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ABSTRACT

Properties of nonsubsampled FIR filter banks, used for
wavelet extrema and zero-crossings representations, are in-
vestigated. Conditions under which iterated nonsubsam-
pled filter banks implement frame or tight frame operators
are given and relations with continuous time domain are es-
tablished. Algorithms for consistent reconstruction of sig-
nals from wavelet extrema or zero crossings representations
are proposed. These algorithms are characterized by a low
computational complexity and a simple implementation. It
is also shown that the wavelet extrema representation of a
signal and the wavelet zero-crossings representation of its
difference provide equivalent information on the signal.

1. INTRODUCTION

The introduction of wavelet extrema and zero crossings rep-
resentations [1], [2] was motivated by their ability to extract
information on signals’ sharp variations. Besides, the repre-
sentation of a signal by zero crossings, or modulus maxima
of its wavelet transform can be also viewed as a sampling
of the multiscale wavelet transform at points which have
some physical importance, providing at the same time shift
invariant signal description.

The analysis presented here is based on the discrete time
model introduced by Berman et al. [3]. A particular type of
discrete wavelet transform used for wavelet extrema or zero
crossings representations is implemented by octave band
nonsubsampled iterated filter banks. These filter banks
under certain conditions perform regular sampling of the
dyadic wavelet transform [2] of continuous time signals,
which justifies their use and establishes relations with the
underlying continuous time framework. Their properties
are analyzed in the next section.

This paper also presents new and improved algorithms
for the reconstruction from wavelet extrema or zero cross-
ings representations. The set of all signals sharing the same
representation, called reconstruction set, in general consists
of more than a single signal [3), [4].The aim is here to devise
techniques for the reconstruction which fully utilize the in-
formation which is embedded in the representation. Practi-
cally, that means: techniques for finding a signal which can
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not be distinguished from the original based on the rep-
resentation, which is any signal in the reconstruction set.
Such a reconstruction strategy is called consistent recon-
struction [5]. The first reconstruction schemes, based on
alternating projections onto closed convex sets, were pro-
posed by Mallat et al. [1], [2]. Their algorithm [2] for signal
reconstruction from wavelet transform modulus maxima,
although performing well in experiments, with O(NlogN)
complexity per iteration (for length N signals) uses projec-
tion operators which can not guarantee convergence. Be-
sides, even in the case it converges, their algorithm does
not necessarily recover a signal from the reconstruction set.
In the wavelet zero-crossings case, Mallat’s algorithm [1]
converges to a point in the reconstruction set, but requires
O(Nlog® N) operations per iteration. An alternative recon-
struction procedure, by Berman et al. [3], uses the gradient
descent algorithm to minimize an appropriate cost function.
The algorithms, presented here, use also the method of al-
ternating projections onto closed convex sets, but have the
following attractive features: (1) consistent reconstruction,
(2) guaranteed convergence, (3) simple and easy implemen-
tation and (4) O(J N) operations per iteration for length N
signals and the wavelet transform across J scales.

Interpretation of the reconstruction sets as the intersec-
tions of conveniently chosen convex sets,introduced here,
besides leading to better reconstruction schemes, shows a
duality between the two representations. The wavelet ex-
trema representation and wavelet zero-crossings representa-
tion of a signal first difference actually provide equivalent
characterizations of signals in £2(Z), which is shown in the
last section.

Notations The Fourier transforms of some ¢(z) € L*(R)
and f(n) € €(Z) will be written as ¢(w) and f(e’*) respec-
tively.

2. NONSUBSAMPLED FILTER BANKS

The discrete wavelet transform for wavelet maxima or zero
crossings representation is the one implemented by an oc-
tave band nonsubsampled filter bank as shown in Figure
la. Let us denote by Fo(2), Fi(z), ... , Fu(z) the time
reversed versions of equivalent filters from the input to out-
puts of the filter bank, based on Ho(z) and Hi(z) proto-
type analysis filters, and implementing the discrete wavelet
transform across J scales. The discrete wavelet transform
operator, denoted as W in the following, actually calculates
inner products of an input signal with integer translates of
impulse responses of Fo(z),..., Fs(z). Condition on the pro-
totype filters for a stable reconstruction of signals in (Z)
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from the wavelet transform is given by the following propo-
sition, which is proven in [6).

