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Extension of the Pisarenko
Method to Sparse Linear Arrays

Jean-Jacques Fuchs,Member, IEEE

Abstract—When applied to array processing, the Pisarenko
harmonic decomposition (PHD) method is limited to linear equi-
spaced arrays. We present an approach that allows us to extend it
to general arrays, although for the ease of exposition, we consider
only sparse linear arrays.

We exploit the fact that the PHD can be seen as a deconvolution
or model-fitting approach that minimizes an `1 norm and can
thus be implemented as a standard linear program. Looking at
the PHD from this point of view has two advantages: It allows us
to extend its applicability to arbitrary arrays, and by diverging
slightly from the basic philosophy, it allows us to improve its
performance, which is often quite poor in its original version.

I. INTRODUCTION

T HE covariance matrix of the outputs of a linear array
with equispaced sensors (denoted uniform linear array

(ULA) in the sequel) is hermitian and Toeplitz. It has
real degrees of freedom, and one can localize up to
uncorrelated narrowband far-field sources in additive white
noise. If the geometry of the array is arbitrary, the covariance
matrix is Hermitian with a constant diagonal, it can have up
to real degrees of freedom, and provided
the array manifold is unambiguous, one can locate up to

uncorrelated sources. We restrict our attention
to sparse linear arrays for the ease of exposition, although
the localization technique we present applies to more general
arrays. By sparse linear array, we mean a linear array for which
the sensors are laid out on an underlying regular grid [1].

While for ULA’s there are parametric means (ME methods,
PHD, min-norm, root-MUSIC, etc.) to achieve the localiza-
tion, for nonequispaced arrays, no such systematic approach
exists, and some kind of search and “peak-picking” has to be
performed. MUSIC can be applied to such arrays if the number
of sources is smaller than the number of sensors, but MUSIC
does not take into account the array geometry in the estimation
of the signal subspace. The conventional beamformer (CBF)
can handle such arrays without limitation on the number of
sources, but its performance is poor for closely spaced sources.

We propose to apply a model-fitting algorithm to the output
of a CBF that drastically improves this performance. In [2],
such a model-fitting or deconvolution approach has been
applied locally to spatial sectors; here, the approach is global
and is presented as an extension of the Pisarenko method to
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nonequispaced arrays. It is based on the same premises as
the methods proposed in [3] and belongs to the correlation
matching spectral estimation schemes introduced in [4]. Its
implementation relies on a standard linear programming algo-
rithm such as the simplex algorithm available in any scientific
program library.

II. M ODELING AND PROBLEM STATEMENT

We consider a linear array having omnidirectional sensors
in position . The sensor outputs are low-
passed, sampled, and Fourier-transformed, and we will only
be concerned with the narrowband signal corresponding to a
single frequency bin of this discrete Fourier transform (DFT)
of the sensor data. We denote by the complex order-
vector (snapshot) containing the corresponding components
over the th time interval. An estimate of the covariance matrix

of is then given by

(1)

For sufficiently long time intervals, this is also an estimate
of the spectral density matrix of the sensor outputs at the
considered temporal frequency. Its exact value, which is
denoted , can be decomposed into the sum of, which
is the contribution of sources, and , which is the
contribution of the noise

(2)

where is the power of the ambient noise assumed spatially
white, and is the steering vector associated with the

th source whose power is denoted. We assume the source
signals to be uncorrelated. The signal-to-noise ratio (SNR) of
the th source is then . We take as unit of length

, where is the wavelength at the considered temporal
frequency. The spatial frequency is then related to the
bearing taken with respect to broadside by .
The steering-vector associated with spatial frequencyadmits
the model

(3)

The exact covariance matrix is Hermitian with constant
diagonal and element ( ) equal to

(4)
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where denotes the intersensor distance. The
elements of define the support of the so-called
co-array or discrete co-array function. The co-array assumes
values only at the discrete set of locations given by the
pairwise differences of the sensor locations [1], [5], and its
value at a given point of its domain (support) is an integer
equal to the number of pairs that give the same .
These integers thus vary between 1 and, and at the origin,
the value of the co-array is always. For an arbitrary linear
array, if all the elements are distinct, the cardinality of the
support is equal to , and the number of real
degrees of freedom, which we denote, of the covariance
matrix is then . Note that is always an
odd integer. can equivalently be represented by a complex
vector of dimension containing the ordered, distinct
covariances. For ULA’s, this vector is of dimensionand is
also the first column of the covariance matrix

