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Performance Analysis of the MUSIC and Pencil- 
MUSIC Algorithms for Diversely Polarized Array 

Qi Cheng and Yingbo Hua, Senior Member, IEEE 

Abstract-This paper presents an asymptotical analysis of the 
MUSIC and Pencil-MUSIC methods for estimating 2-D angles 
and polarizations using crossed dipoles. The explicit first order 
expressions for the variances of the MUSIC and Pencil-MUSIC 
estimates are derived. Both the theoretical and simulation results 
are used to analyze and compare the performances of the MUSIC 
and Pencil-MUSIC methods. A number of new insights into the 
two methods are revealed. In particular, the MUSIC and Pencil- 
MUSIC methods are shown to have comparable performances 
near the Cramer-Rao bound, although the latter is much more 
efficient in computation than the former. 

I. INTRODUCTION 
INCE the diversity in signal polarization can be exploited S to improve the accuracy of angle estimates, using diversely 

polarized arrays for angle estimation has recently attracted 
considerable attention. As a result, a number of angle estima- 
tion techniques have been developed for diversely-polarized 
array, which include specialized versions of the MUSIC [ I ] ,  
[3] and ESPRIT [4]-[7], and ML [2], 181, as well as the 
Cramer-Rao bound analysis [9], [IO]. Both the MUSIC and 
ESPRIT techniques require fewer computations than the ML. 
But, for coherent signals, the MUSIC [ I ] ,  [3] and ESPRIT 
[4]-[7] fail. However, the MUSIC and Pencil-MUSIC methods 
proposed in [ l  11 circumvent the coherent case. 

We note that the “pencil” appears to be a key concept which 
connects a class of estimation methods such as the pencil-of- 
function method [ 191, the matrix pencil method [20], ESPRIT 
[21], the state-space method [ 2 2 ]  and the SURE method [12]. 
The Pencil-MUSIC will remind one of the Root-MUSIC (231. 
While the Root-MUSIC method can be modified and applied 
to the 2-D estimation problem shown in this paper, the Pencil- 
MUSIC method is much more efficient in computation because 
it solves a generalized eigenvalue problem of much smaller 
size than the polynomial rooting required by the Root-MUSIC. 
Another distinction between the Pencil-MUSIC and Root- 
MUSIC is that the former uses the signal subspace and the 
latter uses the noise subspace. 

Although much work has been done in analyzing I-D 
estimation techniques [12], [13], etc., there has been no 
comparable effort being put into the analysis of 2-D estimation 
methods. In this paper, we study two 2-D angle estimation 
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methods: the MUSIC and Pencil-MUSIC methods [ l  I]. For 
the MUSIC method, the analysis is made by means of the 
Taylor series expansion of a multivariate function, which is 
a generalization of the methodology used in [12], [13]. The 
analysis for the Pencil-MUSIC method is a further extension 
of the approach used for the SURE method in [12]. A better 
understanding of the MUSIC and Pencil-MUSIC methods is 
obtained as a result of the analysis. 

The outline of the paper is as follows. Section I1 includes 
the problem considered in [ 1 I ]  and the introduction of the 
enhanced covariance matrix. Section 111 presents a brief review 
of the MUSIC and Pencil-MUSIC methods, a discussion on 
the consistency of the two methods and a couple of preliminary 
results. Section IV contains theoretical results for the MUSIC 
and Pencil-MUSIC estimates. Section V discusses numerical 
examples. Section VI is the conclusion. 

11. PROBLEM FORMULATION 

Consider a rectangular array consisting of M x N pairs of 
crossed dipoles, in the X-Y plane, with (1, 1) dipole pair 
situated in the origin of the coordinate system. Interelement 
distances along .c-direction and y-direction are A, and Ay, 
respectively. Suppose that I narrowband plane waves, centered 
at frequency W O ,  with elevations 01, . . . , @ I ,  and azimuths 
4 1 % .  . . . 41, impinge on the array. Denote by z(m, n, t )  and 
y(m. 7), t ) ,  respectively, the signal outputs at the (m,n)th 5- 

dipole (parallel to the r-axis) and y-dipole (parallel to the 
y-axis), and by w , ( 7 r ~  n. t )  and wY(m. n, t ) ,  respectively, the 
noise at the same r -  and !/-dipoles, for the tth snapshot. Noisy 
outputs at the (m.7i)th 1- and y-dipoles can be represented 

where for i = 1 . . . . . 1  

e x l  = cos 8, cos 4 ,  sin y1 exp{,yq,} - sin 4% cos y2 
pY1 = cos 8, sin 4, sin y1 exp(j71~) - cos 4L cos y2 

. . .  
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p i  = exp{ -jA,wo sin 0; cos +;} 
q; = exp{ - j A y w o  sin 0; sin $;} 

( 5 )  
(6)  

and s;(t) is the random signal. 7, and 71; are polarization 
parameters for the ith signal. 

The ranges of parameters for the above data model should 
be restricted. For the identifiability of q;, 0, # ~ / 2  and y; # 0, 
and y; # ~ / 2  when using the Pencil-MUSIC method. Later 
we will see that, in the Pencil-MUSIC method, 0; and 4; are 
computed from p i  and pi. For the identifiability of +i, 0; # 0; 
to avoid ambiguity in 0; and 4; ,  0 < A,, Ay < T/wo and 
0; is assumed in the upper half plane. Due to the above 
consideration, we confine the ranges of &, 7, to 0 < 0; < ~ / 2  
and 0 < y; < ~ / 2 .  The ranges of 4; ,  71; are unchanged, 
-T 5 4; 5 T and -T 5 7; 5 T. 

Define 2MN-element column vectors 

Z ( t )  = [vec(zc(m, 72, t ) ) ,  vec(dm,  71, t))lT 
w(t) = [vec(%(m, n, t ) ) ,  vec(’uly(m, 12, t))lT (7) 

denoting transpose and vec( r (m,n , t ) )  an M N -  with 
element row vector defined as 

(i.e., stationary) and unknown. The noise voltages w(t),t  = 
1, . . . , T are independent with zero means and covariance 
matrix CT’I~MN. Furthermore, the signals are assumed to be 
uncorrelated with noise. 