Proposition 1 W is a frame operator in £(Z) if and only
if the prototype filters Ho(z) and Hi(z) have no zeros in
common on the unit circle.

If the frame condition of the above proposition is satisfied,
an inverse operator of W is the Hilbert adjoint operator of
the dual of W, which we will denote by W*. The dual frame
consists of integer translates of impulse responses of filters
F§(2) = Fo(2)/D(2), Ff(z) = Fi(2)/D(2), ... , Fi(2) =
Fj(z)/D(z), where

J
D(z) = ZF.-(z)F.(z-l).

A filter bank implementation of the W* operator is shown

in Figure 1b. The inverse W1, however is not unique. For
any pair of filters Go(z) and G,(z) satisfying

Ho(2)Go(z) + Hi(2)G1(z) = 1,

perfect reconstruction of an input signal can be achieved by
the synthesis filter bank based on the synthesis filters Go(z)
and Gi1(z), and having the structure dual to the analysis
one, as shown in Figure lc. Obviously an FIR solution for
Go(z) and Gi(z) exists if and only the prototype analy-
sis filters have no zeros in common [7]. However, the W*
operator is usually preferable since it is the only inverse
which projects to zero signals in the orthogonal comple-
ment of the range of W, thus ensuring stable reconstruc-
tion. Conditions which enable an FIR implementation of
W?*, or equivalently finite length dual frame vectors, are
investigated next. Having the dual frame with finite length
vectors is equivalent to D(z) being equal to a constant, or
without loss of generality D(z) = 1. Necessary and suf-
ficient condition for this to hold is given by the following
proposition [7].

Proposition 2 D(z) = 1 if and only if the proto-
type filters are power complementary: Ho(z)Ho(z7') +
Hl(Z)Hl(Z_l) =1.

If Ho(z) and Hi(z) are power complementary (8], D(z) = 1
and the frame vectors are identical to their duals. In that
case W is a tight frame operator. The reconstruction is
then performed by the synthesis filter bank (see Figure 1c)
with the synthesis filters which are time reversed versions of
the analysis ones, Go(z) = Ho(z™') and G1(z) = Hi(z71).
This proves the following proposition.

Proposition 3 W is a tight frame operator in €%(Z) if and
only if the prototype filters are power complementary.

These results extend immediately to an arbitrary nonub-
sampled filter bank tree, i.e. a filter structure obtained by
growing a two channel FIR filter bank tree in the following
way. We start from a single input double output system
consisting of prototype filters Ho(z) and Hi(z), which is the
0 — th stage of the tree, and continue growing the tree in

such a way that at a stage ¢ from the filter Hj(zy) only the

two filters Ho(zr“) and Hl(zT“) can grow. In this gen-
eral case Proposition 1 still holds, as well as the condition

Figure 1. Nonsubsampled filter banks for the discrete
wavelet transform. a) an analysis filter bank implement-
ing the W operator across 4 scales; b) implementation of
the Hilbert adjoint of the dual of W; ¢) a synthesis filter
bank for that shown in a).

for an FIR synthesis, and frame vectors are time reversed
integer translates of impulse responses of all equivalent fil-
ters from the input to an output of the filter bank tree. We
will call such frames in €2(Z) filter bank type frames. Con-
ditions for the tightness of these frames are given by the
following theorem [6].

Theorem 1 For the filter bank type frames in €2(Z) fol-
lowing statements are equivalent:

1) both the frame vectors and the dual frame vectors have
finite lengths for arbitrary filter bank tree;

2) the frame is tight for arbitrary filter bank tree;

3) the prototype analysis filters are power complementary.