(5)

Since, in order to work with real data, we will mainly work
with the beamformer outputs, let us introduce their definitions
and expressions. The beamformer output at spatial frequency

is

(6)

For as in (2), it can be decomposed as

(7)

where

(8)
is the output of the beamformer at spatial frequencyfor a
source with unit power located at spatial frequency. This
is also known as the array pattern when the sensor weights
all equal one. For an ULA, is a shifted version of the
discrete Fejer kernel, which is the discrete Fourier transform
of the sampledtriangle. Note that the shift property holds even
for nonequispaced linear arrays.

If the exact covariance matrix has real degrees of
freedom, we propose to take as observationsequispaced
samples of the beamformer output:

for (9)

In practice, only an estimate of is available, and the
corresponding CBF-outputs (6) and (9) are denoted. There
might be a slight loss of information when performing this
transformation since for some array geometries (e.g., ULA),
it is not one to one.

III. T HE ORIGINAL PISARENKO METHOD

The PHD method relies on a theorem of Caratheodory [6].
Let us recall it for completeness.

Theorem: Let be complex numbers (not
all zero) with . Then, there exists some integer(

) and some real numbers and
such that and for
and such that the following representation of the sequence of
numbers is true:

(10)

The constants and are determined uniquely.

A. The Basic Formulation

To see the link with the PHD method, one must think of
the ’s as being the elements of a covariance sequence
of a scalar stationary complex time series. Given the partial
sequence , one can always adjoin to it a
(real) positive variance such that the -dimensional Her-
mitian Toeplitz matrix, say, , associated with this sequence
is (just) positive semi-definite. In terms of this Toeplitz matrix,
the theorem then says that it admits a unique decomposition
as the sum of dyads :

with as in (3) but for a ULA, i.e., with sensors at
positions half wavelengths:

(11)

For a variance larger than this minimal value, is strictly
positive definite, and the above decomposition ofincludes
a white noise contribution (2) with variance
equal to the minimal eigenvalue of.

Using this interpretation of Caratheodory’s theorem, the
algorithm proposed by Pisarenko to decompose a partial
covariance sequence is then as follows:

• Build , which is the positive definite Hermitian Toeplitz
matrix of order associated with the covariance se-
quence.

• Compute , which is the smallest eigenvalue, letdenote
its multiplicity, and form .

• If , keep this matrix; otherwise, extract a principal
minor of order from .

• In both cases, the resulting matrix has a single zero
eigenvalue; let be an associated
eigenvector, where .

• The roots of are then
distinct and of modulus equal to one, and they can be
rewritten as with

• The associated amplitudes are obtained by solving a
set of linear equations.

The basic PHD method has been developed for scalar com-
plex time series and uses an estimated covariance sequence.
Since the components of represent the covariance
sequence associated with a cisoid (a complex sinusoid), the
PHD method decomposes a given partial covariance sequence
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into the contribution of a minimal number of cisoids and
white noise with maximal variance.

In an array processing context, the PHD method only applies
to ULA’s in the presence of white noise and decorrelated
sources. If the covariance matrix is estimated (1) from the
snapshots, it is not Toeplitz. One then starts by transforming it
into a Toeplitz matrix (for instance, by averaging the diagonals,
which is a nonoptimal procedure). The resulting matrix is in
general positive definite, and its smallest eigenvalue is simple.
If the number of sources is known, one should then extract
a principal minor of order and apply the steps described
above. This procedure is clearly suboptimal since it uses only
part of the array. If is unknown, one applies the above
described method to the whole matrix and localizes generically

sources. If denotes the true number of sources, the
smallest eigenvalues are almost equal, and there are
spurious sources whose amplitude is, in general, low,

i.e., of the order of the estimation error standard deviation.
One can also check, and somehow establish, that the spatial
frequencies of these spurious sources are uniformly distributed,
and if one of these sources falls close to a true one, it catches
part of its power and may thus be taken for a true one. This
explains why the performance of the Pisarenko method can
be quite poor. The extension we propose will not have these
shortcomings. It will always use all the information available,
and very few spurious sources will appear since (see Section
VI-B) we allow for discrepancies between the reconstructed
model and the estimated covariances.

