U, 7=>°U,, which has sometimes been
mistakenly used in our literature.)

III. PRELIMINARY RESULTS

Since U, and A (of full column rank, defined in Appendix
A) belong to the same range, Uff U, = 0 we obtain the
following well-understood properties of R..

Property 1: U,B = A, where B is an [ x I nonsingular
matrix.

Property 2: UHA = 0.

A. MUSIC [11]

Property 2 is the basis of the MUSIC method. Let
a(8;, ¢i,vi,m;) denote the ith column of A, we know

a8, i, 7.1)U, Ula(8,. ¢, vi.n;) =0.  (23)

The MUSIC estimates HA,,-,cf)i.’yt- and 7); are defined as the
locations of the I lowerest valleys of the following MUSIC
null spectrum function

f8.d.7.m) = a(8,¢.v. U, O a(d.6.v.n). (24

(The apparent 4-D searching required here can be reduced to
2-D searching [1], [11].)

It is worth mentioning that (24) does not guarantee con-
sistent polarization estimates in general. For example, given
that §; = 6; and ¢; = ¢; for i # j (this case is allowed
when using polarization-sensitive array), we have af U, =
e;.af ® pfl.eyqf @ pf']U, = 0 and af U, = [e};af ©
pf.eraff @ pfllU, = 0. Here we assume eyi/eq; #
eyj/eszj, otherwise a; and a; have the same polarizations.
Then a’ = cja; + ceaj = [(c1e4 + c2e45)q7 Q Pl . (cre4: +
caeyi)q? @ pT|T is also orthogonal to U, where ¢; # 0

2 This condition for 1-D case was also pointed out in [7] but without proof.

IEEE TRANSACTIONS ON SIGNAL PROCESSING. VOL. 42, NO. 11, NOVEMBER 1994

and co # 0. Using the fact that (a) ey;/esi, ey;/ez; and
(creyi + caeyj)/(crezi + coey;) are three unequal quantities,
and (b) a’.a;, and a; have the identical 2-D angle pairs,
it is readily shown that a’ has polarizations different from
(vi-m:) and (v, n;). Thus minimizing function (24) may give
polarization estimates with large variances even if the exact
enhanced matrix R, is available. This is due to the structure
of A arising from using arrays of crossed dipoles.
For i = 1.2,---,1, define 4 x 4 matrix

R, = Re{QF U, UEQ,} (25)
where 2 [68(9,,31977@ ’ da(8; ,ggmym) , aa(eugsm,m),
da(li di,vi i
“‘—__a( g,,” o )]2JK><4-

It is easy to see that positive definite R;’s ensure that the
MUSIC (2-D angles and polarization) estimates are consistent.
Our analysis of MUSIC is conducted under the condition that
R, is positive definite.

B. Pencil-MUSIC [11]

The Pencil-MUSIC estimates [11] are provided by the
generalized eigenvalues of certain matrix pencils. Before de-
scribing the Pencil-MUSIC method, we define

A R T |

(26)
and let z;;.z;0 and z; 3 denote p;.q; and m;, respectively.
Unlike MUSIC, the Pencil-MUSIC method first estimates
p;.q; and 7; and then converts them to the estimates of
091'.(?1.’7,' and 7.

Define ®, = diag{z1 k. -+, 27k and the following six
submatrices of U,:

U,y = [U, with its k.Jth rows deleted, k = 1,---,

2K a0 - 1)K xI
Uz = [U, with its ((k — 1)J + 1)th rows deleted, k = 1,

c 2K 1)k X1
Uy = [U, withits (K — 1)J + j)th and (K — 1)J +j

+ JK)th rows deleted, j = 1,- -, J]ay(k—1)xs
Usgs = [U, with its jth and(j + JK)th rows deleted, j = 1,

ek —1)xr
Uy, = [U, with its last JK rows deleted] g 1
Us, = (U, with its first JK rows deleted] jx x 7

and let Ay;. k =1.2,3,1 = 1.2, be submatrices of A defined
in the same way as Uy;.

Uk, k= 1,2,3,1 = 1,2 (having more rows than columns)
are required [11] to be of full column rank to guarantee the
consistency of the Pencil-MUSIC estimates. Since Uy =
A,,B (from Property 1) and B is nonsingular, Uy; and Ay,
have the same rank. Under the condition stated in Theorem
B1 in Appendix B, it can be proved that, Ay (Un). k =
1.2.1 = 1,2, are of full column rank. The requirement that
A3 (Uyp), 1 = 1,2, are of full column rank is more demanding.
Making use of Lemma B1 in Appendix B, we can prove that
if there are no identical 2-D angle pairs, A3 (Us;), 1 = 1,2,
are of full column rank, and so are Ay (Ug) kb = 1,2,] =
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1,2. Our analysis of Pencil-MUSIC is conducted under the
condition that there are no identical 2-D angle pairs. Note
that this condition is sufficient for the Pencil-MUSIC to be
consistent but not for the MUSIC.

Since

Apo = Ap @y

(see [11] for a proof) and Up; = AxB~! and Uy, =
A 2B~ (from Property 1), then
Fr 2 (UH UL TUR U
=B(AE A1) TAH ABT!
= B‘I)kBgl.