Let 

X3t) 
z ( l , l , t )  z ( 2 , l , t )  . . .  z ( M -  J + l , l , t )  
~ ( 2 , 1 , t )  ~ ( 3 , 1 , t )  . . .  z ( M -  J + 2 , 1 , t )  

Z ( J , l , t )  z ( J + l , l , t )  . . .  x ( M ,  1, t )  
1 = l , . . . , N  (15) 

be a J x ( M -  J +  1)(1 5 J 5 M )  Hankel matrix and (16), at 
the bottom of this page be a K x ( N  - K + 1)( 1 5 K 5 N )  
Hankel block matrix. Ye(t), We,@) and Wey(t) are defined 
in the same way as Xe(t). Introduce 

vec(r(m, n1 t ) )  the enhanced covariance matrix defined in [ l l ]  can be ex- 
= [r(l, 1, t ) ,  r(2,1, t ) ,  . ‘ . , r ( M ,  1, t ) ,  T(1,2, t ) ,  pressed as 

Then the array output has the vector form 

Z(t)  A ~ ( t )  + ~ ( t )  = A’s(t) + w(t) (9) 

where 

with 

Re = E[(Ze(t) + w e ( t ) ) ( Z F ( t )  + w,H(t))l (19) 

where and E denote conjugate transpose and statistical 
expectation, respectively. 

Let o1 , 02, . . . , o 2  J K  (arranged in decreasing order) be 
eigenvalues of Re, U, and U, be its orthonormal eigenvectors 
corresponding to (ol, 0 2 , .  . . , ‘ T I )  and  TI+^, o1+2, . . . , O ~ J K )  

respectively, and 

(20) L. = ( M  - J +  1)(N - K +  1) 

we can write 

Re = E[Z,(t)Z,H(t)] + LCJ~I~JK = U,EsUf + U,X,U,H 
(21) 

where 
p: = [l,p;,.  . . ,py-11* 

q: = [I, q ; , .  . . , q p ] T  
(12) 
(13) 

Es = diag[ol, 02, . . . , g ~ ]  
and 8 denoting the Kronecker product [17] defined as 

We assume that (1) I 5 min(M - J + 1, J ,  N - K + 1, K)’ 
and (2) A (defined in Appendix A, having more rows than 

Signals and noise are assumed circular Gaussian (see [ 181 
for the definition). s ( t )  for different t are taken to be indepen- 
dent random vectors. sk ( t )  and sl ( t )  (1 5 IC, 1 5 1) ma; be ’ The choice of J and also affects the noise robustness of the MUSIC 

and Pencil-MUSIC. However, it is not easy to determine the optimum J and 
which lead to the minimum estimation variance, even for one-signal case. fully dependent on each other, which is the So-called coherent 

case. We assume E[s(t)sH(t)] are identical for different t More details can be found in [20]. 
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columns) has full column rank (a sufficient condition2 is 
presented in Appendix B). Then E [ ( Z , ( t ) ( Z f i ( t ) ]  will be of 
rank I irrespective of coherency among signals (see [ l  I ]  for a 
proof). We further assume that the first I principal eigenvalues 
of Re are distinct. 

In practical situations, R, is not available and we can only 
obtain 

where Cl 2 62 2 . . .  2 61 2 2 f i I + 2  2 ..;> F2.,k- 

(arranged in decreasing order) are eigenvalues of Re,  Es -= 
diag[cl, 6 2 ,  ... ,611, En = diag[6/+l, f i 1 + 2 . .  . . ~ 62JK], us 
and U, are orthonormal eigenvectors corresponding to Ex 
and gn,  respectively. 

By multivariate central limit theorem, limT-= R, = R,. 
From [16] (Theorem 1.1, p. 167) 23Tz=Es. ~ , L T ~ 3 C E f l .  
Since U, contain eigenvectors (associated with simple eigen- 
values) of Re, from [15, pp. 293-2951, UsTzmU,. UnUF = 

I ~ J K  - U , U ~ T ~ m 1 2 ~ ~  - U,U: = U,,UF. (Note that 
one can NOT write Uf,,TzEUIL which has sometimes been 
mistakenly used in our literature.) 

111. PRELIMINARY RESULTS 

Since U, and A (of full column rank, defined in Appendix 
A) belong to the same range, UFU, = 0 we obtain the 
following well-understood properties of Re,. 

U,B = A, where B is an I x I nonsingular 
matrix. 

Property I :  

Property 2: UZA = 0. 

A. MUSIC [ I l l  

a(Bi, 4i, y;, vi) denote the %th column of' A, we know 
Property 2 is the basis of the MUSIC method. Let 

aH(Bi , 4;  yi - r/, )Ur,Ufa(H,. 4,.  T i .  V I  ) = 0. (23) 

The MUSIC estimates 8;. J L .  9; and 6;  are defined as the 
locations of the I lowerest valleys of the following MUSIC 
null spectrum function 

f ( H , $ , y ? q )  = aH(e .$ .r .r l )Uf ,U~a(H.~~.y .  1 1 ) .  (24) 

(The apparent 4-D searching required here can be reduced to 
2-D searching [l] ,  [ l l ] . )  

It is worth mentioning that (24) does not guarantee con- 
sistent polarization estimates in general. For example, given 
that 0; = B j  and 4i = $j for i # j (this case is allowed 
when using polarization-sensitive array), we have aFUfl = 

[e:iqF @ py,  @J pr]U, = 0 and aYU,, = [e:,qF 8 
~ y , e ; ~ q H  8 py]Un = 0. Here we assume eyi /ez,  # 
eyj/ezJ,  otherwise a; and a, have the same polarizations. 
Then a' = clai + c2aj = [(cle, i  + cZe,j)q' @ pT. (c1pYL + 
c2eyj)qT @ pTIT is also orthogonal to U, where cl # 0 

and ~2 # 0. Using the fact that (a) eyi /ez i ,ey j /ezg and 
 cl^^^ + cze,j)/(clc,; + c2ez j )  are three unequal quantities, 
and (b) a'.a; and aj have the identical 2-D angle pairs, 
it is readily shown that a' has polarizations different from 
( r l .  i / i )  and ( " i ~  , rlj). Thus minimizing function (24) may give 
polarization estimates with large variances even if the exact 
enhanced matrix Re is available. This is due to the structure 
of A arising from using arrays of crossed dipoles. 