B. Another Formulation

The basic PHD method described above can also be seen
as an ingenious manner to solve the following nonlinear and
nontrivial optimization problem for which the theorem of
Caratheodory establishes the existence and uniqueness of a
solution. Given , which is an -
dimensional complex vector associated with a positive definite
covariance matrix, solve

Max

subject to

with and (12)

where corresponds to the white noise
model, and is, as in (11), the source contribution. The

unknowns (with itself unknown) are and
for .

Let us look at this approach from a geometrical point of
view [4] that will allow us to extend it to more general arrays.
We consider to be a -dimensional complex vector inC .
The set of all such vectors associated with positive Toeplitz
matrices is then a closed positive cone with vertex at the
origin. The generating elements of this cone are the steering
vectors (11) to which one associates the dyads ,
which are the rank-one Toeplitz matrices. A generic vector
associated with a positive definite hermitian Toeplitz matrix
belongs to the interior of this cone, whereas a vector

associated with a positive semidefinite matrix lies on the
boundary of the cone. The Pisarenko method applied to an
interior vector projects it onto the boundary of the cone where
it admits a unique decomposition into generating elements (the
steering vectors). The projection is performed by subtracting
the white-noise contribution—vector in the middle of the
cone—with maximal amplitude. This is precisely what the
nonlinear optimization problem (12) is about.

In order to solve this nonlinear problem (12) in a manner
different from Pisarenko, let us discretize the spatial frequen-
cies (the sources bearings) and consider that these frequencies
can only take preassigned values equispaced in the
interval . This amounts to replacing the above-
mentioned cone by a polyhedral cone that is the convex
conical hull of the equispaced generating elements. Then,
by maximizing the noise variance, one obtains a vector
that lies on the boundary of the polyhedral cone. A sufficiently
small discretization step (large ) allows us to approximate
the original cone with an arbitrary small error and, thus, to
reduce the bias introduced by this approximation at will. The
optimization problem that approximates (12) then becomes

Max

subject to (13)

with

This is a linear program [7] in the unknowns
, and its properties are well

established. Note that in this formulation, the variables
disappear as well as . The localization of the sources is
deduced from the indices of the amplitudes that are greater
than zero. There are linear complex equality constraints
that are easily transformed into real constraints.
The standard simplex algorithm available in any scientific
program library will yield a global solution of this convex
optimization problem. Such a solution will generically have
nonzero unknowns and, thus, sincewill be positive,
positive weights ’s. This number is to be compared with

in (12), which is generically equal to . The ratio
two between the two numbers corresponds to the fact that
the spatial frequency of a true source will generically fall in
between two discretization points, and both will be needed in
the reconstruction of its contribution. This means that among
the potential spatial frequencies, in general, at most
pairs of them will emerge from this procedure. One must keep
in mind that we are approximating the standard PHD method
that indeed seeks to reconstruct the observations as a sum
of rays (cisoids). Among these locations, only those
having significantenergy will be kept.

It is this second manner (13) to approximately solve (12)
that lends itself to potential extensions. Note, however, that
even in the case of a ULA, solving (13) may be computa-
tionally cheaper than using the standard PHD method, which
requires the calculation of the minimal eigenvector, the rooting
of the associated polynomial, and the estimation of the powers.
Moreover, as we will see later, it is this second approach that
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allows us to take into account the statistics of the estimation
errors and, thus, to improve the performance drastically.

IV. THE EXTENSION TO ARBITRARY LINEAR ARRAYS

When one considers arbitrary linear arrays, a number of
problems arise that are either absent or trivial for ULA’s.
Ambiguity or uniqueness of the decomposition is one of them.
Invertibility or identifiability is another one. We will define
these issues and comment on them once we have presented
the extension of the PHD method we propose.

A. The Extension

The extension of the PHD method to arbitrary linear arrays
is now straightforward; it consists simply in adapting the
linear program (13) to these arrays. For an arbitrary linear
array with sensors and real degrees of freedom, the
vector is now of dimension (see Section II)
and contains all the distinct covariances present in. The
steering vectors present in (13) are similarly replaced by
corresponding -dimensional complex vectors that are
extended versions of (3). Of course, as in (13), to solve the
linear program, all these vectors have to be transformed into

-dimensional real vectors, but we do not further detail this
formulation since we will later (see Section V) apply a linear
one-to-one transformation to it to obtain a real formulation
that is easier to handle.