27N

(28)

This means z; ,% = 1,---, I, are eigenvalues of Fy. Thus, the
Pencil-MUSIC [11] estimates 2; g,¢ = 1.---, 1,k = 1,2,3,
are defined as the eigenvalues of
Eﬂk £ (Uflﬁkl)_lﬁkHlkaz (29)

where ﬁk, are submatrices of ﬁs defined in the same way
as Uyg;. R

—A,wosinb; cos d;i and —Aywg sin 6; sin qAS,- are the phases
of complex variables p; and §;, respectively. Strictly speaking,
Pi,¢; and 7; need to be paired to complete the 2-D estima-
tion which was discussed in [11]. The pairing issue is not
considered in this paper.

C. Glossary of Lemmas

Due to the overlapping of noise in Ze(t), the statistical
results on the perturbations of eigenvectors in [14] is not
applicable here. Lemma | is thus developed concerning the
perturbations of the first I principal eigenvectors of R..

Lemma I: UHAU, =~ AV UH(W.(1)ZE(t) +
W.(H)WH (1))U,AJL, where AU, 2 U, — U,,A, =
diagloy — Lo?,---,0; — La?] (L is defined by (20)) and
=~ means keeping the first-order perturbed terms in equations.

Proof: Let U, = [uy,--+,w;_1,u441, -, uy] (a sub-
matrix of U, with its th column deleted) and A’ = diag[o; —
01,04 = 0i-1,0; — i1, 0; — 01,0, — Lo, -+ oy —
LO’Q]. Since 0,7 = 1,---,I, are simple eigenvalue of R,
from [15, pp. 293-295], the perturbations on the eigenvectors
associated with 0;,1 < i < I, are given by

'H N
Au; ~ (030, J) 7 G | (R - Ry,

/H7
= [UL U, (A} [IIJJH }Reui. (30)
Then
U Au; ~ ———UfRou, (31)
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in other words
UHAU, ~ URR, U AL (32)
From Appendix A, UZZ.(t) = UJAU(t) = 0, then

substituting R, with (22) into the above equation, yields (33),
at the bottom of this page. 0

It should be noted that, to the first order approximation,
a;(= u; + Au;) is still of unit norm. A similar expression
to (32) was developed in [12] via a different route. Lemma 1
is useful to express errors of the MUSIC and Pencil-MUSIC
estimates in the next section.

The columns of Z.(t) and W_(t) can be expressed in z(t)
and w(t) respectively as shown below.

Lemma 2: Let w,(t) be the sth column of W.(¢) and
zs(t) be the sth column of Z.(t), for 1 < s < L. Then
(1) ws(t) = Dyw(t) and (2) z,(t) = D,z(t), where D is
defined in Appendix C.

Proof: See Appendix C. O

Lemma 2 will be used in the proofs of Lemmas 3 and
4. Next Lemma involves the calculation of the fourth order
moment of Gaussian noise vectors, which is also needed in
the proof of Lemma 4.

Lemma 3: Let cq,c9,c3 and ¢4 are deterministic 2J K-
element column vectors, satisfying cZc; = 0 or cfcy = 0.
Then for 1 < s,r < L

Elet'w, ()Wl (t)coc wi ()W (t)ea]
=o'l D, D cicf D, DTc, (34)

where w,(¢)(w,(t)) is as defined in Lemma 2.
Proof: See Appendix D. a
Since the signal covariance matrix E[s(t)s (¢)] is assumed
to be stationary, we can write (for example, from eigendecom-
position) E[s(t)s¥ (t)] = CCH, where C is an I x ry(1 <
rs < I) matrix of full column rank with rs denoting the rank
of E[s(t)s”(t)]. Then, from (9)

R. 2 Efz(t)z ()] = A'E[s(t)s" (t))A’'H = A'CCHA'H.

(35)
Define 2JK x 2JK matrices
L
Gy = d.cl AHDT (36)
s=1
L
Hz] = stzdfj (37)
s=1

1<2,)<2MN,1<t<rs

where d,, denotes the 1th column of D, and ¢, the £th column
of C. With the introduction of G, and H,,, we are able to
present the following lemma that will be used in the proofs of
Theorems 1 and 2, in the next section.

T
UHAU, & 2 S U Z 02 (1) + WL OZE (1) + ZOWE (1) + W ()W (6)U.A"

t=1

T
= 2 S UH(WAOZ (1) + W)W ()TN

t=1

(33)
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Lemma 4: Lete(t) = p (W ()ZH (t)+ W () WEH (1)),
where 1 and v are orthogonal 2JK-element column vectors.
Then

M Ele(t)e" (1))

2MN,rg

Z {17 G.]? + o* | H, v’}
1y=1,{=1

(38)
2MN

(2)  Ele(t)e(t)] =o* Z {n"H, vp"H, v} 39
7,9=1

3) Ele(t)] = (40)

where * denotes conjugate.
Proof: See Appendix E. 0
In the next section, we will see that each MUSIC or
Pencil-MUSIC estimate error can be expressed as the real or
imaginary part of a complex quantity which has the same form
as €(t) in Lemma 4. Combination of conclusions (1) and (2)
gives the expression of estimate error variance and conclusion
(3) indicates that the MUSIC and Pencil-MUSIC estimates
are unbiased.