For i = 1.2 . .  . . . I ,  define 4 x 4 matrix 

R, = Xe{s2~UnU,HCt;} (25) 

where 0, = [ a a ( f 4 , + , , ~ ~ , q ~ )  aa(@z,+t,~z,~z) aa(s,,+t,~z,vt) 
as 3 a+ ay 9 

It is easy to see that positive definite Ri's ensure that the 
MUSIC (2-D angles and polarization) estimates are consistent. 
Our analysis of MUSIC is conducted under the condition that 
Ri is positive dejinite. 

8a(Oz,$z,-rt.~/l) aq 12 J K  x 4. 

B. Pencil-MUSIC [I11 
The Pencil-MUSIC estimates [ l l ]  are provided by the 

generalized eigenvalues of certain matrix pencils. Before de- 
scribing the Pencil-MUSIC method, we define 

(26) 
e 

T ' - - Y L .  z -  i = l : . . , I  
e,i 

and let zj.1. zi.2 and z;,3 denote p, .  q; and 7ri, respectively. 
Unlike MUSIC. the Pencil-MUSIC method first estimates 
p ; .  qI and 7rz and then converts them to the estimates of 
Hi. # l .  yI and rj i .  

Define @k = diag[zl,k.. . . . zl,k] and the following Six 
submatrices of U,9: 

U11 = [U, with its kJth rows deleted; k = 1;. . . , 
2 K ] 2 ( J - l ) K x l  

U12 = [U, with its ( ( k  - l)J + 1)th rows deleted, k = 1, 

' .  ' .  2KI2(J-l)KxI 
Upl = [U, with its ( ( K  - 1)J + j ) t h  and (K - l ) J  + j  

+ J K ) t h  rows de1eted.j = ~ , . . . , J ] P J ( K - - ~ ) ~ /  
= [U, with its j t h  and(j  + .7K)th rows deleted,j = 1, 

' ' ' . J ] 2 J ( K - - l ) x /  

US1 = [U, with its last Jh' rows deleted] 
U:32 = [U, with its first . J K  rows d e l e t e d ] ~ ~ ~ ~  

and let Akl. k = 1.2,3,1 = 1.2 .  be submatrices of A defined 
in the same way as Ukl. 

Ukl. k = 1,2,3,1 = 1 , 2  (having more rows than columns) 
are required [ 1 I ]  to be of full column rank to guarantee the 
consistency of the Pencil-MUSIC estimates. Since U k l  = 
AklB (from Property 1) and B is nonsingular, Ukl and Akl 
have the same rank. Under the condition stated in Theorem 
B1 in Appendix B, it can be proved that, Akl(Ukl), k = 
1.2.1 = 1.2, are of full column rank. The requirement that 
A3l(U31), 1 = 1, 2 ,  are of full column rank is more demanding. 
Making use of Lemma B1 in Appendix B, we can prove that 
if there are no identical 2-D angle pairs, A3l(U31), 1 = 1, 2, 

~~ 

2This condition for I-D case was also pointed out in [7] but without proof. are of full column rank, and SO are Akl(Ukl), k = 1 ,2 ,1  = 
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1,2 .  Our analysis of Pencil-MUSIC is conducted under the 
condition that there are no identical 2 - 0  angle pairs. Note 
that this condition is sufficient for the Pencil-MUSIC to be 
consistent but not for the MUSIC. 

Since 

Ak2 = Akiak (27) 

(see [11] for a proof) and Ukl = Ak1B-l and u k 2  = 
Ak2B-l (from Property I) ,  then 

Fk A (uf1ukl)-1ufiuk2 

= B(AfiAkl)-1AzAk2B-1 

= B@kBP1. (28) 

This means Z , , k .  z = 1.. . . . I ,  are eigenvalues of Fk. Thus, the 
Pencil-MUSIC [ l l ]  estimates j , , k ,  i = 1.. . . . I ,  IC = 1,2.3, 
are defined as the eigenvalues of 

F k  a (uf1Ukl)-lu;JJk2 (29) 

where U k l  are submatrices of U, defined in the same way 
as Ukl. 

-A,wo sin 8, cos 4, and -A,wo sin 8, sin 6, are the phases 
of complex variables 1;, and qz,  respectively. Strictly speaking, 
I;,, 4% and i, need to be paired to complete the 2-D estima- 
tion which was discussed in [ 111. The pairing issue is not 
considered in this paper. 

C. Glossary of Lemmas 

Due to the overlapping of noise in Ze(t) ,  the statistical 
results on the perturbations of eigenvectors in [14] is not 
applicable here. Lemma 1 is thus developed concerning the 
perturbations of the first I principal eigenvectors of R,. 

Lemma I :  UFAU, NN + xT=l uff<w,(t)zF(t) + 
W,(t)WF(t))UsA;l, where AU, f U, - U , , &  = 
diag[aI - L a ’ , . . . , a ~  - La2] (L is defined by (20)) and 
z means keeping the first-order perturbed terms in equations. 

Let Ul, = [ul, . . . , uZP1, u , + ~ ,  . . . . UI] (a sub- 
matrix of U, with its ith column deleted) and A’ = diag[cr, - 

La2]. Since a,. z = 1, . . . . I ,  are simple eigenvalue of Re, 
from [ 15, pp. 293-2951, the perturbations on the eigenvectors 
associated with a,, 1 5 z 5 I, are given by 

Proof: 

a1, ’ . ’ , ax - u,-1 * 0, - az+l.. . . a, - aI, a, - LcT2.. ’ ‘ , a, - 

Au, z [U:U,](A’)-’ 

= [U;Un](A’)-’ [ET] Reu,. 