For the moment, let us consider the structure of the covari-
ance matrices associated with these arrays. One can think of
them as matrices or as-dimensional vectors in .

The covariance matrix of the output of an arbitrary linear
arrays with sensors and real degrees of freedom can be
decomposed (2) into the contribution of the sources and the
contribution of the white noise. Since is a positive linear
combination of dyads built on the steering vector (3) associated
with the array, belongs to the closed convex conical hull
of the set of the dyads. This is, again, a closed convex cone
with vertex at the origin whose generating elements are the
dyads. Since the contribution of the additive white noise can be
constructed as a convex combination ofequispaced dyads,
it clearly belongs to the interior of the same cone. The global
matrix thus always lies in the interior of the cone.

A major difference with the cone associated with linear
and equispaced arrays is that except for very specific sparse
linear arrays [5], the interior and the boundary of this cone
are difficult to characterize in terms of the covariance matrix.
The elements on the boundary of the cone include, but are not
limited to, the rank deficient matrices. Similarly, it is difficult
to characterize the set of matrices that are potential covariance
matrices of a given array, unlike in the ULA case, where these
are simply the set of positive Hermitian Toeplitz matrices.
However, since we are only concerned by the decomposition
of covariance matrices associated with true arrays, it is possible
to be more specific. We will present in Sections IV-B and
C the conditions under which the proposed extension of the
PHD method will work. For the moment, let us say that for

small enough, one is in the degenerate situation where the
global source-contribution lies on the boundary of the cone. To

identify it, one again maximizes the contribution of the noise,
and this forces the remainder to lie on the boundary.

B. The Ambiguity Issue

For arbitrary linear arrays, nothing guarantees that an ele-
ment on the boundary, which represents the global contribution
of the sources, has a unique decomposition intodyads.
While in the equispaced sensor case the uniqueness has been
proven by Caratheodory, for arbitrary linear, arrays no general
result exists, and the uniqueness of the decomposition is a
difficult question that concerns the ambiguity of the array
manifold. Indeed, even for linear arrays, the study of ambiguity
is a difficult task, and only a few sufficient conditions for
nonambiguity or necessary conditions for ambiguity are avail-
able. Ambiguity appears trivially for ULA’s with intersensor
distance greater than . This corresponds to the aliasing
phenomenon induced by undersampling. Some specific un-
ambiguous sparse linear arrays are known as, for instance,
the minimum redundancy linear arrays [5]. A nontrivially
ambiguous nonequispaced linear array is analyzed in [8]. In
what follows, we will mainly consider unambiguous arrays as,
for instance, minimum redundancy linear arrays (MRLA’s). It
is worthwhile to note that some care has to be taken when
applying MUSIC-like algorithms to suchfully augmentable
arrays since these algorithms have to be implemented on the
augmented array in order to be indeed unambiguous [9].

C. The Invertibility Issue

The invertibility issue concerns, assuming the array is
unambiguous, the conditions under which the knowledge of

allows us to reconstruct the underlying scenario. The
investigation of (2) and (4) leads to the following conclusions:

• If , the covariance matrix (2) is rank deficient
in the absence of noise, and one can recover the scenario
in a number of different ways: MUSIC for instance. It is
easy to realize that the noise power is simply the value
of the possibly multiple, minimal eigenvalue of.

• If , the covariance matrix (2) is full
rank even in the absence of noise, and the task is less
trivial. However, since the number of unknowns

is smaller than the number of
real degrees of freedom, it is possible to identify the
scenario. In the absence of noise, one has to find the
solution, which is assumed to be unique, of a system
of nonlinear equations in unknowns. In the
presence of noise, one has precisely to solve the nonlinear
optimization problem (12) we propose to replace it with
(13).

• If , the task is impossible. The covariance
matrix lies in the interior of the cone even in the absence
of additive noise. The unique decomposition into the
sum of an element on the boundary and the white noise
element still exists, but this decomposition has no relation
to the true scenario.

