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ABSTRACT* 

This paper shows a new architecture specially thought to 
model non-linear systems (NLSs). At first, it was applied only 
to memoryless systems but then it developed to solve a more 
general problem, NLSs with memory. The result is a new 
filter, based on the Fourier transform, that the authors have 
named "K-filter". Important features of the K-filter are its 
nonlinear behaviour and second, that it profits from a 
temporal diversity of the input signal in order to provide itself 
with memory. At the end of the paper, the K-filter is used to 
solve an identification problem of a communication system 
which behaves nonlinearly due to the response of the 
amplifiers and which also has memory introduced basically by 
the channel response.The simulation results will provide an 
evaluation of the K-filter. 

1. INTRODUCTION 

theoretical part is supported by some results obtained from 
computer simulation where the K-filter is used to solve an 
identification problem of a communication system. This 
system behaves nonlinearly due to the response of the 
amplifiers and it also has memory introduced basically by the 
channel response. In order to evaluate the performance, the K- 
filter is compared to an equaliser and also to a Volterra filter. 

2. THE K-FILTER MODELLING MEMORYLESS 
N L S s  

Suppose a memoryless NLS characterised by its 
inpuUoutput relation, g(.). 

Memoryless NLS y(t)=g[x(t)I 
P(.) 

x(t) 

Fig.1.-Inputloutput relation of a N U .  

Keeping x(t) in the range [-Xmax,Xmax], the 
output of this system can be written as a Fourier series 
developed in the X domain. Therefore, an approximation Of 
the Output 

In the last few years non-linear signal processing 
has ken emerged due basically to the saturation in 
the linear processing field during the 8Os. At the beginning, 
the efforts were centred on the VolterrdWiener approach be a shorted version Of it (@.'). 
[1,2]. Afterwards, the new philosophy of high order statistics 
found a wide and interesting field into the non-linear 
processing [3]. Both are important topics in relation to non- 

methods. as Dhase-nlane analvsis or techniaues based on 

N 

9(1)= ~ C a m e x p ( - J n w o X ( t ) )  ; W O  2 
(Eq.1) 

X m a x  linear signal processing developed after other classic " - 0  

differential equations, were inhoduced. Neveitheless, all of 
them share a joint feature, that is the complexity both in the 
formulation of the problem and also in the solution. The 
authors propose a new and less complex architecture to model 
NLSs.This filter is also a nonlinear system and it is suitable to 
future development as adaptive filtering. 

The organisation of the paper follows the temporal 
evolution of this filter, named "K-filter". To this effect, the 
paper starts presenting the filter used to model memoryless 
NLSs. Afterwards, it  faces 10 the problem of how to generalise 
the architecture achieved previously to the new situation of 
NLSs with memory. This subject is discussed in the third 
section where the K-filter is showed. Together with it, some 
guide-lines of possible future work are pointed out. All this 

* This work was supported by the National Research Plan of 
Spain, CICYT, Grant numder TIC-92-0800-CO5-05. 

The above expression corresponds to figure 2. This 
figure makes clear some features of the transformation which 
a quite important from our point of view. 

The scheme depicted on (Fig.2) shows the Fourier 
series as an exponential transformation applied to the input 
signal followed by a block named "Volterra filtering", which 
performs basically a memoryless Volterra series (Fig.3). 

1 N 

n =o 
Fig.3.-The -. Volterra filtering block. 
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As it is well-known, the Volterra series and the 
Taylor one share the same drawbacks because of the first one 
is a generalisation of the second.. An important problem is 
the convergence when the independent variable goes further 
from the point around which the series has been developed. 
Paying attention to figure 2, the exponential function 
included in the scheme can be understood as a previous 
transformation which bounds the input signal in magnitude. 
Obviously, this transformation will help to avoid the problem 
of convergence mentioned before. 

Nevertheless, figure 2 does not represent the K- 
filter, yet. It is well-known that the coefficients of the Fourier 
series, denoted by an, are obtained from sampling the Fourier 
transform of g(.) at multiples of the main frequency 00. The 
idea was then to check if it would perform better a filter which 
implements a Fourier series whose coefficients were obtained 
from sampling g(.) in the frequency domain nonuniformly [4]. 
'lo this effect, another two branches were added to the original 
scheme. One of them is also a Fourier series but built using a 
'slightly different main frequency, am'. The second one adds a 
gconlinuous component which has been removed from the 
<other two branches. 'lhe result is the architecture depicted in 
I: Fig. 4). 

3. THE K-FILTER APPLIED TO NLSs WITH 
MEMORY 

Once it has been found a structure able to model 
memoryless NLSs, the next step is to face to the same 
problem but dealing with NLSs with memory. The filter 
represented in figure 4 is not longer fit for modelling the new 
systems because it does not include memory. Therefore, the 
main challenge is how to generalise the filter achieved in the 
previous p i n t  (Fig.4) to the new situation and to support the 
result by formal expressions. 