IV. MAIN RESULTS

In this section, we will derive expressions for the variances
of the MUSIC and Pencil-MUSIC estimates, by making use
of Lemmas 1 and 4 developed in the previous section. For
notational convenience, let w; ), w;2,w;3 and w;4 denote
65, ¢:,7: and 7; respectively, estimate error Aw; ; = @; % —
wi,k, Re{-} and Sm{-} be real and imaginary parts of complex
numbers.

Theorem 1: The asymptotical (T > 1) MUSIC estimate
errors Aw; g, © = 1,---, I,k = 1,2,3,4, have zero means
and the variances

9 2MN,r,

g
Varmusic(Awi,k) = ﬁ Z

1, y=14£6=1

+‘72|9ka11”1‘|2 + 02me{pinvaiPinHﬂvi}) (41

(IpfGorvs]?

where pff is the kth row of R;'QFU,U¥ G, and
H,, are previously defined by (3()) and (37) v; =

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 42, NO. 11, NOVEMBER 1994

From U, UE0U, = 0, we have U, UHU, =
wUnUfAUS ~ —U"UHAU Then

af(ai»¢’i;7i777i) =2§Re{aal U UHa}
96 '

a0
—2§Re{ 5 }

~ —2§Re{aa U, UZAU,UHa; } (43)

06

and the constant (zero-order perturbed) terms of the second-
order partial derivatives are given as follows

062 0

<2§Re{ dge "t 882; .0 a’}>0
_ZRe{agg " 59 + 8;;; U UHaz}

= 2%Re {Bal U, U# ‘?;;1} 44)

(62f(0,,¢>1,'yl,7)1 ) {8afl faal} 4s)
9608 ¢ a9

(62f (9’6’3’5:"”’ ) = 2Re {aafu Ul %z;’} (46)

f(9u¢u’7u'fh) _ aai
( 58 )0_2»%{ o1 "ae}(‘”’

where a; is the short notation of a(6;,¢;,v:,m:;). Using
(43)—(47) in (42), we obtain

dall

with rg; representing the (k,[)th element of R,;.

Similar expressions can be derived from the Taylor series
0f(6i,9i %,
expansions of 2£(Fe.¢.3:0:) af(g“%’%"’ and &G dun),

Omitting detailed denvanons we obtain

Ri[A6;, Adi, Ayi, Ani]T = Re(QF U, UF AU, U a,).

s a,} + 27‘11A9i

+27r19A0¢; + 2r13A7;2r14An;  (48)

49)
U AT U a8, 6i,7i,mi), with a(0. ¢i,vi, mi) representing .
the ith row of A. R, is defined as in (25). (In Section 3, Using Lemma 1, we get estimate errors
R;! is assumed to exist.) 1 I
Proof: Let us first derive expressions of estimate errors. Aw; = T Z Re{ p.ﬁ’k(We(t)Zf (t)
Since 6;, ¢17’7u7)1 are consistent estimates of ;, ¢;, v, 7 t=1
respectively, following the idea in [12], around (6;, ¢;, vi, 7:), + We(t)Wf(t))v,-}
we obtain Taylor series expansion of ww at the 1 E
bottom of this page (f(6, ¢,v,n) is defined by (42)), where = T Z Re{ei k(t)} (50)
= is as defined in Lemma 1. t=1
Of (Bi, bi. %i, i) Of(0:, dirvi, mi) A f (i, bi. viymi (B3, i virmi)
* k) — ~ 9 ) 9 Y A R
a0 0 96 A T A5
0% f (05, i, vismi) 0% £ (6:, bi vismi)
i b () 11 1 A ; b _ b bl 42
+ 4y T +an oo “42)
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Now we consider the error variances.

Observe that and p;  and v; are orthogonal, Lemma 4 is
applicable to ; y(t). Therefore (a) Af;, A¢;, Av; and Aw;
have zero means, according to conclusion (3) of Lemma 4;
(b) From Re{z:}Re{z} = 1Re{2125 + 2120}

Varmusic ( Aw’t k

T2 Z Re{Elei x(s)el 1 (1))

s,t=1
—{—E[Ei’k(s)fi‘k(t)]}. (28]
Since ¢; k(s) and ¢; &(t) are independent for s # ¢
Varmusic(Awi ) = SERe{Ble k(1)eke (1)
+E[(,k €7k( )]} (52)

Also from Lemma 4

Varmusic (Awi,k)

g2 BMN.
=07 > (plhGuevil + o)l H, uif?
2,3=1.6=1
+ o®Re{pf H, ,vip? H,0:}). (53)
a

Theorem 2: (1)Forfixed ¢,ifp; # pj,qi #¢;,5=1,---.1
and j # i, the asymptotical (T > 1) Pencil-MUSIC estimate
errors Aw; i,k = 1,2, have zero means and the variances

Varpencil(Awi k) = gik (54)

(2) For fixed 4, if p; # pj.q # q5,m # 7j.j = 1,---.1
and j # ¢, the asymptotical (7" >> 1), Pencil-MUSIC estimate
errors Aw; ¢, k = 3,4, have zero means and the variances

Varpencil(Awi k) = gik (55)
where for ¢ = 1,---, 1.k = 1,2,3.4
g2 M
Gik = 2T le |/Lz kGlZU1| + U i, kHZJUI!
1 ]—

—o*Re{pn L Hyvipl L Hyv}) - (56)

with pfly = e 1 ()7 + cr 2 ()78 + er3(i)7f, G and H,,
previously defined by (36) and (37) v; as defined in Theorem
1. TH denotes the ith row of (A{fAll) VAR(J ~ 2i03n)
and ckl(z)(l = 1,2,3) are given in Appendix F. J;;.l =
1,2,3,j = 1,2, are selection matrices to represent the relations
between Uy, and Uy, and defined in Appendix G.