The maximal number of identifiable (uncorrelated)
sources is thus .



FUCHS: EXTENSION OF THE PISARENKO METHOD TO SPARSE LINEAR ARRAYS 2417

V. A M ODEL-FITTING APPROACH

Before describing a further extension intended to improve
the statistical performance of the method, we propose to
make some modifications in the implementation of (13).
A possible interpretation of the linear constraints in (12)
and (13) is that one seeks a reconstruction of the observed
covariance sequenceas a positive combination of a (small)
number of elementary covariance sequences, each associated
with a source, and a white noise covariance sequence with
maximal variance. The PHD method is thus also a model-
fitting approach using as a criterion the maximization of the
noise variance. However, looking at the first linear constraint
in (13), which reads

one notes that maximizing is indeed equivalent to minimiz-
ing , which is the sum of the sources powers. One can
thus replace the criterion in (13) and rewrite the program as

Min

subject to

with (14)

This is an interesting reinterpretation of the PHD method as a
model-fitting approach that minimizes the sum of the source
powers. Since these ’s are greater than or equal to zero,
Min is further equivalent to minimizing their norm.

In order to work with real quantities having a physical
meaning, rather than considering the real and imaginary part
of , we propose to work with the outputs of the CBF (6);
these are real and positive quantities with an obvious physical
meaning. The two approaches are equivalent, i.e., will give the
same solution, provided the two quantities are in a one-to-one
relation. This is the case if the number of evaluated beams
is equal to the number of real degrees of freedom of the
covariance matrix.

From a technical point of view, this amounts to applying
a linear transformation to all the (column vectors that appear
in the) constraints of the linear program (14). When applied
to , which is the model of the white noise contribution, it
yields a constant vector the components of which all equal
to ; we denote it . The number of unknowns, their
meanings, and the location of the optimum are not affected
by such a transformation. Note that for ULA’s or minimum
redundancy linear arrays (MRLA’s), the array pattern when
the sensor weights all equal one is the DFT of the discrete
co-array function. For arbitrary linear arrays, the support of
the co-array is irregular, and this is no longer true.

Instead of fitting a model to the covariance matrix (or
sequence), we now fit a model to the outputs of the CBF.
Indeed, the description given in Sections III and IV about the
structure of the set of the covariance matrices can be trans-
posed on the CBF side: All potential CBF outputs belong to the
positive cone, whose generating functions are (8).

In addition, any CBF output that corresponds to an invertible
scenario can be represented as the sum ofweighted and
shifted generating functions and the contribution of the noise
(7).

In this new setting and to meet the standard notation of
LP’s, we rewrite (14) as

Min

subject to

(15)

where

norm of , which is the -dimensional vector
of the unknown source powers ();
model of the noise contribution;

-dimensional vector containing the outputs of the
CBF (9);

matrix , the columns of which
contain the shifted and sampled generating functions
(8).

An inequality means that all the components of
have to be greater than or equal to zero.

Using the discrete version of Parseval’s theorem, one can
show that for ALE’s and MRLA’s, all the columns of
have the same (and ) norm. Since, moreover, all the
components of are positive, this can be seen as
meaning that no spatial frequency should be privileged.

This is our first complete formulation as an implementable
linear program (LP) of the extended PHD method. We will
further improve on this method in the next section by intro-
ducing the statistical properties of. Some remarks concerning
properties and implementation issues of this LP are in order
[7].

• If there are feasible points, the optimization problem has
a solution, say at a vertex of the domain. This
means that there is a solution with at moststrictly
positive components. Since is always positive, there
are at most components of the -dimensional
(weighting) vector that are positive.

• Due to the discretization of the spatial frequencies (bear-
ings) with a step-size , a single source will generi-
cally be reconstructed by the two neighboring nodes.
positive components in thus allow us to localize, at
most, sources. This is also the maximal number
of admissible sources for invertibility reasons (see Section
IV.)

• The spatial frequency to be attributed to a source associ-
ated with two such positive components is obtained
by linear interpolation of the “indices” of the components.
The amplitude is obtained by adding the values of the
components.

• Strictly speaking, the two neighboring elements never
allow us to exactly reconstruct a missing generating
function; other elements (distributed over the domain)
contribute as well. The amplitude of these further con-
tributing elements can be monitored by choosing the
discretization step . This step should also be chosen
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in accordance with the accuracy one expects from the
array.