Relations to continuous time framework are established
if the lowpass prototype filter Ho(z) is regular, or in other
words if the infinite product

lim T Hote’®™™) = é(w)
s=1

converges to a function ¢(w) which is the Fourier transform
of some continuous function ¢(z) € L*(R). With a nonsub-
sampled filter bank tree with N outputs we may associate
a set of N functions ¥k (z) in L*(R) which are given in the
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Fourier domain as
Pi(w) = Fu(e’)$(w),

where Fi(e’“) is an equivalent transfer function from the
input to an output k. Assume at the input a sequence f(n)
obtained by sampling some signal f.(z) € L*(R) prefiltered
by ¢(z):
+o0

fe(z)¢(n — z)dz.
-0
At an output k of the filter bank a sequence fi(n) is ob-
tained having Fourier transform

f(n)=

fi(€) = Fi() D felw + 2km)d(w + 2k7),
xeZ

meaning that the filter bank performs sampling of convolu-
tions of the signal with ¢’s. In the case of an octave band
filter bank [6] ¥x(z) k=1,...,N — 1 are

1
o) =509 (5)
where ¥(z) is a wavelet given by
) =H (1) 4 (%)

The filter bank then implements regular sampling of a
dyadic wavelet transform [1]. This relation was also proven
in [9], however for the completeness of the presentation we
gave this alternative direct proof.

3. RECONSTRUCTION

The discrete wavelet transform of some f € €*(Z), when
computed across J scales, consists of J + 1 signals W, f €
£3(Z)j=1,...J+1, obtained at outputs of the filter bank,
as shown in Figure 1a. We shall use here following conven-
tion. Signals in £2(Z) will be denoted by lower case letters,
their wavelet transforms by corresponding upper case let-
ters and wavelet transform components by superscripted
upper case letters, as in: F = Wf, F? = W, f. Note that
the range of the discrete wavelet transform is a subspace
of £2(I), where I stands for Z x {1,2,...J + 1}. Signals in
£2(I) will be denoted by upper case letters, and their J + 1
components in £2(Z) by the same letters with superscripts
as F={F',F?,...,F/t}.

For the definition of wavelet extrema and zero crossings
representations [3] we introduce an X operator which gives
points of local extrema of a sequence:

Xf={k: f(k+1) < f(k), f(k-1) < f(F),
or f(k+1)2 f(k), f(k—1) 2 f(F)},

and an operator M extracting values of a sequence at its

local extrema M f = {f(k),k € X f}.

Wavelet extrema representation of a signal f is defined as:

Ef = {XW,f,MW,fj=1,...,J+1}.

Let Z denote an operator which provides zero crossings of
a sequence, Zf = {k: f(k)- f(k—1) <0},

and U denote an operator which gives integral values of a
sequence between all consecutive zero crossings,

73 -1

vfe Uf(k): Uf(k) = ; 1G)

2x —kth zeroof f, k=1,2,...,|Zf|+1

It is assumed here that the points —oo and +oo are zero-
crossings denoted by zo and zzgj41, and that f € £(Z) so
that U f is well defined. Using this notation, the wavelet
zero-crossings representation of an f is defined as

E.f={ZW,f,UW,f, j=1,...,J+1}.

Reconstruction algorithms proposed here recover a signal
from the reconstruction set of wavelet extrema or wavelet
zero-crossings representation of original signal. Actually,
reconstruction procedures take place in the transform do-
main and the reconstructed signal is then obtained using
the inverse wavelet transform.

The closure of the reconstruction set of some F = W f
from the local extrema information on W f, j=1,...,J+1
can be represented as the intersection:

o:(F)=Vv(£[) ((]c,)

of the sets:

o V - the range of the wavelet transform;

o £ - the set of all G € €2(I) which have same values as F
at all points which are local extrema of F;

o Ci; - theset ofall G € £2(I) sch that G* has the same
sign of slope as F* at the point j:

o=  G:Gel(), }
MELFG) -FE+E ) -G (1 +1) 20

Note that the sets Ci; are defined only for those points
where F is strictly increasing or decreasing, i.e. such that
F'(j)# F'(3+1).