Proof: Let AF¢ = ¥, — F(F; and F; are defined by
(28) and (29)), X be the ith row of B~! and b; the ith
column of B. It is known, from (28), that x; and b, are left
and right eigenvectors of F; associated with z; ;, having the
property that kb; =

Due to the intricacy of the perturbation on multiple eigen-
values, we will only derive error expressions for simple
eigenvalues of F;. Let us assume that z;; is distinct from
other eigenvalues of F;. For T large enough, the perturbation
on simple eigenvalue of F; is given by [15]

AZ“ é 7:’,"1 —ZU~ KLHAFle' (57)
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where = is as defined in Lemma 1. Equation (5.13) of [12]
gives

AF, = (UHU;)'UE (AU - AURF).  (58)

From the definition of J;; in Appendix G, we know
AUH = JllAUS and AU;Z = J[zAUs. Since Flbi =
Ziylbi)(AUlQ — AU[]Fz)bi = (J12 et Z“J“)AUsbi and
(U“ = A“B_I,Um = A[QB_I)K/F(UI}{Ull)_lU{{ is the
ith row of (AﬁAll)’lAg, we obtain

Aziy =7/ AUDb; = tAAUU a6y, ¢ viom). (59)

In order to use Lemma 1, we have to verify that
Tig.l = 1,2,3, belong to the column space of U,. From

Property 1 and (27), (AFAn)"*AH(J1p — 2, In)Us =
(AHA)TTAB(Upp — 2, Un)= (AffAn)TAEAL (D) -
zial)B™ = (®; — 2, I1)B~". Thus 7/U, = 0,1 = 1,2,3.

Using Lemma 1, we get

T
1
Aziy= S AW ZE () + W ()WEH(1)}ui. (60)
t=1
From Lemma F1 in Appendix F, Aw; = Sm{ck1(¢)Api+
cr2(1)Ag + e 3())Am;}, (1) For k = 1,2,¢, 3(i) = 0. If p;
and ¢; are simple eigenvalues of F; and F5 respectively, the

expressions of Ap; and Ag; can be obtained according to
(60). We get, for k = 1,2

Z Smi(ck,1(

X (We()Z{ (1) + We ()W (t))ui}.

ij‘k

D+ er 2 () + era(i)h)

(61)

(2) If p;.q; and 7; are simple eigenvalues of F,,F5 and Fo,
respectively. Then for £ = 3.4

Z m{(ck,1(

Awi,k— 2+Ck3() H)

DTE + e (i)7

X(We(Z (1) + W)W (t))vi}. (62)

Actually for cases (1) and (2), the estimate errors hold a
uniform expression

T
1 . , .
Awip = T %In{(ck,l(z)n{{l + ck_g(z)ri{iz + Ckvg(l)TiIé)
t=1
X (We(O)ZF (1) + W ()W (1))vi }
T
1
== > Sm{pff (W) ZE (8) + W ()W (1))vi }
t=1
1 I
= T > Smieix(t)}. (63)
t=1
From p5, U, = 0, we have pf v; = 0,k =1,2,3,4. Lemma

4 is thus applicable to €; (). Using conclusion (3) of Lemma
4, we have E[A9;] = E[A¢;] = E[Avy;] = E[An] = 0.
Using Sm{z1} = Sm{z;} = 4Re{2123 — 2120} and Lemma
4, the conclusion on the variances can be verified in a similar
manner to that in Theorem 1. O

The theoretical analysis for the cases that are not covered
by Theorem 2 is currently under investigation.
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Fig. 1. CRB, theoretical and simulated deviations of (a) #;, (b) @1, (¢) %1, (d) 1 versus A+ (polarization difference). (8. 01.171) = (40°.40°, —5°),
(62.02.72) = (45°.45°.5°), 71 = 45° — 1\5, 55 = 45° +1A+, with Ay = 0°..--,80°,

V. SIMULATION AND DISCUSSIONS

In this section, we present simulation results in order to
further investigate the performances of the MUSIC and Pencil-
MUSIC methods, as well as to verify theoretical work.

We consider two unit-power signals, M = N = 20 and
J = K = 7. SNR = —10logo? = 10 (dB). Fifty runs
of Monte Carlo simulation were performed. Initial estimates
of MUSIC were generated by the Pencil-MUSIC method.
Simulation was conducted for the following three scenarios:
(1) different polarization difference for uncorrelated signals,
(2) different angle separation for uncorrelated signals, and
(3) different correlations between two signals. The number
T of snapshots is chosen as 50. Since the deviations of
parameter estimates for the two signals follow the same pattern
in scenarios (1) and (3), so only those for the first signal are
plotted. Whereas in scenario (2), results for both signals are
plotted. In all examples, the requirements by Theorems 1 and

2 are satisfied, i.e., R; and R, (defined by (25)) are positive
definite, and p1 # p2, @1 # g2, M1 F .