• The solution given by a simplex algorithm may
have less than positive components. Such a solution is
termed degenerate and standard software can handle this
case.

• In practice, only an estimate of is available. The
maximal number of sources will then almost
always be needed to reconstruct. The difficulty is then
to decide whether a source with low amplitude is indeed
a source or is induced by the estimation error and/or the
discretization step. Deciding how many sources there are,
or which sources are true ones, is a detection problem. An
a priori evaluation of the detection threshold of the array
should thus be performed so that one can make a decision
by looking at the amplitudes. This is a standard difficulty
for localization algorithms if the number of sources is
not assumed to be known.

VI. FURTHER EXTENSIONS

In all the previous formulations (12), (14), and (15), as well
as in the basic PHD method, the model-fitting is performed
exactly, i.e., without any discrepancy between the observations
and the reconstructed model. There is no real justification or
need for that since the observations, which are the CBF outputs

in (15), are corrupted by estimation errors

due to the fact that only snapshots are available. There
is indeed no reason to ask for a perfect fit under such
circumstances, and the maximum likelihood technique, for
instance, is precisely one way to specify how the model should
be made to fit the observations. In these parametric approaches,
the structure of the model (the number of sources) has to be
known as well as a very precise initial point. We do not make
this assumption here and handle simultaneously the detection
and estimation problem.

A. Statistical Properties of the Beams

We now present the statistical properties of the CBF output
and, more precisely, those of. They will allow us to modify
the optimization problem. Under the standard model for the
snapshots presented in Section II, it is generally assumed that

in (1) is such that is a sample of a complex Wishart
distribution with degrees of freedom and parameter matrix

. Defining then , , and ,
which is the element of , one has [10]

(16)

In a more compact form, this relation implies

tr tr tr (17)

with and arbitrary matrices, and tr the trace of the
square matrix . Rewriting the CBF output (6), (9) as

tr

tr

with a projection matrix and denoting ,
relation (17) yields

tr

(18)

and for , one obtains

which is a standard result [11] in power spectrum estimation.
In what follows, we shall assume that the value of, which

is the number of snapshots, is large enough for the outputs
of the beams to be considered to be real Gaussian random

variables with mean and covariance given by (18), although
this only holds asymptotically in . These relations then fully
define the statistical properties of. Let us denote by the
covariance matrix of whose elements are defined in (18). A
consistent estimate of is obtained by replacing by
in the evaluation of the elements in (18).

B. Improving the Performance

We now propose to use the estimate to whiten the

observation vector . We define and apply the
same transformation to the other elements of the LP (15), i.e.,
we similarly premultiply and by to obtain and

. The components of the second memberof the linear
constraints are now decorrelated and have unit variance.

This linear transformation does not change the location
of the optimum if no further modification is introduced. It
makes, in some sense, all the constraints equally valid or
important. In order to introduce some flexibility in the equality
constraints, we propose to replace them by constraints having
a lower and upper bound. The idea behind this modification

is the following. Since the observations inare corrupted by
estimation errors, there is no reason to ask the reconstructed
model to fit exactly these observations; it is more adequate to
ask the reconstructed model to pass within—say—standard
deviations of the observations once they have been whitened.
This amounts to put atubearound the observations and to ask
the reconstructed model to stay within it. It is an easy way to
remain within the linear programming framework while taking
into account the estimation errors. The LP (15) thus becomes

Min

subject to

(19)
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where denotes an -dimensional column vector of ones, and
all the in equalities between vectors have to be considered
component-by-component.

The parameter, which is the radius of the tube, is obviously
an important one. Let us indicate how to choose its value. In
order to be able to ignore for the moment the errors due to
the discretization of the spatial frequencies, assume that the
true scenario generating can exactly be described by our
model, i.e., there exists such that the reconstructed second
member, which is denoted , equals . We then want
to choose such that despite the additive estimation errors,
this exact representation belongs to the solution set of (19).
Taking into account the whitening step, we have to choose
such that with probability close to one

Since , the components of the difference

are, asymptotically in , zero-mean independent
normalized Gaussian random variables. We thus have to take

so that the probability that the maximum of theserandom
variables be larger than in absolute value is close to zero.
It is easy to show that has then to be of the order of

Log , i.e., the maximum of independent standard
Gaussian variableincreasesas Log .