Then 

in other words 

UFAU, zz UER,UsA;l. (32) 

From Appendix A, UfZ,(t) = UfAQ(t) = 0, then 
substituting Re with (22) into the above equation, yields (33), 

O 
It should be noted that, to the first order approximation, 

ut(= U, + Au,) is still of unit norm. A similar expression 
to (32) was developed in [12] via a different route. Lemma 1 
is useful to express errors of the MUSIC and Pencil-MUSIC 
estimates in the next section. 

The columns of Z,(t) and W,(t) can be expressed in z(t) 
and w(t) respectively as shown below. 

Lemma 2: Let ws(t) be the sth column of W,(t) and 
zs(t) be the sth column of Z,(t), for 1 5 s 5 L. Then 
(1) ws(t) = D,w(t) and (2) z s ( t )  = D,z(t), where D, is 
defined in Appendix C. 

at the bottom of this page. 

Proof: See Appendix C .  U 
Lemma 2 will be used in the proofs of Lemmas 3 and 

4. Next Lemma involves the calculation of the fourth order 
moment of Gaussian noise vectors, which is also needed in 
the proof of Lemma 4. 

Lemma 3: Let cl,  c2. e3 and e4 are deterministic 2JK-  
element column vectors, satisfying crc2 = o or cfc4 = 0. 
Then for 1 5 s , ~  5 L 

E[c3%(t)w: (t)C2CFWT(t)W,H (t)C41 

= ( T ~ c ~ D , D ~ c ~ c , H D , D T c ~  (34) 

where ws(t)(wT(t)) is as defined in Lemma 2. 
Proof: See Appendix D. 0 

Since the signal covariance matrix E[s(t)s*(t)] is assumed 
to be stationary, we can write (for example, from eigendecom- 
position) E[s(t)s*(t)] = CCH, where C is an I x r,(1 5 
T,  5 I )  matrix of full column rank with T,  denoting the rank 
of E[s(t)sH(t)]. Then, from (9) 

R, a E[z(t)z*(t)] = A’E[s(t)s*(t)]A’* = A’CC*A’*. 
(35) 

Define 2JK x 2JK matrices 
L 

G,p = ds,cfA‘HDT (36) 

HZJ = Cdsid:  (37) 

s=l 
L 

s=l 

1 5 0 . 3  5 2MN,  1 5 e 5 r ,  

where d,, denotes the zth column of D, and ce the l th column 
of C. With the introduction of G,e and HzJ,  we are able to 
present the following lemma that will be used in the proofs of 
Theorems 1 and 2, in the next section. 

l T  
UFAU, NN - CU;(Z,(t)Zk(t) + W,(t)ZF(t) + Z,(t)W,H(t) + W,(t)W,H(t))UsAH1 

t = l  
T 
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Lemma 4: Let t ( t )  = ~ 1 ~ ( ~ , ( t ) z , H ( t ) + ~ , ( t ) ~ e H ( t ) ) ~ ,  
where p and 'U are orthogonal 2JK-element column vectors. 
Then 

(1) E[ t ( t ) t* ( t ) ]  
2 M N . r ,  

=2' {Ip*G,~w1' + a 2 1 p H H , , ~ ( 2 }  

(38) 
2,= 1 , P = l  

2 '$1 N 

(2) ~ [ t ( t ) 4 t ) ]  =04 { L L ~ H , , v P ~ H , , w )  (39) 

(3) E[ t ( t ) ]  =o (40) 

Proofi See Appendix E. 0 

2 , , = 1  

where * denotes conjugate. 

In the next section, we will see that each MUSIC or 
Pencil-MUSIC estimate error can be expressed as the real or 
imaginary part of a complex quantity which has the same form 
as t ( t )  in Lemma 4. Combination of conclusions (1) and (2) 
gives the expression of estimate error variance and conclusion 
(3) indicates that the MUSIC and Pencil-MUSIC estimates 
are unbiased. 

IV. MAIN RESULTS 
In this section, we will derive expressions for the variances 

of the MUSIC and Pencil-MUSIC estimates, by making use 
of Lemmas 1 and 4 developed in the previous section. For 
notational convenience, let w i , ~ ,  w2.2. wi,3 and w , , ~  denote 
e;, 4;: yi and 7; respectively, estimate error A w ; , ~  = L&k - 
W i , k ,  !Re{.} and Sm{.} be real and imaginary parts of complex 
numbers. 

Theorem I: The asymptotical (T >> 1) MUSIC estimate 
errors Awi ,k ,  i = 1, . . . , I ,  lc = 1 . 2 , 3 , 4 ,  have zero means 
and the variances 

0 2  2A4Ri , rs  
Varmusic(AWi.k) = - ( I P : k G z E 4 2  

7.1 = l . P  = 1 
2T 

+ ~ ~ I ~ : k H z , v i / ~  + ~ ' ! R e { ~ ~ ~ H , , w i p ~ ~ H , , v i ) )  (41) 

where p:k is the lcth row of R;1f2rU,Uf, G,! and 
H,, are previously defined by (36) and (37), U ;  = 
U,AglU~a(Bi, $i,yil v i ) ,  with a(&, 4;. y;, 71;) representing 
the ith row of A. R; is defined as in (25). (In Section 3, 
RT' is assumed to exist.) 

Proofi Let us first derive expressions of estimate errors. 
Since Oi, qh;, Ti, 7ji are consistent estimates of O i ,  $i , y,, 71; 

respectively, following the idea in [ 121, around ( O i ,  q&, yi.  TI^), 
we obtain Taylor series expansion of 'f(ef'$',6') at the 
bottom of this page (f(Q,  4, y, 71) is defined by (42)), where 
= is as defined in Lemma 1. 

