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ABSTRACT 
This paper deals with the analysis of performance of source 
trajectory estimation by using the measurements provided 
by multiple towed arrays (or platforms). In numerous prac- 
tical situations, the maneuvering ability of the receiver (e.g. 
a ship towing linear arrays) is limited leading thus to con- 
sider that the observer motion is rectilinear and uniform. 
Even if this hypothesis appears quite limitative, practical 
and tactical considerations fully justify its interest. This 
leads to consider multiple (platform) target motion anal- 
ysis (denoted MTMA) and to analyse the performance of 
such trajectory estimation methods. 

1. INTRODUCTION 

Conceptually, the basic problem in target motion analysis 
(TMA for the sequel) is to estimate the trajectory of an ob- 
ject (i.e. position and velocity) from noise corrupted sensor 
data [I]. These data are frequently constituted of estimated 
bearings. These estimated bearings represent the basic data 
or observations for the passive sonar in direct path or long 
range context. 

The performance of any TMA algorithm is conditioned 
by the statistical quality of the data (estimated bearings). 
Especially, the array length appears to be critical for the 
performance of tracking, data association steps. This ad- 
vocates for the use of large towed arrays. However, the 
maneuvring ability of the towing ship is itself limited by 
the array length leading thus to consider the following spe- 
cial case : the observer motion is rectilinear and uniform 
(constant velocity vector). Even if this hypothesis appears 
quite limitative, practical and tactical considerations fully 
justify its interest. 

When the observations are constituted of the source 
bearings estimated from one array the system is not observ- 
able. In contrast, when two (or more) estimated bearings 
(from different arrays) are available, the system is gener- 
ally observable. This leads to consider multiple (platform) 
target motion analysis (MTMA). 

However, the observability concept is purely algebraic. 
So the main problem consists in calculating the MTMA 
statistical performance. Analytic formulations of the vari- 
ance of the source state vector components are obtained in 
terms of physical parameters (source distance, source veloc- 
ity, inter-arrays distance). It is worth noting that a rather 
similar problem has been previously considered [3]. The 
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main difference is that, in this case, the data are constituted 
of time-delay and time-delay rate (the so-called Doppler 
time compression). 

Our approach [a] is essentially different since the data 
as well as the performance analysis methods will be those o? 
classical TMA [I]. Surprisingly however, the results appeal 
quite similar to E. Weinstein’s one [3] for the short inte- 
gration time analysis case. Furthermore, the performance 
analysis is extended to long integration time MTMA which 
mainly constitutes the original contribution of this article. 

2. THE MTMA MODEL AND ITS 
CONSEQUENCES 

Consider the sourceobserver encounter depicted in figure 
1. The source located at the coordinates (r, , ,  rys) movec 
with a constant velocity ( vZs ,  vy,). The state vectors of thc 
source and the observer are [I]: 

A 
Xs e [rzs, rys, em, vysl* Xo = [TZO, Tyo, UZO, eye]*. (1: 

where the symbol ’*’ denotes transposition. 
In terms of relative state vector X, defined by X = 

X, - X ,  = [r,, ry,  e=, vy]*, the discrete time equation takea 
the following form: 

A 

X( tk )  = @(tk, tk-l)X(tk--l) + U ( t k )  (2: 
where: 

In the above formula t k  is the time at the k-th sample 
while the vector U ( t k )  = (0, 0, U ,  ( t k ) ,  uY)*  accounts foi 
the effects of the observer accelerations (or control).For a1 
the paper, the observer accelerations are null (U 3 0) whicl 
means that the observer’s motion is rectilinear and uniform 

As usually in TMA [l], the available measurements art 
the estimated angles & (bearings) from the observers plat. 
forms to the source, so that the observation equation stands 
as follows : 

( j  = 1 , .  . . , m, 

= et,3 + Wt,3 

m : number of measurement platforms) 

with : 

et,3 = tan-’ (-) (3 
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Figure 1: Source-Observer encounter. 

( T ~ , ~  and T ~ , ~  are the relative Cartesian coordinates of the 
source w.r.t. the center of the j-th platform). 

In (3), wt,3 represents the estimation noise on the j-th 
platform, it can be considered as zero-mean, gaussian and 
with variance given by the Woodward's formula (narrow- 
band analysis). 

The classical TMA algorithms [l] can be directly ex- 
tended to the multiple measurements. The tingle change 
consists in replacing the scalar observation {et} by a vec- 
torial one i.e. { & , t , . . - , d m , t } *  =&(I 5 t 5 n). 

,en) 
the likelihood function is [l] : 

Given the history of measured bearings (61, 

P (61,. ..,on IX) = 
cst exp [-4 E:=, (6, - @(XI) * (0 t - OCX))] 

(4) 
The maximum likelihood estimate (MLE) is the solution 

to the likelihood equation : 

( 5 )  
a 

ax - logP(Ol,...,OnIx) = o  

The Fisher Information Matrrix (FIM) of the system is 
the following : 

where C is the vector of concatenated measurements. 
It has been shown in [2] using a discrete time approach 

that for the multiplatform case (2 or more arrays), the sys- 
tem is observable as long as the source does not move on 
the array axis. 