Fig. 1 shows deviations of the angle and polarization esti-
mates for the first signal when (61, ¢1,71) = (40°,40°, —5°),
(B2.¢2,m2) = (45°,45°,5°), 41 = 45° — 3 Ay, 72 = 45° +
£ Ay, with polarization difference A~y varying from 0° to 80°.
When A« is small, there are fluctuations in the deviations of
estimates of #; and ¢, however, as A~ is larger than 10°, the
deviations are monotonically decreasing functions of A-~y. It
is interesting to note that the deviation of the estimates of
increases drastically when A~y approaches 90°. The reason is
that if v = 0° and 90°, 7 becomes ambiguous, the deviation
of its estimate takes large value as A~ approaches 90°.

Fig. 2 shows deviations of the angle and polarization esti-
mates for the first signal when (6;, ¢1,71) = (40°,40°,45°),
(62.42.72) = (45°,45°,45°), my = —3An, ;o = —34n,
with polarization difference An varying from 0° to 180°.
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Fig. 2. CRB, theoretical and simulated deviations of (a) 81, (b) &1, (¢c) 71, (d) 71 versus An (polarization difference). (61.61,71) = -(40°,40°.45°),

(62.02.72) = (45°.45°,45°), 1 = —% An, m2 = 1 Ap, with Ay
We can see that increasing polarization difference improves
the accuracies of angel estimates. Note that the deviations of
the Pencil-MUSIC polarization estimates change very little in
the whole range of An. A similar observation was found in
[4]-[7] the authors there claimed that it is due to “small” angle
separation between the two signals. However, as shown in the
next figure, we found that it is due to the relatively “large”
angle separation.

Fig. 3 shows theoretical deviations of the polarization
estimates for the first signal, as a function of angle separations
when (f1,¢1,71) = (40°,40°,45°), (02, d2,v2) = (40° +
A,40° + A,45°), my = —3 A, ny = A, with polarization
difference An varying from 0° to 180° and angle separation
A = 1°,5°9° It can be seen that when A is 5° or 9°,
the deviations of the Pencil-MUSIC polarization estimates are
stable over the whole range of An; on the other hand, when
A is decreased to 1°, the accuracies of the Pencil-MUSIC
polarization estimates improve with the increase of An.

= 0°,--.,180°.

Figs. 4 and 5 present deviations for two signals when the
angle separation changes. (61,¢1,71,m) = (45°, 45°, 45°,
—10°), (82, ¢2, 72, m2) = (45° + A, 45° + A, 45°, 10°),
with angle separation A varying from 1° to 40°. In this
case, the deviations for the two signals do not follow the
same pattern. The deviations for the first signals decrease
as A increases. However, the deviations of the estimates of
@2, v2 and 7o decrease with the increase of A for small
A, but increase with the increase of A for large A. This
observation can be explained as follows. When A is small,
two signals are closely spaced, an increase in angle separation
helps improve the accuracies of the estimates of 2, ¢, 72
and 7,. When A is large, two signals are well separated, the
deviations for the second signal are much like that for one
signal case. Since #; = arcsin{-}, the sensitivity of 6, is
nearly infinity when 6 is close to 90°. From ¢ = arctan{-},
the sensitivity of ¢, is nearly zero when ¢, is close to 90°.
When (02, ¢2) = (90°,90°), v2 and 7, are ambiguous, so the
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= (45°,45°.45°), p; = 1

estimates of o and 1, have large deviations as A approaches
45°.

Since the MUSIC and Pencil-MUSIC methods proposed in
{11] can handle coherent case, in the following two figures, we
consider correlated signals. Let the signal covariance matrix be

1 pexp{jy}

Bls()s™ (0] = | ) oxpi—ju) !

(64)

we will call p the correlation magnitude and ¢ the correlation
phase.

Figs. 6 and 7 show the deviations of the angle and po-
larization estimates for varying correlation magnitude (phase
= 0°) and varying phase (magnitude = 1) respectively when
(017 ¢17 V1, 771) = (400- 4007 45°, _900), (021 d’?e Y2y 772) =
(45°,45°,45°,90°). The deviations of the MUSIC estimates
are, in this case, very close to those of the Pencil-MUSIC es-
timates since polarization differences were set at large values.

Finally, we note that the polarization estimates of the
MUSIC method tend to be more accurate than those of the
Pencil-MUSIC method when the angle and/or polarization
separations are small, but otherwise the MUSIC and the Pencil-
MUSIC have comparable performance (while the latter is
always more efficient in computation).

VI. CONCLUDING REMARKS

In this paper, we have studied the MUSIC and Pencil-
MUSIC methods for finding 2-D angles and polarizations
based on a rectangular array of crossed dipoles. In particular,
we have obtained a closed form expression for the estimation
accuracy of the two methods, compared the performance of
the two methods via analysis and simulation, and revealed
a number of new insights into the two methods. This study
also represents another novel application of several statistical
principles as previously applied in [9], [12]-[18]. This novelty

-2 Ay, 2 = § Ay, with Ay = 0°.---.180°.

includes a skill dealing with the 2-D aspect and the correlated
noise (due to the enhanced covariance).