From U,U:Us = 0, we have UnU:Us = 
-U,UfAU, z -U,U:AU,. Then 

(43) I 
and the constant (zero-order perturbed) terms of the second- 
order partial derivatives are given as follows 

(44) 

where ai is the short notation of a(Bi, $i, yi, 7;) .  Using 
(43)-(47) in (42), we obtain 

+2rlZA4z + 2r13A%21^14A% (48) 

with r k l  representing the (k, l)th element of R,. 
Similar expressions can be def'ved from the Taylor series 

expansions of w ~ t ~ 4 t , ~ t m  ~ . v t , ~ t , + z , e t )  and a.wt,@t,+t ,*t) .  
Omitting detailed derivations, we obtain 

R,[AO,, A$,, Ay,, A7/,IT = !Re{R~U,UfAU,U~a,} .  

' ay '17 

(49) 

Using Lemma 1, we get estimate errors 
rT  
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Now we consider the error variances. 
Observe that and P 2 , k  and %iL are orthogonal, Lemma 4 is 

applicable to ~ , , k ( t ) .  Therefore (a) A02,A4,, Ay, and AV, 
have zero means, according to conclusion (3) of Lemma 4; 
(b) From Re{z1}Re{z2} = $Re{zlz; + z1z2) 

where RZ is as defined in Lemma 1 .  Equation (5.13) of [12] 
gives 

AFi z (U:U11)-1UE(AU/2 - AUilFi). ( 5 8 )  

From the definition of Jl, in Appendix G, we know 
AUl1 = Jl,AU, and AUlp = J12AUs. Since Fib, = 
zt,lbt)(AU/z - AUl1Fl)bz = (512 - z2,lJzi)AUsbt and 
(Ull = A11B-',U12 = A12B-1)~r(UEU11)-1UE is the 
rth row of (A:All)-'AE, we obtain 

(59) 

In order to use Lemma 1, we have to verify that 
T, , / .  1 = 1.2,3,  belong to the column space of U,. From 
Property 1 and (27), ( A E A ~ I ) - ~ A E ( J ~ ~  - z2,1J11)Us = 

Az, = 7zAUsbz = ~zAU,U,Ha(B,,4,,y,,rl~). 

(AEAi1) - lAE(Ul2 - zz,lUll )= (A,lfAll )-lAgAll ( @ l  - 

z, , lI~)B-l= ( @ l  - z?, lI~)B-l .  Thus TZU. = 0,1 = 1,2.3.  
Using Lemma 1, we get 

m 

0 
Theorem 2: (1 )  For fixed i ,  if p ,  # p j ,  qL # q3 ,  j = 1 , . . . . I 

and j # i ,  the asymptotical (T >> 1) Pencil-MUSIC estimate 
errors Awi,k, k = 1,2,  have zero means and the variances 

varpencil(Awi,l;) = g7.k (54) 

(2) For fixed i ,  if p ;  # p,:q;  # q j , 7 r i  # ~ j . j  = 1 . . . . . 1  
and j # i ,  the asymptotical (T >> l ) ,  Pencil-MUSIC estimate 
errors A w ; , ~ ,  k = 3.4, have zero means and the variances 

Varpencil(Awi,k) = g i . k  ( 5 5 )  

where for i = 1,. . . . I .  k = 1.2.3.4 

f f 2  2n1N,Ts 
g i , k  = - 2T (I&G& 1' + a2&Ht~'ui12 

2 , , = 1 , E  

- r r2~~e{~L f f kHz , ' u i~L , l f ,H , , l i ; > )  (56) 

with pFk = c ~ , J ( ~ ) T $  + C ~ , Z ( ~ ) T $  + C A , ~ ( ~ ) T $ ,  Gtp and H,, 
previously defined by (36) and (37), vi as defined in Theorem 
1. denotes the ith row of (A;All)-' AE(Jl2 - z,,lJl1) 

and ck , l ( i ) (Z  = 1 :2 ,3 )  are given in Appendix F. Jl,.1 = 
1 ,2 ,3 ,  j = 1, 2, are selection matrices to represent the relations 
between Ukj and U,, and defined in Appendix G. 

Let AF1 = F t  - Ft(Ft and Fl are defined by 
(28) and (29)), K; be the ith row of B-l and b; the ith 
column of B. It is known, from (28), that 6; and b, are left 
and right eigenvectors of F1 associated with zi,l,  having the 
property that $b; = 1. 

Due to the intricacy of the perturbation on multiple eigen- 
values, we will only derive error expressions for simple 
eigenvalues of F1. Let us assume that zi,l is distinct from 
other eigenvalues of Fl. For T large enough, the perturbation 
on simple eigenvalue of F1 is given by [ 151 

(57) 

Pro08 

Az; ,~  a i i , i  - Z L > ~  z KfAFlb; 

(53) From F1 in Appendix F, Awl,,, = Sm{ck,l(i)Ap,+ 
ck.2(i)Aqz + ck,3(i)ArZ}, (1) For k = 1.2,  c ~ , ~ ( Z )  = 0. If p ,  
and qi are simple eigenvalues of F1 and F2 respectively, the 
expressions of Ap; and Aq; can be obtained according to 
(60). We get, for k = 1 , 2  

A 1  

t=l 
T 

From pLffkU, = 0, we have pFkvz = 0, k = 1 ,2 ,3 ,4 .  Lemma 
4 is thus applicable to t , , k ( t ) .  Using conclusion (3) of Lemma 
4, we have E[A#,] = E[A42] = E[Ay,] = E[Av,] = 0. 
Using Sm{zl} = iini{z~} = iRe{zlz; - z1z2} and Lemma 
4, the conclusion on the variances can be verified in a similar 
manner to that in Theorem 1. 0 

The theoretical analysis for the cases that are not covered 
by Theorem 2 is currently under investigation. 
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Fig. I.  
( 0 2 . 0 2 . r 1 2 )  = (4.5°.430.50), -;I = 45'-  +A-,, ;2  = 45' +$A-;, with -1; = O 0 : . . . S O o .  