Incidentally, since the optimum, say, of (19) is a feasible
point, it satisfies

and combining the two last inequalities, one has

which implies, taking into account the fact thatis of order
, that

The variance of and, thus, of , is of order . This
is how the usual asymptotic order of convergence, with respect
to the number of snapshots, enters in this scheme.

This parameter also plays an important role in the sparsity
issue. Obviously, if it is taken much too large, is
the optimum (no positive weight), whereas if it is taken too
small (or zero), the solutions will be nondegenerate, i.e., will
have positive weights (which is the situation for the PHD
method). In general, the true solution lies in between these
two extremities. This indicates that the value ofinfluences
the number of sources (positive weights) in the solution. The
simulations show that this is indeed the case. Fortunately, for
values around Log , the sensitivity is reasonably low, and
we do not need to adapt this parameter to the noise realizations.
We further comment on these issues in the simulations.

VII. SIMULATION RESULTS

We apply the approach described above to simulated data.
Thus, only an estimate (1) of , which is obtained from
observations (the snapshots), is available.

The implementation of our method is extremely easy and
straightforward. The simplex algorithm from any scientific
program library can be used. There are only two parameters
that have to be tuned. One of them is (the number of
columns in ) that fixes the discretization step of the spatial
frequencies. The results are quite insensitive to its value,
provided it is taken large enough. If it is too small, the
reconstruction of an intermediate column by its two neighbors
will be poor, and other columns will be required creating
spurious sources. We take as a multiple of , which is
the numbers of rows in , and the number of real degrees
of freedom in . Below, we take . It is important
to link the discretization step to the expected accuracy of the
array, which is somehow proportional to its size, and this is an
easy way to achieve it. The second parameter is, which is the
radius of the tube; we commented about its value at the end
of Section VI-B, and below, we take it equal to Log .

Let us also mention again that our method often produces
spurious sources, i.e., more sources are detected than are
actually simulated. Their amplitudes are, in general, quite
small, and both their number and amplitudes decrease as

and/or increases. Remember that for ULA’s, the PHD
method—which corresponds to our method with infinite
and —always has a maximum number
of spurious peaks. The results we present are obtained by
keeping among the detected sources thesources with highest
amplitude.

A. First Example

We consider a minimum redundancy linear array with four
sensors [3], [5]. The sensors are at positions (half
wavelengths). The exact covariance matrixhas real
degrees of freedom. An estimateis obtained from
snapshots. It is used to evaluate the CBF at 13 equispaced
bearings (9), which are the components of. is taken equal
to , and the matrix is thus of dimension (13,130). The
discretization step in spatial frequency is thus .

The scenario [12] consists of two sources that have a
common SNR of 0 dB with respect to the white noise

and in (2). We simulated three different
situations:

1) In the first case, the two sources are at spatial frequencies
0 and 0.07 (0 and 8.0).

2) In the second case, the spatial frequencies are 0 and
0.06 (0 and 6.9).

3) The spatial frequencies are 0 and 0.05 (0 and 5.7).

The means and standard deviations of the estimated spatial
frequencies, obtained from 400 independent trials, are given
in Table I. In row 5 and 6 of this table, the LP (19) with
is used [this is equivalent to using (15)], and in row 7 and 8,

is taken equal to Log .
Only the very last decimal is affected when the radius

varies between 1 and 2. This parameter is thus not really
sensitive for these scenarios. Note, however, that this radius
has a direct influence on the estimates of the amplitudes of
the sources that are systematically underestimated and whose
bias increases with. In the last set of simulations, the spatial
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TABLE I
RESULTS OVER 400 TRIALS FOR THREE DIFFERENT TWO-SOURCESSCENARIO.

THE ARROW HAS FOUR SENSORS AT POSITION (0, 1, 4, 6). ROWS 5
AND 6 PRESENT THERESULTS FOR THEBASIC PISARENKO EXTENSION.
ROWS 7 AND 8 PRESENT THERESULTS FOR THEIMPROVED EXTENSION

frequency separation was too small for the PHD method—(15)
or (19) with —to work correctly; for some realizations,
the location of one of the two strongest sources had little to do
with the true location and the global result is not given since
it had no meaning.