APPENDIX A

A Compact Expression of Z.(t)

From the definitions of X, (t) and Y .(t), it is easy to prove
that

Z.(t) = AV(t) (65)
where
_ |ea11 ®Pp1 - e rqr @Ppr (66)
€y191 @ P1 €y1dr @ PI o551
s1(t) ai ® py
() = : (67)
s1(t)) laf @ p]
with
pi:[lvpi',""p;‘]_l]T (68)
=g g5 (69)
pi=[Lpi- T (70)
ai=[lq..q KT (71)

and ® defined by (14).
APPENDIX B

A Sufficient Condition for A to Be of Full Column Rank

Theorem Bl: If (a) there are no more than two signals with
identical 2-D arriving angle pairs, and (b) eziey; # €x;€yi, for
(8. i) = (85,¢;), i # 7, then A is of full column rank.

Before we prove Theorem B1, we need the following result.
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Lemma BI: If there are no identical 2-D arriving angle
pairs, ie., (6;,¢:) # (85, ¢;),fori # jand i, j = 1,2, (<
I), then q; ® p1, g2 ® p2, -+, q ® p; are independent.

Proof: It can be proved that, (6;,¢;) # (0;.¢;) is
equivalent to (p;,q;) # (pj,q;)-

Without loss of generality, let p; =

C = Pdys s Pd 41 =
distinct and d, = I.

From [q1®p1,q2®@p2. - . q®py][c1. c2. - - )T = 0, we
get (c1q1+- 4¢4,9a,)®Pa, + - +(Ca, 4194, 41+ +
€4,9q4,)®Pa, = 0. Note [pg,.---.pa,|isa Jxr(J >1>71)
Vandermonde matrix of rank r, then cq4,_, y1Q4,_,+1 + - +

= Pdys Pdi4+1 =
©ro = pa,, With D4, pa,. . Dd,

€49, = 0,3 = 1,2,---,r with dy £ 0. Note again
[Qd, ,+1.-+.9q,] is @ K x d;(K > I > d;) Vandermonde
matrix of rank d;, then ¢4, ,+1 = --- = ¢4, = 0. Hence,

¢; = -+ = ¢; = 0 which leads to the sated result. O
Proof of Theorem Bl: Let (p1,q1) = (Ps;+qs;)s (Dsy+1s
(Is1+1) = (pszv qu)’ Ty (pst_1+1~ qs,,1+1) = (pst7QSg)a

with (ps,, ¢s,)s Psss Gsx)s -+, (Ps,» gs,) distinct and s; = I.
According to (a), s; = 1 or 2.

From
€191 ® P11 €x292 @ P2 e.1q1 ® Pr
ey1q1 @ P11 €y2q2 & P2 eyrqr @ pPr )
x[er e ealf=0 (72

(cleml + Cs, €z, )q.sl QPpPs, + (Csl+lez(sl+1) + cszel‘sz)qsz @ Ps, + 0
(Cleyl + csleysl )(131 ® Ps, + (Csl+ley(sl+l) + cszeysg)qsz @ Ps, + -

+ (Cs,_, +1€z(s,_,+1) + ¢s, ezs,)‘lst & Ps,

=0
+ (CSt—1+1ey(51_1 +1) + Cs, eySr)QS: ® Ps.

(73)
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we get (73), at the bottom of the previous page. From APPENDIX C
Lemma Bl, we know g, ® ps,, qs, ® Ps," . ds, © Ps, Let s = iy + (jo — 1)(M — J+1)(1 < s < L, L is defined
are independent. Then if s; = 1, we have by (20), with 1 < i, < M—J+1land1< j, < N— K +1.
{6“' } cs, = 0. (74)
Eys: Definition of the Selection Matrix D:

Note that [e,, , e,,]7 is not a null vector (otherwise there will
be I — 1 signals), therefore cs, = 05 if s; = 2, we have

= D; = [I ® (F1(4s) ® Fa(is))|ask xamn (76)
|:e:c(s,,1+l) €rs; ] l:csz—l +1 :| 0 (75)
Cy(si-1+1)  Cys, Cs,
where
Accor@ing to (b), ¢s,_,+1 = ¢s, =0. Hence, ¢y = --- = ¢; = 0 --- 0 1
0. This completes the proof. o
Remark: If (a) is not satisfied, it is easy to prove that A Fi(js) = . ’ a7
is rank deficient. This fact tells us that using arrays of crossed s/ = : ! 0 -0
dipoles, the eigendecomposition-based techniques can not be T ) 1
applied for cases of more than two signals with identical 2-D Js Js+K-1 KxN

arriving angle pairs. ((F1(36))jjeti-1 =1, =1,2,--- | K)
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and One can write
0 0 1
l _
. . Wsz(y)(t) - [F2(1)Vlz(y) F2(2)V2w(y)
Fy(is)= : 1 0o ... 0| (3 Fo(M — J+ D)Vip—ssie)] (79
. p _ and
ts is+J -1 JIx AL
Ey(is))iiivici=1,i=1,2.---.J
(F2(is))ii+i-1 = 1, ) Wi (1)

and ® is defined by (14).

Notice that Dy is a (0, 1) matrix with its ((k—1)J +7. (j, +
k~2)M+is+j—1)thand ((k~1)J+j+JK.(j,+k—2)M +
is+j— 14 MN) elements equal to 1, for j = 1.2,---..J
and ¥k = 1,2,--- K.