CRB, theoretical and simulated deviations of (a) H I ,  (b) 01, (c) ; I ,  (d) versus A-, (polarization difference). (01.01. '11) = (10°.400. -.5'), 

v. SIMULATION AND DISCUSSIONS 

In this section, we present simulation results in order to 
further investigate the performances of the MUSIC and Pencil- 
MUSIC methods, as well as to verify theoretical work. 

We consider two unit-power signals, M = N = 20 and 
J = K = 7. SNR = -1010gg2 = 10 (dB). Fifty runs 
of Monte Carlo simulation were performed. Initial estimates 
of MUSIC were generated by the Pencil-MUSIC method. 
Simulation was conducted for the following three scenarios: 
( 1) different polarization difference for uncorrelated signals, 
( 2 )  different angle separation for uncorrelated signals, and 
(3) different correlations between two signals. The number 
T of snapshots is chosen as 50. Since the deviations of 
parameter estimates for the two signals follow the same pattern 
in scenarios (1 )  and (3), so only those for the first signal are 
plotted. Whereas in scenario (21, results for both signals are 
plotted. In all examples, the requirements by Theorems 1 and 

2 are satisfied, i.e., R1 and R2 (defined by (25)) are positive 
definite, and PI # p 2 ,  41 # q2 ,  T I  # ~ 2 .  

Fig. 1 shows deviations of the angle and polarization esti- 
mates for the first signal when (01,  $1. rll) = (40",40", -5") ,  

+Ay, with polarization difSerence Ay varying from 0' to 80". 
When Ay is small, there are fluctuations in the deviations of 
estimates of d1 and 41 however, as Ay is larger than lo", the 
deviations are monotonically decreasing functions of Ay. It 
is interesting to note that the deviation of the estimates of q1 
increases drastically when Ay approaches 90". The reason is 
that if y = 0" and YO", 17 becomes ambiguous, the deviation 
of its estimate takes large value as Ay approaches 90". 

Fig. 2 shows deviations of the angle and polarization esti- 
mates for the first signal when ( 0 1 , 4 1 . n )  = (40", 40". 45"), 

with polarization difference Aq varying from 0" to 180". 

( 0 2 . 4 2 .  ~ 2 )  = (45". 45". 5 " ) ,  71 = 45" - $Ay, 7 2  = 45" + 

( 0 2 . 4 2 . 7 2 )  = (45",45".45"), rll = -;AV, ~2 = -;AV, 
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0.003 (1) 
(d) i l l  versus 3 7 1  (polarization difference). (61.dlr?l) = (4O0,4Oo.45@), 

We can see that increasing polarization difference improves 
the accuracies of angel estimates. Note that the deviations of 
the Pencil-MUSIC polarization estimates change very little in 
the whole range of AV. A similar observation was found in 
[4]-[7] the authors there claimed that it is due to "small" angle 
separation between the two signals. However, as shown in the 
next figure, we found that it is due to the relatively "large" 
angle separation. 

Fig. 3 shows theoretical deviations of the polarization 
estimates for the first signal, as a function of angle separations 
when (0i,4i, 71) = (40°, 40°, 45"), ( Q 2 ;  4 2 ,  ~ 2 )  = (40" + 
A,40" + A,45") ,  771 = -;Ay, 772 = ;Ay, with polarization 
di8erence A77 varying from 0" to 180" and angle separation 
A = lo, 5", 9". It can be seen that when A is 5" or go,  
the deviations of the Pencil-MUSIC polarization estimates are 
stable over the whole range of AV; on the other hand, when 
A is decreased to lo, the accuracies of the Pencil-MUSIC 
polarization estimates improve with the increase of AV. 

Figs. 4 and 5 present deviations for two signals when the 
angle separation changes. (01, &, 71, 771) = (45", 45", 45", 

with angle separation A varying from 1" to 40". In this 
case, the deviations for the two signals do not follow the 
same pattem. The deviations for the first signals decrease 
as A increases. However, the deviations of the estimates of 
6'2, 7 2  and 772 decrease with the increase of A for small 
A, but increase with the increase of A for large A. This 
observation can be explained as follows. When A is small, 
two signals are closely spaced, an increase in angle separation 
helps improve the accuracies of the estimates of 02, 4 2 ,  7 2  

and 712. When A is large, two signals &e well separated, the 
deviations for the second signal are much like that for one 
signal case. Since 02 = arcsin{.}, the sensitivity of 02 is 
nearly infinity when 0 is close to 90". From 4 2  = arctan{.}, 
the sensitivity of 4 2  is nearly zero when q 5 ~  is close to 90". 
When ( 0 2 , 4 2 )  = (go", go"), y2 and 772 are ambiguous, so the 

-lo"), (6'2, 4 2 ,  7 2 ,  772) = (45" + A, 45" + A ,  45", IO"), 
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= (45°,450.450),  q1 = - +  - 1 1 1 ,  712 = $ A J ~ ,  with A71 = O0:...18Oo. 

Theoretical (Pencil-MUSIC) deviations of (a) 71, (b) 711 versus Aq for different angle separations. (81.ol. - , I )  = (40°,400,450),  ( B ~ . ~ Z \ - ~ Z )  

estimates of 7 2  and 712 have large deviations as A approaches 
45". 

Since the MUSIC and Pencil-MUSIC methods proposed in 
[ 1 11 can handle coherent case, in the following two figures, we 
consider correlated signals. Let the signal covariance matrix be 

includes a skill dealing with the 2-D aspect and the correlated 
noise (due to the enhanced covariance). 

APPENDIX A 

E[s( t ) sH( t )]  = 

we will call p the correlation magnitude and d the correlation 
phase. 

Figs. 6 and 7 show the deviations of the angle and po- 
larization estimates for varying correlation magnitude (phase 
= 0') and varying phase (magnitude = 1) respectively when 
(01.4i171,771.) = (40°.4~01450.  -goo ) ,  (02.42.72.772) = 
(45", 45". 45". 90"). The deviations of the MUSIC estimates 
are, in this case, very close to those of the Pencil-MUSIC es- 
timates since polarization differences were set at large values. 