Obviously, V is a subspace of £2(I) and £ and Ci,;’s are
closed convex sets, therefore alternating projections of any
initial point Fo € £*(I) onto V, £ and all the Ci;’s will
converge to a point in their intersection [10] - the recon-
struction set ®S(F). Hence, the reconstructed signal F,
can be obtained as:

n

Fr= lim (PvP.eHPc;,,') Fo 1)
3

where Py,Pe, Pc, ; denote the projection operators onto V,

£, Ci ; respectively.

In the wavelet zero-crossings case, the closure of the re-
construction set of F = W f, from the wavelet zero crossings
representation of f is

ex(h)=v(u() (O Zm) |
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where:

o U - the set of all sequences G € £*(I) such that for F* and
G" have the same integral values between any two adjacent
zero crossings of F*, i=1,...,J +1;

o Z;; - the set of all sequences G € ¢(I) such that G* has
the same sign as F' at point j. Z;, sets are defined only
for the nonzero points of F, F*(j) # 0.

Since the sets Z and U are also closed and convex, a point
F in the reconstruction set can be reached as:

Fr= lim (PVPL(HPZ,‘,> Fo.

7

where Py and Pg, ; are the projection operators onto i and
Z,,; respectively, and Fy is an arbitrary starting point.

Implementation of these projection operators is discussed
in details in [7] and is very simple. The numerical complex-
ity of the algorithms is O(JN) operations per iteration for
a signal of length N and is mainly due to the Py, opera-
tor. This operator is the composition Py = WW?* and
has an exact FIR implementation if and only if W is a
tight frame operator. However in experiments whose re-
sults we reported in [7] we obtained stable reconstruction
with around 30dB SNR in ten iterations of the algorithms,
with WW ™! used instead of P, for some inverse of W
other than W*,

4. RELATION BETWEEN WAVELET
EXTREMA AND WAVELET
ZERO-CROSSINGS REPRESENTATIONS

Consider the extrema representation R.f of some signal f €
€(Z), defined as R.f = {X f, M f}, and the zero-crossings
representation R,Af of its difference Af,

Af(n) = f(n+1) = f(n), (2)

defined as R:Af = {ZAf,UAf}. Obviously local extrema
of f coincide with zero-crossings of Af: Xf = ZAf Mf
and UAf also provide equivalent information on the signal
f, as shown below. If zx now denotes index (location) of
kth zero-crossing of Af, k = 1,2,...,|ZAf|, the following
holds:

Mf={f(z1), f(z2)s. .-, f(z12a5) }
UAf ={(f(z1) = f(~0)),(f(z2) = f(z1)),...
...,(f(+oo) -f(zlzaﬂ))}»

Since in the most cases of practical importance f(—oc) = 0
and f(+o0) = 0, information contained in M f and UAS
are equivalent, i.e. one uniquely determines the other. An
immediate consequence is the following

Proposition 4 The first order difference (as defined by
(2)) of any signal in the reconstruction set of extrema repre-
sentation of some f € (*(Z), is in the reconstruction set of
zero crossings representation of A f. Conversely, any signal
in the reconstruction set of zero-crossings representation of
Af is the first difference of some signal in the reconstruc-
tion set of extrema representation of f.

Extension of these considerations to wavelet extrema and
zero-crossings representations are straightforward, meaning
that wavelet extrema representation of a signal and wavelet
zero-crossings representation of its first difference provide
equivalent characterizations of the signal. This is stated by
the following theorem (7] which gives the summary of this
section.

Theorem 2 Consider an arbitrary signal f € €*(Z) and
its difference Af. Any signal in the reconstruction set of
Af, from its wavelet zero-crossings representation, is the
first difference of some signal in the reconstruction set of f,
from its wavelet extrema representation and vice versa.

5. CONCLUSION

This paper investigated properties of the nonsubsampled
iterated filter banks used in wavelet transform extrema or
zero-crossings based signals processing tasks. Algorithms
for consistent signal reconstruction from wavelet extrema
or zero crossings representation were proposed having low
numerical complexity and simple implementation. It was
also shown that wavelet extrema representation of a signal
and wavelet zero-crossings representation of its first differ-
ence are equivalent.
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