To this effect, it is necessary to characterise the 
system under modelling. Taking into account that the input 
signal will be discrete, the output of a NLS with finite memory 
could be expressed as a function which depends not only on 
the value of the input at those moment but also on some 
previous values of it. 

NLS with memory 

Y(t)=g[X(t),X(t -T),...X(t - ( Q  -1)T)J 
Fig.S.-The output of a NLS with memory. 

At the beginning. the main reason to adopt the 
scheme of figure 4 instead of the previons one (Fig.2) was the 
purpose of adjusting the filter to the Kolmogorov's theorem. 
Although the aim of this paper is not go through this topic. 
home bihliography has been included [ 5 . 6 ] .  

As i t  will bc seen in the next section, this scheme 
(l . ig.4) has beeti used Lo desigil the K-filler which also applies 
tu NLSs with memory. Future work will be focussed on 
improving the behaviour of the filter by means of this extra 
hranch. For instance, an open question would be the role of 
om'; that is, how to select this parameter in order to achieve a 
better performance. From the results we have obtained. it 
seems that the scheme of figure 4 performs better than the one 
of figure 2. 

An important aspect to remark from the K-filter 
(l.ig.4) is that the quality of the approximarion can be 
controlled by both the number of tcrms of the series. N. and 
the principal harmon,cs, 00 and 00'. By increasing the order 
11f the Voltena series o r  decreasing the frequencies 00 and uw'. 
11 is possible to improve the performance of the filter, since 
the Fourier transform of g(.:) is usually a :ow pass spectrum. 

In consequence, the function needed to characterise 
a NLS with memory depends on a Q-dimensional vector built 
from a temporal diversity applied to the input signal, 
[x(t).x(t-t), ... x(t-(Q-l)L)]. The Q parameter, which varies from 
one system to another, measures how long is the memory of 
the NLS. 

As it had been done in the case o f  memoryless 
NLSs. the function which characterises the system, g(.), can 
he expressed as a Q-dimensional Fourier series and in 
consequence, a shorted version of it is suitable to approximate 
the output of the NLS. 

. .  
I 1  

P (Eq.2) 

The coefficients of this series, a n l n 2 . . . n ~ .  depend 
on Q variables since they are obtained from sampling the Q- 
dimensional Fourier transform of the g(.) function. 

(Eq.3) 
n = 1 ... Ni i = I ...Q 

From (Eq.3) it is easy to conclude that every axis of 
the Fourier transform is sampled at multiples of the 
corresponding main frequency, oq. 

IV-134 



Nevertheless, the filter proposed does not 
colrespond exactly to (Eq.2). In order to build the K-filter from 
the shorted Q-dimensional Fourier series (Eq.2). two aspects 
must be taken into account. The first one is that only the 
terms of the Fourier series which belong to an axis of the Q- 
dimensional Fourier transform are taken. That is, the points 
which obey condition 4. 

(Eq.4) 
(0 ..... O , n i m q , O  ,..., 0) ; n i = l  ... N i  q =1 ...Q 

On the other hand, note that all the points which 
correspond to the same q belong to an axis and this axis is 
sampled at multiples of o q .  As it had been done with 
memoryless NLSs, each axis will be sampled nonuniformly. 
In consequence, each component of the temporal diversity 
vector will be used to compute two different Fourier series in 
order to achieve the non-uniform sampling of the 
corresponding axis. 

Both conditions lead us to the scheme depicted on 
figure 6. 

Fig.6.-'Ibe K-filter to model NLSs with memory. 

Being the output of the filter equal to 

q = o  .=1 

N 

+ C b . ,  exp(inm',x(t - q r ) ) l  
(Eq.5) .= 1 

As it can be seen, the new K-filter (Fig.6, Eq.5) is 
obtained from applying the filter of figure 2 to each one of the 
components of the time diversity vector [x(t),x(t-t), ... x(t- 
Qt)]. It will keep the same properties of the K-filter of 

memoryless NLSs that we have discussed before but, a part 
form this, the new K-filter profits from a temporal diversity 
vector in order to introduce an important feature of the system 
under modelling: "memory". 

Thinking in future work, the coefficients of the K- 
filter, that is, the coefficients of the Volterra filtering blocks, 
are suitable for learning by means of gradient techniques. 'Ibis 
property is also shared by a classic Volterra series [2] but the 
K-filter shows an advantage in front of the other. The signal 
space generated by the K-filter at the output of the exponential 
transformations is bounded in magnitude. This is not 
accomplished by the Volterra filtering since the power of each 
component of the signal space will vary enormously from one 
to another. 'Ibis feature will not help too much in an adaptive 
version of this filter when setting the step parameter, lt, of the 
LMS algorithm. 

