IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 45, NO. 10, OCTOBER 1997 2413

Extension of the Pisarenko
Method to Sparse Linear Arrays

Jean-Jacques Fuch®glember, IEEE

Abstract—When applied to array processing, the Pisarenko nonequispaced arrays. It is based on the same premises as
harmonic decomposition (PHD) method is limited to linear equi- the methods proposed in [3] and belongs to the correlation
spaced arrays. We present an approach that allows us to extend it |y a1ching spectral estimation schemes introduced in [4]. Its

to general arrays, although for the ease of exposition, we consider implementation reli n tandard linear programming al
only sparse linear arrays. plementation refies on a standa ear progra g algo-

We exploit the fact that the PHD can be seen as a deconvolution fithm such as the simplex algorithm available in any scientific
or model-fitting approach that minimizes an ¢; norm and can program library.
thus be implemented as a standard linear program. Looking at
the PHD from this point of view has two advantages: It allows us
. L : A Il
to extend its applicability to arbitrary arrays, and by diverging
slightly from the basic philosophy, it allows us to improve its We consider a linear array havidg omnidirectional sensors

. M ODELING AND PROBLEM STATEMENT

performance, which is often quite poor in its original version. in position[0, z1, x2, --- zy—_1]- The sensor outputs are low-
passed, sampled, and Fourier-transformed, and we will only
I. INTRODUCTION be concerned with the narrowband signal corresponding to a

single frequency bin of this discrete Fourier transform (DFT)

T HE covariance matrix of the outputs of a linear arrays tha sensor data. We denote B, the complex ordery
with IV equispaced sensors (denoted uniform linear ar¥ctor (snapshot) containing the corresponding components

(ULA) in the sequel) is hermitian and Toepl|tz_. It has/ —1 over thekth time interval. An estimate of the covariance matrix
real degrees of freedom, and one can localize upVte 1 R of X, is then given by

uncorrelated narrowband far-field sources in additive white
noise. If the geometry of the array is arbitrary, the covariance L1 & N
matrix is Hermitian with a constant diagonal, it can have up k= T Z XXy (1)
to L = N(N — 1)+ 1 real degrees of freedom, and provided =t
the array manifold is unambiguous, one can locate up keor sufficiently long time intervals, this is also an estimate
N(N — 1)/2 uncorrelated sources. We restrict our attentioff the spectral density matrix of the sensor outputs at the
to sparse linear arrays for the ease of exposition, aIthomﬁRnSidered temporal frequency. Its exact value, which is
the localization technique we present applies to more genefgnotedR, can be decomposed into the sum &f, which
arrays. By sparse linear array, we mean a linear array for whigh the contribution of P sources, andR,, which is the
the sensors are laid out on an underlying regular grid [1]. contribution of the noise
While for ULA’s there are parametric means (ME methods, r
PHD, min-norm, root-MUSIC, etc.) to achieve the localiza- B = Rs +Ru Ry =Y a, d8(13) d6(v,)*, Rp =vl (2)
tion, for nonequispaced arrays, no such systematic approach p=1
exists, and some kind of search and “peak-picking” has to bsherewv is the power of the ambient noise assumed spatially
performed. MUSIC can be applied to such arrays if the numbehite, anddf(1,,) is the steering vector associated with the
of sources is smaller than the number of sensors, but MUS}h source whose power is denotegl We assume the source
does not take into account the array geometry in the estimatiignals to be uncorrelated. The signal-to-noise ratio (SNR) of
of the signal subspace. The conventional beamformer (CBfg pth source is themp, = a,/v. We take as unit of length
can handle such arrays without limitation on the number of/2, where \ is the wavelength at the considered temporal
sources, but its performance is poor for closely spaced sourdesquency. The spatial frequenay is then related to the
We propose to apply a model-fitting algorithm to the outpufearing¢ taken with respect to broadside by= (sin ¢)/2.
of a CBF that drastically improves this performance. In [2][The steering-vector associated with spatial frequenagmits
such a model-fitting or deconvolution approach has beéme model
appllgd locally to spatial sectors, here, the gpproach is global () = [1 Qimvar Rimves || GQWWW—U]T_ 3)
and is presented as an extension of the Pisarenko method to
The exact covariance matri is Hermitian with constant
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where ¢, ; = 3 — x; denotes the intersensor distance. The Theorem: Let ¢, ¢z, ---
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, cx—1 be complex numbers (not

elements of{6,;, & > I} define the support of the so-calledall zero) with N > 1. Then, there exists some integer(1 <
co-array or discrete co-array function. The co-array assumes< N) and some real numbets andy, (p =1, 2, ---, P)
values only at the discrete set of locations given by theich thata, > 0, —1/2 < v, < 1/2 andy, # v; for p # j
pairwise differences of the sensor locations [1], [5], and i@nd such that the following representation of the sequence of
value at a given point of its domain (support) is an integetumbersc;, is true:

equal to the number of pairk, [ that give the samey ;.
These integers thus vary between 1 avidand at the origin,
the value of the co-array is alway¥. For an arbitrary linear

array, if all the elements,, ; are distinct, the cardinality of the _ _
support is equal tav(N — 1)/2 + 1, and the number of real The constants,, andy,, are determined uniquely.