Proof of Lemma 2: Let

le(y)(t) = [ww(y)(l-, { t)- wz(y)(Qv l t)~ T wz(y)(]w- L, t)]T
and

Wx(y)(t) = [vlz(y)(t)v VZz(y)(t)e T V]Vx(y)(t)]T-

= [(F1(1) @ Iy)wa(y)(1). (F1(2) ® L)
X Wa(yy(t), (Fi(N = K + 1) @ Ir)w () (¢)]
= [(F1(1) ® F2(1)) W, () (1), (F1(1) ® F2(2))
X Wa(y)(t), - (F1(1) @ Fo(M — J + 1))y (1),
(F1(2) @ F2(1))Wa(y)(1). (F1(2) © F2(2))
X W) (t), - (F1(2) @ Fo(M — J + 1))
X wey(t), - (Fi(N — K + 1) @ Fo(1))
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X Wy (8). (F1(N = K + 1) ® F2(2))
X Woy)(t). - (FU(N ~ K + 1) @ Fo(M = J + 1))
X Wz(y)(f,). (80)

Then the sth column of W ., (1))wW .,y (t) = (F1(j.) ®
Fg(is))wl(y)(i). Since

w, (1) = {me } ‘

(81)
Wsy(t)

w(t) = {wm}

wy(t)
the relation between w(¢) and w(#) can be expressed as

_ FI(JS) @F?(le) wx(”
wal(t) = { Fi(j)® qusﬂ [wym}
=D, w(t)

which is conclusion (1) of Lemma 2.
Conclusion (2) can be similarly proved.

(82)

CRB, theoretical and simulated deviations of (a) #;, (b) oy, (¢)
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APPENDIX D

Proof of Lemma 3:  Let ¢, (i) and w(¢) be the ith ele-
ments of ¢, and w,(t) respectively for k = 1, 2, 3, 4, and
s = 1,2,-.- L, then

cHw, (tywi(t)esc w, (t)wH (1),
2JK
= ci(i)ez(g)ez(R)ea(Bws ()wg (§)wr (k)wi ().
1.5,k 1=1

(83)

It is shown that (see [18], for example), for any four jointly
circular Gaussian random variables {z,xs.x3, x4} with zero
means, the following equation

Elrwyesey] = Ele 23] Elesel] + Elzqa})Elzszy]  (84)
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holds. We obtain
Elws (d)wy (5)wr(k)wy ()]

= Elws(i)w; ()] Elw-(k)w; (1)]
+ Elws ()wy (D] Elw, (F)w; ()] (85)
Hence
Elef wy(t)w H(t)Cszwv(t) 2 (t)ed]
= cf Elw,(t)w] (t)]cacd Elw,(t)wF ()]cq

+cf Elw,(t)w) (t)]eact Elw,(t)w (t)]ca.
(86)
From Lemma 2 .
Elw,(t)wH(t)] = D,E[w(t)w(t))DT = ¢2D,DT (87)
Elw,()w/ ()] = e’D,D]. (88)
Using a few properties on the Kronecker product [10], we can
prove that

D,DT =1,k (89

for s = 1,2,---, L. Thus the first term on the right side of
(86) is zero. The conclusion follows.

APPENDIX E
Proof of Lemma 4:

Ele(t)e™ (1))

L
= Z {E[ﬂHWs

s,r=1

+ E[pEw,(t)wH (t)vv w,(t)

It is known that

2 (B, (w ()]

wi (t)ul}

= 3 (Bl (W (O] Bl () ()0
i w0}

+ E[pH w.(t)wH (t)vvP w,(t)
(the first term on the right side of (90) follows from indepen-
dence between signals and noise) and

(90)
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L
=02y {uHDSDf;L[vHDTA’CCHA’,HDfU

@
3
Il
—

{ ds,d”u[ HD, A'coc AP DTy
7,7=1 ¢=1 s,r=1

+ o204, dT ]}
2MN r,

=23y Z {M decHF A DTy D, Al dL
2,73=1 €=1 s,r=1
+ o*pfdg,dTvv?d,,df u}
2MN rs
= ¢? Z Z {|,U,HG71U|2 + 0’2|/LHH1]U|2} (92)
2,73=1 ¢=1
and
2MN
Ele(t)e(t)] = o* Y {u"Hyuop" Hyw}.  (93)
2,7=1
(92) and (93) are conclusions (1) and (2), respectively.
Conclusion (3) can be shown by
E[d = W (E[W () Ze()] + E[W ()W ()]
= Lo?pflv = 0. 94)

APPENDIX F

Since the Pencil-MUSIC method first gives estimates for the
intermediate parameter p, g and 7, we have to relate estimation
errors of #, ¢, v and 7 to that of p, ¢ and 7 in this Appendix.