3. ANALYTICAL EXPRESSIONS OF THE 
VARIANCES FOR MTMA. 

Assume now, as depicted in figure 2, that there are 2m + 1 
equispaced arrays along the x-axis. There are 2n + 1 esti- 
mated bearings and the aim of the observer is to estimate 
the state of the source at the mid-interval. The [ i , j ]  ele- 
ment of Fisher Information Matrix (FIM) has the following 
form : 

t 

2m+l mays \ 

Figure 2: Typical simulation for MTMA and baselines def- 
inition. 

m 

p=-m 

where Fp is the Fisher information matrix of the pth plat- 
form. This equation shows strikingly that the total FIM is 
the sum of the FIM of all the platforms. 

m 

F =  c F p  

1 tSt R, ( t )  
t26t2np(t) ' 

and : 

rzp( t )  = rsin(B) +pd + tdtw sin(r), 
rt l ( t )  = F cos(@) + t6tv cos(y). 

The following form of the global FIM is deduced from 
the last equations : 

fl fz f4 f5 

f4 f5 f7 fs + 
f 2  f 3  f 5  f6 

= [ f5 f6 fa f 9  ] 
with : 
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These expressions { f,}:==l are expanded into Taylor se- 
ries with respect to r about the infinity up to the order 
6. This order is, in fact, the highest for which the calcu- 
lation could be done for the computer. The computation 
of an analytical formulation of the ?$mation variances for 
MTMA is of a great interest, especially when the arrays are 
the result of the division of one large array. In that case it 
may be interesting to know how the number of subarrays 
influence the variances of the estimation of the elements of 
the state vector. 

The inverse of the FIM has been computed with MAPLE 
(an interactive computer algebra system). The estimation 
variances are located on the main diagonal. These variances 
are functions of different parameters : the bearing estima- 
tion variance (a2), the initial range of the source ( r ) ,  the 
source baseline (&as = (2n + 1)6tv I sin(y - 8)l) and the 
array baseline (&as = (2m + 1)d I cos(8)l = LtOt I cos(e)l). 

These expressions (cf. table 1, 2 ,  3) gives interesting 
insights as in [I] : 

All these equations are proportional to U‘, which 
means that the quality of the bearing measurements 
conditions the quality of the position and velocity es 
timates. 
The position estimates improve with observation du- 
ration, but the velocity estimates improve with its 
third power. This means that iitegration time is of 
great importance especially for the estimation o€ the 
source velocity. 
The position estimates accuracy doesn’t depend, with 
this first order approximation, on the source baseline. 
In fact, if more terms are computed on the numera- 
tor and the denominator this baseline appears. This 
means that as long as the source baseline is much 
less than its range, it does not modify the position 
estimates variances. 

4. In the case where one large array is divided into mul- 
tiple sub-arrays, bearing estimation accuracy is essen- 
tially proportional to m3 and inversely proportional 
to 4m2d2 cos2(8), the square of the effective baseline 
of the total array. The source baseline (&as)  is de- 
fined by (2n + 1)6tvlsin(8 - 7)l. In this situation 
the position variances vary as m2(r/dbas)*,  and the 
velocity estimates error vary as m2r4/(A”,s(d”,s + 

5. In the case where identical arrays are added one af- 
ter the other, the bearing estimation variance is not 
sensitive to m. Thus, in this situation the position 
variances vary as m - 1 ( ~ / d b a s ) 4 ,  and the velocity es- 
timates error vary as m - 1 r 4 / ( d ~ a s ( d ~ o s  + SZas)). 

DiRerent simulations have been conducted to evaluate 
the quality of the approximations obtained. Figure (3) r e p  
resents the relative error between the real variance and the 
approximation when the heading varies for a simulation 
whose characteristics are given on the caption. Other com- 
parisons have been conducted for variations of the number 
of integration, 8 source speed or source range. If the mini- 
mum source range r is greater than the total length of the 
arrays, the relative error is never greater than 40%, which 
means that the approximation is relatively good. 
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Figure 3: Relative error on the variances between the real 
value and the result of the approximation for 8 = n/4rad, 
r = 30km, d = Zoom, v = lOms-l, 2n + 1 = 101, S t  = ls, 
Zm+ 1 = 31 y varij’ng from --a to H. 

4. DISCUSSION. 

Multiple platform target motion analysis has been consid- 
ered. Analytical approximations of source position and ve- 
locity estimation error variances have been derived for long 
integration time, giving thus the main parameters on which 
they depend : range of the source, array effective baseline, 
source baseline etc ... These results have been compared to 
those of E. Weinstein in [3] (for 8 = 0 and short integra- 
tion time) and it has been found that the different variances 
have the same behavior for the two approaches. 
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12r4 sin2 e 
(2n + 1)(2m + 1)dk 

var(i,) N U 2  

2 
U 

12r4 cos2 8 
(an + 1)(2m + 1)dk 

var(t,) N 

2 
U 

1 8 0 ~ ~  sin2 B 
6t2n(n + l)(2n + l)(2m + 1)[5dgas + 4S?a,] 

1 8 0 ~ ~  cos2 6 

var(6,) N 

var(6,) 1: 
6t2n(n 4- 1)(2n + 1)(2m + 1)[5dL, + &as] 

2 

Table 1: .Analytical formulation of estimation variances for MTMA for any given 0 not equal to 0 or */a. 

Table 2: Analytical formulation of estimation variances for MTMA for 0 = 0. 

Table 3: Analytical formulation of estimation variances for MTMA for B = a/2. 
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