degrees of freedom, which we denale of the covariance
matrix R is then N(INV — 1) + 1. Note thatL is always an

r
crp = Z ap exp (2irkyy) k=1,---, N—1.
p=1

(10)

A. The Basic Formulation

odd integer.R can equivalently be represented by a complex 14 see the link with the PHD method, one must think of

vectorr of dimensionL+1)
covariances. For ULA’s, this vector is of dimensidhand is
also the first column of the covariance matrix

()

r=[rg T T2 7Tno1]t

/2 containing the ordered, distinCty,q . 's as being the elements of a covariance sequence

of a scalar stationary complex time series. Given the partial
sequence{ry, 72, - -+, *n—1}, ONe can always adjoin to it a
(real) positive variance, such that theV-dimensional Her-
mitian Toeplitz matrix, sayR, associated with this sequence

Since, in order to work with real data, we will mainly workis (just) positive semi-definite. In terms of this Toeplitz matrix,
with the beamformer outputs, let us introduce their definitiortge theorem then says that it admits a unique decomposition
and expressions. The beamformer output at spatial frequeggythe sum of” dyadsdf(v;,) df(;,)*:

fis
u(f) = 7 d6°(HRAECS). ©
For R as in (2), it can be decomposed as
r
W)=Y apFa(f =)+ v )
p=1

where

Iy(f —v)

1
F|d9(0)*d9(f —v)?
8
is the output of the beamformer at spatial frequerfcfor a
source with unit power located at spatial frequencyThis

2l B

is also known as the array pattern when the sensor Weigﬁ?sv

all equal one. For an ULAF,(f) is a shifted version of the

discrete Fejer kernel, which is the discrete Fourier transform
of the sampledriangle. Note that the shift property holds even

for nonequispaced linear arrays.

If the exact covariance matri®? has L real degrees of
freedom, we propose to take as observatidngquispaced
samples of the beamformer output:

L1 g

yk:y(fk)for fk:%v k:()v :l:]-v :l:27 iT

In practice, only an estimat& of R is available, and the
corresponding CBF-outputs (6) and (9) are dengtgedThere

might be a slight loss of information when performing this
transformation since for some array geometries (e.g., ULA),

it is not one to one.

Ill. THE ORIGINAL PISARENKO METHOD

r
R= Z ap df(vp) d8(vp)*

p=1

with d6(») as in (3) but for a ULA, i.e., with sensors at
positionsz; = &k half wavelengths:

d9(1/) _ [1 6i27rz/ 6i47rz/ . Cin(A’—l)u]T'

(11)

For a variance- larger than this minimal valueR is strictly

positive definite, and the above decompositionfbfncludes

a white noise contribution (2) with varianee= rg — Ep ap

equal to the minimal eigenvalue @t.

Using this interpretation of Caratheodory’s theorem, the
algorithm proposed by Pisarenko to decompose a partial
ariance sequence is then as follows:
 Build R, which is the positive definite Hermitian Toeplitz

matrix of order N associated with the covariance se-

guence.

» Computew, which is the smallest eigenvalue, letlenote
its multiplicity, and formR — v1.

« If ¢ = 1, keep this matrix; otherwise, extract a principal
minor of orderN + 1 — g from R — v[.

¢ In both cases, the resulting matrix has a single zero
eigenvalue; letU = [upuy --- up]? be an associated
eigenvector, wherd”® = N — q.

e The P roots of u, + u1z + --- + upzl’ = 0 are then
distinct and of modulus equal to one, and they can be
rewritten asexp (2invp) with —1/2 < v, < 1/2

» The associated amplitudes, are obtained by solving a
set of linear equations.

The basic PHD method has been developed for scalar com-

plex time series and uses an estimated covariance sequence.

Since the components aff(1,) represent the covariance

The PHD method relies on a theorem of Caratheodory [&lequence associated with a cisoid (a complex sinusoid), the

Let us recall it for completeness.