Lemma F1I:

Awy; = Smick,1(2)Ap; + ck2(1)Agi + ck,3(8) A7}

where ¢ 1(%) are given at the bottom of this page with

L
Ele] = ) Elpfw (t)wl opfw (t)w/ (tp]. O X = tan~; exp{jn;}
sr=1 ¢ = A; sin ¢; cos ¢; (Ai cosb; + ;) sin ¢;
Using Lemmas 2, 3 and (35) gives L= cos? §; sin 6; cos 6; cos? ¢;(m; — tan ¢;)
in2 b ) . )
Ele(t)e* (¢)] g g hicoshiAm
L cos? 6; sin 6; cos 6; cos ¢; (m; — tan ¢;)
=g? Z {p" D, DI pv D, (R, + o’ Loy n)DIv} ¢ = tan ¢; — A; cos b;
s,r=1 37 cosf;(m; —tangy)’
. COS O, . sin @; N —
clﬁl(l) = _Afwopl cos 6, 01'2(1) = T A, woq; cos 8, 01’3(1) =0
N sin Q; A COS @; 'y —
c2.1(2) = Aswop. sinb; co.2(1) = TR, Doq; s b, c2,3(1) =0 ’
. tan v; & N tan vy, & N j&itany
e3a(i) = A;wopi(l+tan? 4 )éRe{ /\l} c32(i) = Aywoqi(1+tan® 7,)§Re{/\i} 63*3(7') Ai(1+tan? v;)
. 1 . 1 7 . l
cq1(t) = Ao svn{%} cq2(l) = —m%m{%} ca3(2) = f\—l
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Proof: To simplify the notation, the subscript ; will be
omitted. ~ has the same meaning as defined in Lemma 1.
e relations of A0 and A¢ to Ap and Aq
Since —A,wy sin § cos ¢ and —Aywy Sinécosqg are assumed
as the angule positions of p and § respectively, from [12], we
know

A{~AIWO sin 6 cos (7;}

A . N n
= —A,wpsin b cos ¢

+ Azwg sin b cos ¢ =~ %m{pilA[)} (95)
A { —Aywp sinf sin qﬁ}
2 _Aywosinfsin g
+ Aywysinfsing = i‘sm{q‘lAq}. (96)
Solving the above systems of equations, we obtain
COs ¢ sin ¢
Af = Imq — - A 97
Jm{ A wopcosf Aywoqcosl q} o7

Ccos ¢
- Aqyp. 8
Ap Aywogsin !]} 98)

o relations of Ay and An to Ap, Aq and Ax
Let AX 2 X — A. The relations of A~y and An to AN are
derived as below: Since

sin ¢
Ap =
¢ Jm{ A wopsin

siny _ siny + Aycosy
cos Yy = cosy — A~vysin-y
~ tany(1 + (coty + tany)Ay)

tany =

and exp{jAn} = 1 + jAn, we have

AXN tand
24 GARY —
> = oo expljan) - 1
= (coty + tanvy)Avy + jAn. 99)
Then
tan v AN
= ——Red — 1
7 1+ tan®~y P{ A } (100)
A
An:i‘wn{—/\é}. (101)

The expression of A\ can be developed as follows: From
(206)

fr(j\cosé - tanq?)) = Xcosf tan¢3+ 1 (102)

T (A/\ cosf — ABAsinf — Ad

cos? ¢

) + Am(Acosf — tan ¢)

~ AXcosftan ¢ — ABAsinftan ¢ + A¢M
C

. (103
082 ¢ (103)
Inserting (97) and (98) in (103) yields

AN = ESm{(Awwop) "' Ap}
+fé‘3‘m{(A_,/wuq)‘lAq} + AT, (104)
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Thus

t i A tan
:Lréme 2L LQdm p + ’Y2
1+tan® v A A wop 1+tan”~y

& Ag € tany }
Re< 22 53mq —— 2+ Red —=—7F—A
X e{)\ e Aywoq e A(1+tan? ) i
_ tany _i o Ap tan -y R {5_5}
1+ tanzwme{ /\}Jm{Axwop + 1+tan®y ‘N

Aq FE& tany
S Jm ——=———A 105
X Jnl{Aywoq}+J1n{ )\(1+tan2 o g (105)

An:%m{ % }%m{ Aifgp } +%In{%}

A i
X (\‘sm{ Ayu(lloq } +(\‘sm{%‘;Aﬂ*}.

Using ¢ to replace the coefficients in (97), (98), (105) and
(106) completes the proof. d

(106)

APPENDIX G

Definition of selection matrices J;;

1
Jui=Lellk®

L 0Jgonyxs 2AT-1)K x2JK

(107)

(with its ((k — 1)J + j.(k — 1)J + j)th and ((k — 1)J +
j+ JK.(k — 1)J + j + JK)th elements equal to 1, for
j=1.2. J-1,k=12-.K)

01
Jo=Le|Ix®

1 (J=DxT/ Jo(j-1)K x2JK

(108)

(with its ((k—1)J+ 4. (k—1)J+j+ 1)thand ((k—1)J +
j+JK. (k—1)J+ j+ 14 JK)th elements equal to 1, for
j=12---J-1.K=12.--.K)
1

®1;

(K—1)x K

Joa=1L®

10 2I(K-1)Kx2JK

(109)

(with its ({.)th and (I + JK.l + Jk)th elements equal to 1,
for l = 1,2.---, J(K - 1})

0 1
Jor=|1I2® ®1;

L (k-1yxk 2I(K—1)K x2JK

(110)

(with its (/.I+ J)th and (I+ JK, [+ J + Jk)th elements equal
tol, forl =12, JK-1))
a1 =Lk

0]k n2rk (111
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(with its ({,1)th elements equal to 1, for{ = 1,2,---, JK) and

Ja2=1[0 Lix]jkyosk (112)

(with its (I,! + JK)th elements equal to 1, for [ = 1,2, ---
JK).
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