It is also interesting to mention that as opposed to the
maximum likelihood method, the initialization has no influence
on the results since the problem is convex, and the optimum
is unique.

For the array simulated in this example, the covariance
matrix contains the covariances .
This means, that using the components of the order 4 matrix

, one can build an order 7 Toeplitz covariance matrix [13],
[14] and apply standard localization algorithms. This is, of
course, not a necessity for our approach (see the second
example below) and has been chosen to ease comparisons and
to be sure that the array presents no ambiguity. The reader
is invited to verify that other algorithms have a much poorer
performance. Even for the easiest case (the two first columns of
Table I), a MUSIC-type algorithm sometimes fails to solve the
two sources. This is not in contradiction with the asymptotic
optimality of these approaches but simply means that in the
pre-asymptotic domain [14], MUSIC does not have the best
possible performance.

B. Second Example

We take an example of a sparse linear non redundant array
[1] for which there is a gap in the co-array. The array has
five sensors at positions (half wavelengths).
The exact covariance matrix has of real degrees of
freedom. All the covariances going from to are present
once in except for , which is missing. We simulate five
uncorrelated sources in white noise at spatial frequencies 0,
0.08, 0.16, 0.24, and 0.32, all with SNR equal to 0 dB. The
number of snapshots is equal to . We present the
results obtained from (19) in Table II for 400 independent
trials. They are reasonably close to the Cramer–Rao bound,
which is also given in the table.

Note that since the number of sources is equal to the number
of sensors, the matrix is full rank, even in the absence of
noise, so that an augmentation technique [13], [14] has to be
used. Here, however, since is missing, the extended array
can only be of limited aperture, and the difficulty remains the
same. Since the sources are too close to be separated by the
CBF, there does not seem to be an existing method, other than

TABLE II
RESULTS OVER 400 TRIALS FOR A FIVE SENSORS-FIVE SOURCES

SCENARIO. THE ARRAY HAS FIVE SENSORS ATPOSITIONS (0, 1, 4,
9, 11). IT IS NONREDUNDANT WITH A GAP IN THE COARRAY

the ML approach, that is able to handle this case. Our approach
allows us to separate the sources without any specific tuning of
the two parameters and . The same parameters as before
are used: and Log ).

VIII. C ONCLUSIONS

We have presented an extension of the Pisarenko method
that allows us to handle sparse linear arrays. Its computational
cost is, in general, quite reasonable. The number of operations
required to perform one iteration of a simplex algorithm in
order to solve a linear program with constraints and
unknowns is proportional to the square of min , and the
number of iterations is, in general, considered to be linear [16]
in min . The computational load is thus mainly cubic in
min and, thus, quite similar to these of high-resolution
methods. Our approach has, however, several advantages over
these methods. There is no need to knowa priori the number
of sources. Although some sort of detection scheme has to be
added to our procedure to detect and discard weak spurious
peaks, knowing the number of sources is actually of no help
in our approach. For arbitrary arrays and in difficult situations
(such as closely spaced sources; see Section VII-A), it has, in
general, better performance than other methods. In even more
difficult situations (closely spaced sources whose number is
equal to the number of sensors, see Section VII-B), it continues
to work with reasonable performance, whereas no other stan-
dard high-resolution method actually applies. The maximum
likelihood method can, of course, handle such situations. Even
if one assumes the number of sources to be known, however,
the difficulty lies in the necessary initialization procedure.
Without an excellent initial point, the maximum likelihood
method does not converge to the true global maximum, making
it useless.

Some simulation results have been presented to allow us
to ascertain the performance of the method. The simulations
have been performed on linear arrays, but more general arrays
can be handled as well. When the number of sources equals
or exceeds the number of sensors, it does not seem that
competing methods actually exist, except for the conventional
beamformer, whose performance in resolution is poor. The
statistical performance is quite good, and our method actually
outperforms the basic Pisarenko method when it is applicable.
Theoretical analysis of the performance of our method is under
investigation.

Several modifications of the approach or extensions to
other problems can be developed. As far as the localization
problem considered here is concerned, one can generalize the
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approach to handle additive noise with arbitrary unknown
spatial spectral density [15].
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