Finally, we note that the polarization estimates of the 
MUSIC method tend to be more accurate than those of the 
Pencil-MUSIC method when the angle andor polarization 
separations are small, but otherwise the MUSIC and the Pencil- 
MUSIC have comparable performance (while the latter is 
always more efficient in computation). 

VI. CONCLUDING REMARKS 
In this paper, we have studied the MUSIC and Pencil- 

MUSIC methods for finding 2-D angles and polarizations 
based on a rectangular array of crossed dipoles. In particular, 
we have obtained a closed form expression for the estimation 
accuracy of the two methods, compared the performance of 
the two methods via analysis and simulation, and revealed 
a number of new insights into the two methods. This study 
also represents another novel application of several statistical 
principles as previously applied in [9], [ 121-[ 181. This novelty 

Z,(t) = AQ(t)  (65) 

where 

riT c3 PT 

s d t )  s: @ P T  

Q(t )  = [ ( ' I  . . .  ] [ ] (67) 

with 

p2 = [1.p7:''.p;-1]T (68) 
q, = [ 1 , q , , . . . . p I T  (69) 
is, = [l,Ptl'..,P, (70) 1 
qz = [ 1 , q  z.. . . ,qf-K+l  1 7- 

- J +  

(71) 

and @ defined by (14). 

APPENDIX B 

A SufJicient Condition for A to Be of Full Column Rank 

Theorem BI:  If (a) there are no more than two signals with 
identical 2-D arriving angle pairs, and (b) ezZpYJ # ex3eYt ,  for 
( e t . & )  = ( O J l $ J ) ,  L # j ,  then A is of full column rank. 

Before we prove Theorem B 1, we need the following result. 
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Fig. 4. 
(02.02.- ,2.7/2) = (45' + 1.4.5' + A.4Zo.100), with A = 1'. . . . .40°. 

CRB, theoretical and simulated deviations of (a) 81, (b) 01,  (c) -, , , (d) '11 versus A (angle separation). (81.01. - , I .  ql ) = ( 4 5 O .  4.5'. 4 5 O .  - l o o ) ,  

c d , q d ,  = 0, i = 1 , 2 , . . . , ~  with do A 0. Note again 
[ q d , - , + i ; . . . . q d , ]  is a K X di(K 2 I 2 d i )  Vandermonde 
matrix of rank di, then C d , _ l + l  = . . . = Cd, = 0. Hence, 

0 c1 = . . . = c i  = 0 which leads to the sated result. 
Proof of Theorem BI: Let (Pl. 41) = (ps,, ( I s , ) ,  (psl+l, 

4Sl+l )  = ( P S , ?  q . 7 2 1 7  ' " 1  (Psi-,+l. 4s , - l+l)  = ( p s , , q s , ) ,  
with ( P S , ?  4sl 1, ( P s p ,  qS2 ), . . . (psi, qst ) distinct and st = I .  
According to (a), s; = 1 or 2. 

From 

I e x l q l  @ P1 e x 2 q 2  63 p 2  ' ' ' ecIqI 62 PI 
f : y l q l  @ P1 e y 2 q 2  8 P 2  ' ' ' e,IqI @ PI 

X [ c i  ~2 . . .  C I ] ~  = 0 (72) 
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CRB, theoretical and simulated deviations of (a) 02, (b) 02, (c) :2, (d) rlz versus A (angle separation). (B1.01. - , I .  711) = (-15°,150.45". -loo), 

we get (73), at the bottom of the previous page. 

are independent. Then if s, = 1, we have 

From APPENDIX C 

Let s = is + ( j ,  - l ) (M - J +  1)(1 5 s 5 L, L is defined 
by (20)), with 1 5 i s  5 M - J + 1 and 1 5 j s  5 N - K + 1. 

 en" B1, we l" qs, c3 PSI, q,, @ ps2. ' ' . . q,, c3 pst 

- -  

Definition of the Selection Matrix D,: 
(74) 

Note that [ezs,. eys,lT is not a null vector (otherwise there will 
be 1 - 1 signals), therefore cs, = 0; if s, = 2, we have 

0. This completes the proof. 
If (a) is not satisfied, i t  is easy to prove that A 

is rank deficient. This fact tells us that using arrays of crossed 
dipoles, the eigendecomposition-based techniques can not be 
applied for cases of more than two signals with identical 2-D 
arriving angle pairs. 

Remark: 
Fl(. ls)= 
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= (40°.100.150. - g o o ) ,  ( 0 2 . 0 2 .  -,2. r r 2 )  = (15".45°.15".900).  

CRB, theoretical and simulated deviations of (a)  0 1 ,  (b)  <.>I, ( c )  - I ,  (d) rI1 versus correlation magnitude (phase = 0"). ( H I .  0 1 .  - , I .  ' 1 1 )  

and 

and @ is defined by (14). 
Notice that D, is a (0, I )  matrix with its ( ( k -  l)J+.l .  (J ,+ 

k-2)M+zs+j -1)th and ( (k - l ) J+ j+JK.  (js+k-2)M+ 
is + j - 1 + M N )  elements equal to 1, for J = 1.2.. . . . .J 
and IC = l , 2  . . . . ,  K. 

Proof of Lemma 2: Let 

Vlz(y)(t) = [Wr(y)(l.~rt).W,(y)(2.1.t)."'.2L',(y)(M.1.t)]7 
and 

One can write 

and 
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the relation between ws(t) and w(t) can be expressed as 

[F,(i,) 63 F2(L) w,(f) 
Fl(j,) '8 F2(6,3) j [wy(f ) ]  

w.s(t) = 

= D,sw(t) 
(82) 

which is conclusion ( I )  of Lemma 2. 
Conclusion (2) can be similarly proved. 