Another important aspect to remark is that the 
main reason to have chosen the K-filter not as the 
implementation of the shorted Q-dimensional Fourier series 
but a simple one, is the complexity and computer load that the 
full expression would suppose. The authors are conscious that 
by adding terms to the K-filter (Eq.5) in order to be nearer to 
the complete expression (Eq.2), the results achieved would 
improve. This is one possible way to focus our future efforts, 
including an evaluation the trade-off between improvement 
and additional computer load. 

4. SIMULATION RESULTS 

In this section, the authors propose to solve the 
identification of a communication link which behaves 
nonlinearly due to the response of the amplifiers located at 
both the receiver and transmitter and which also has memory 
introduced by the channel response. 

In this way, the input to the system has been 
selected as a sampled band-pass normal distributed noise by 
means of the transfer function H ( ~ ) = ( z - ~ + 2 . 7 6 0 7 ~ - ~ +  
3.8106~-~+2.6535 ~ - ~ + 0 . 9 2 3 8 ) - ~ ,  being the response of the 
amplifiers equal to ymp=sign(x) exp(x2/0.05). Finally, the 
channel is modelled by a filter whose transfer function is 
Hc(z)=(z~3+0.0928z~2-0.3158z~1+0.2)/(~~1-0.5). 

In order to identify the system a K-filter has been 
chosen. A part from it, two other filters have been also used to 
model the system. They will help us to evaluate and compare 
the performance of the K-filter. The fwst one is an equaliser of 
N coefficients (N-1 tap-delays) and the second one is B filter 
which implements a Volterra series with memory as the 
following one. 

P 

y( t)= & PM ;A= [x ( t ix ( t  - r X .  .. x( t - (N-  Q r ]  
P O  

& I  U1 

h , W =  E.. Eh, I ,  _. x ( t - n , r ) . . x ( t - n p )  
" I P  -0  " -0  

IV-135 



The parameters which characterise this Volterra 
lilter are N and P. Tbe first one, N, measures the memory and P 
is the order of the nonlinear filter. Important to remark is that 
hp(x) takes one time the repeated terms 

The solution we will present consists of designing 
the coefficients of each filter off-line by a minimum square 
error criterion which lead us to the Wiener solution. 

Figure 7 shows the result of one simulation of 100 
samples. It consists of 3 different plots, each one of them 
corresponds to the output of one of filters(dashed line) 
together with the output of the real system communication 
(continuous line). In this case the equaliser has only 3 
coefficients, the Volterra filter 20 (all possible combinations 
with P=N=3) and the K-filter 25 (N=2, Q=3). A part from this, 
the SNR is of 10dB. 

Equaluor. NO-3. MSE - 51% 

0 

20 40 60 80 100 

K-leer. N-2. MSE - 15% 
2 '  

0 

Fig.7. Results of the simulations. The first one corresponds to 
an equaliser. the second one to a VolterTa filter with memory 

and the third one to the K-filter. 

Note that the figures include the mean square error 
achieved by each filler. From these values it can he concluded 
that the K-filter performs much more better than the other two 
filters. The following table shows more results in order to 
discussed certain aspects which can he misunderstood. 

ID00 - 52% 3% 25 5% 

5000 - 52% 41% 29% 

'I'ahle. I Mean square crrw of the thwt: filters depending on 
the riuniher of samples of the input signal. 

As it can he seen, the error got by the equaliser is already 
higher than the one of the K-filter, 45% in fmnt of 15%. 

Another aspect we would like to remark is that if 
the number of samples increases, the K-filter is already better 
than the other ones, but in relation to the previous results 
(100 samples) the mean square error has increased. This 
behaviour was expected to be present because the relation 
between coefficients and conditions (now is 1000 and before 
was 100) has decreased. Nevertheless, the values of the 
corresponding mean square errors become stable as Ns 
increase (simulation of 5000 and 6000 values). 

REMARKS 

A new architecture, named K-filter, has been 
presented and it has been proved to be useful when modelling 
nonlinear systems, both with memory or memoryless. From 
the simulation results showed previously, we can conclude 
that it performs quite better than the other filters to which it 
has been compared. Future work will he focussed on, first of 
all, studying the behaviour of the K-filter but in different 
situations. The next one will be to solve the same 
identification problem but using adaptive techniques to update 
the coefficients of the K-filter. As it has been said before, 
gradient methods are suitable for this purpose Furthermore, 
some changes, pointed out before in the paper, will he deeply 
studied since the authors expect that they will improve the 
results of the K-filter. 
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From figure 7 it can be thought that the K-filter has 
a much more better results than the equaliser because of the 
number of coefficients. since the K-filter has 25 and the other 
one only 3. This is the reiison to have enclosed in table 1 the 
mean square error achieved by an equaliser of 25 cocfficients. 
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