APPENDIX D 

Proof ($Lemma 3: Let c k ( 7 )  and w,( i )  be the ith ele- 
ments of ck and ws(t) respectively for k = 1, 2, 3, 4, and 
s : 1 .2  . . . . ,  L,  then 

C F W s (  t ) W ~ ( t ) C 2 C j H W T ( t ) W f (  i)c, 
2.JK 

= c; (S)C, ( j ) c j (  k)r:4( 1)'WS (2)w; ( j ) ,Wr(k)w;  ( 1 ) .  

(83) 
Z.J .k . /= l  

It is shown that (see [ 181, for example), for any four jointly 
circular Gaussian random variables { T I .  .r2. x-3. .a} with zero 
means, the following equation 
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(the first term on the right side of (90) follows from indepen- 
dence between signals and noise) and 

L 
E[tt] = E[,~~~~(t)~,H(t)wp,~w,(t)w,H(t)~]. (91) 

s , r=l  

Using Lemmas 2, 3 and (35) gives 

E[t(t)t*(t)l 
L 

= U2 {pHDsD~pWHDr(Rz + a212hi~)DTV} 
s , r = l  

s , r = l  

+ a2vHD,DTv]} 

and 

(92) and (93) are conclusions (1) and (2), respectively. 
Conclusion (3) can be shown by 

APPENDIX F 

Since the Pencil-MUSIC method first gives estimates for the 
intermediate parameter p ,  q and T ,  we have to relate estimation 
errors of 0, 4, y and 71 to that of p ,  q and T in this Appendix. 

Lemma FI:  

where C k . l ( i )  are given at the bottom of this page with 

A, = tan72 ~XP(377,) 
<Z - - A, sin 4, cos 4, 

cos2B, 

A, sin2 4, 
( 1  - -~ - 
- cos2 0, 

(A, cos 8, + T, )  sin 4, - 
+ sin 8, cos 8, cos2 4%(T2 - t an  4,) 

A, cos 8, + T ,  

sin 8, cos 8, cos 4,(~, - t an  4,) 
t an  4, - A, cos 0% '' = c o s ~ , ( T ,  - t a n d , ) '  
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Proof: To simplify the notation, the subscript will be Thus 

t an  y omitted. = has the same meaning as defined in Lemma 1 .  

Since sin 8 cos 4 and -&WO sin 0 cos 4 are assumed 
as the angule positions of fi and lj respectively, from [ 121, we 
know 

@ relations of AH and &$ to Ap and 44 ay=- Re{ ?}~m{ &}+- 
l + t a n 2  y 

Solving the above systems of equations, we obtain 

cos 4 sin 4 A H z S m  - { Asw0p cos 6' - Aywoq cos H 

sin ap - 'Os* Aq}. (98) 
A,wapsiri H Aywoq sin 0 

A4 z Srn 

relations of Ay and Ari to Ap. Aq and AT 
Let AI\ 4 
derived as below: Since 

sin + 
cos 9 

- A. The relations of Ay and A71 to AA are 

siii y + Ay cosy 
COS y - Ay sin y 

t a n ?  = - ?.. - 
z t a n y ( 1  + ( co ty  + t a n y ) A y )  

and exp{jAri} z 1 +jail, we have 

AA tall 9 - = - cxp{.ja7]} - 1 
A t a n y  

= (cot y + tali ?)Ay + jar/. (99) 

Using c k , l  to replace the coefficients in (97), (98), (105) and 
(106) completes the proof. 0 

APPENDIX G 

Definition of selection matrices Jl, 

(with its ( ( k  - 1)J + , j .  ( X  - 1)J + J)th and ( ( k  - l)J + 
J + .JK.(k - 1 ) J  + j + .JK)th elements equal to 1, for 
,/ = 1 . 2 . ' . .  . . I -  1 .k  = 1.2. '" .K) 

Then 

tau y AA Ay = 

(withits ( ( k : - l ) . J + j . ( k - l ) J + j + l ) t h a n d  ( ( k - l ) J +  
j + .JK. ( k  - I).] + ;j + 1 + JK) th  elements equal to 1, for 
. j  = 1 . 2  :... J - l .K  = 1.2  :... K )  

The expression of AA can be developed as follows: From 

( I o 2 )  (with its (1.l)th and (1 + J K ,  1 + .Jk)th elements equal to 1, 
for I = 1 . 2  . . . . .  J ( K  - 1)) 

T AA cos 6, - AHA siii H - __ 

x ('OS 0 
"N AA cos H t an  4 - AHA sin 0 t,an 4 + Aq5: 

+ AT( x cos I9 - t,an 4) J ~ , = I Z @ ( ~  ... 

@I.]] 

cos2 4 
(K-1) x K 2.J(KP1)K x 2JK 

) 
(103) 

( 
( 1  10) 

(with its (1.2 + J) th  and ( I +  J K .  1 + J + Jk)th elements equal 
to 1 ,  for 1 = 1 . 2  :... J ( K  - 1)) 

COS2 l$ . 

Inserting (97) and (98) in (103) yields 

AA = [;S7n{(A,wop)-lAp} 

+(;(5'~,,{ ( A y ~ o y ) - l A q }  + (;AT. (104) Jl(l = [IJK O ]  J h - x z J K  (111) 
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(with its ( l ,  1)th elements equal to 1, for 1 = 1 , 2 .  . . . . J K )  and [ 181 S. U. Pillai and B. H. Kwon, “Performance analysis of MUSIC-type high 
resolution estimators for direction finding in correlated and coherent - 
scenes,” IEEE Trans. Acoust., Speech, Signal Processing, vol. 37, no. 8, 
pp. 1176-1189, 1989. 

[ 191 V. K. lain, “Filter analysis by use of pencil-of-functions: Part I,” IEEE 
Trans. Circuits, Syst., vol. 21, no. 9, pp, 574-579, 1974. 

1201 Y. Hua and T. K. Sakar, “Matrix pencil method for estimating expo- 

5 3 2  = [o I J K  ] J K ~ Z , J ~ .  (1 12) 

(with its ( 1 , 1  + JK)th elements equal to 1, for 2 = 1, 2 ,  . . ., 
JK) .  
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