PHD method decomposes a given partial covariance sequence
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into the contribution of a minimal number d@? cisoids and associated with a positive semidefinite matrix lies on the
white noise with maximal variance. boundary of the cone. The Pisarenko method applied to an
In an array processing context, the PHD method only appliggerior vector projects it onto the boundary of the cone where
to ULA’s in the presence of white noise and decorrelatedtdadmits a unique decomposition into generating elements (the
sources. If the covariance matrix is estimated (1) from tisteering vectors). The projection is performed by subtracting
snapshots, it is not Toeplitz. One then starts by transforminglie white-noise contribution—vectaey in the middle of the
into a Toeplitz matrix (for instance, by averaging the diagonalspne—with maximal amplitude. This is precisely what the
which is a nonoptimal procedure). The resulting matrix is inonlinear optimization problem (12) is about.
general positive definite, and its smallest eigenvalue is simpleln order to solve this nonlinear problem (12) in a manner
If the number of source® is known, one should then extractdifferent from Pisarenko, let us discretize the spatial frequen-
a principal minor of orde” +1 and apply the steps describecties (the sources bearings) and consider that these frequencies
above. This procedure is clearly suboptimal since it uses omgn only takeM preassigned values,, equispaced in the
part of the array. IfP is unknown, one applies the aboventerval ] — 1/2, 1/2]. This amounts to replacing the above-
described method to the whole matrix and localizes genericathentioned cone by a polyhedral cone that is the convex
N — 1 sources. IfP denotes the true number of sources, theonical hull of theM equispaced generating elements. Then,
N — P smallest eigenvalues are almost equal, and there &semaximizing the noise variance, one obtains a vectete;
N — P spurious sources whose amplitude is, in general, lothat lies on the boundary of the polyhedral cone. A sufficiently
i.e., of the order of the estimation error standard deviatiosmall discretization step (larg&/) allows us to approximate
One can also check, and somehow establish, that the spatial original cone with an arbitrary small error and, thus, to
frequencies of these spurious sources are uniformly distributeeiduce the bias introduced by this approximation at will. The
and if one of these sources falls close to a true one, it catcloggimization problem that approximates (12) then becomes
part of its power and may thus be taken for a true one. This

explains why the performance of the Pisarenko method can Max w

be quite poor. The extension we propose will not have these M

shortcomings. It will always use all the information available, subject to Z amdB (V) +ver =1 (13)
and very few spurious sources will appear since (see Section m=1

VI-B) we allow for discrepancies between the reconstructed with  a,, > 0.

model and the estimated covariances.

This is a linear program [7] in theM + 1 unknowns
B. Another Formulation (v, {am, m = 1,---, M}), and its properties are well

The basic PHD method described above can also be sgéﬁ"‘bliShed' Note" that inhthif folr.mul'ation% ti;]e variabigs'
as an ingenious manner to solve the following nonlinear al%sdappe;\; as vt\:e_ ‘Zgj T fehoca |za}fuon 0 ht € sources 1s
nontrivial optimization problem for which the theorem oIde uced from the indices of the amplitudes that are greater

Caratheodory establishes the existence and uniqueness zero. There aréy linear complex equality constraints
solution. Givenr = [ro, 1, 72, -+ -, x_1]%, which is anN- that are easily transformed into = 2V — 1 real constraints.
. Vvo— Pl Pl Pl Pl V  — ) . . . . . .
dimensional complex vector associated with a positive definiflé'® Standard simplex algorithm available in any scientific
covariance matrix. solve program library will yield a global solution of this convex

optimization problem. Such a solution will generically have

Max @ nonzero unknowns and, thus, sincwill be positive,2(/V —1)
P positive weightsa,,,’s. This number is to be compared with
subjectto r —we; = Z apdf(vp) P in (12), which is generically equal t&v — 1. The ratio
p=1 two between the two numbers corresponds to the fact that
with  a, >0and0< P <N (12) the spatial frequency of a true source will generically fall in
between two discretization points, and both will be needed in
wheree; = [1, 0, 0, ---, 0]F corresponds to the white noisethe reconstruction of its contribution. This means that among

model, anddf(v,) is, as in (11), the source contribution. Thehe A/ potential spatial frequencies, in general, at myst 1
2P+ 1 unknowns (withP itself unknown) arey and{a,, 1,}  pairs of them will emerge from this procedure. One must keep
forp=1,2 ---P. in mind that we are approximating the standard PHD method
Let us look at this approach from a geometrical point dhat indeed seeks to reconstruct the observations as a sum
view [4] that will allow us to extend it to more general arraysof rays (cisoids). Among thes®& — 1 locations, only those
We consider to be a/N-dimensional complex vector i6". having significantenergy will be kept.
The set of all such vectors associated with positive Toeplitzlt is this second manner (13) to approximately solve (12)
matrices is then a closed positive cone with vertex at thieat lends itself to potential extensions. Note, however, that
origin. The generating elements of this cone are the steeriegen in the case of a ULA, solving (13) may be computa-
vectors (11) to which one associates the dyétis,,)df(1;,)*, tionally cheaper than using the standard PHD method, which
which are the rank-one Toeplitz matrices. A generic veetorrequires the calculation of the minimal eigenvector, the rooting
associated with a positive definite hermitian Toeplitz matriaf the associated polynomial, and the estimation of the powers.
belongs to the interior of this cone, whereas a vector Moreover, as we will see later, it is this second approach that
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allows us to take into account the statistics of the estimatiahentify it, one again maximizes the contribution of the noise,
errors and, thus, to improve the performance drastically. and this forces the remainder to lie on the boundary.

IV. THE EXTENSION TO ARBITRARY LINEAR ARRAYS B. The Ambiguity Issue

When one considers arbitrary linear arrays, a number’ OfEor arbitrary linear arrays, nothing guarantees that an ele-
problems arise that are either absent or trivial for ULA'Shent on the boundary, which represents the global contribution
Ambiguity or uniqueness of the decomposition is one of therg the p sources, has a unique decomposition iftalyads.
Invertibility or identifiability is another one. We will define \yile in the equispaced sensor case the uniqueness has been
these issues and comment on them once we have presefigden by Caratheodory, for arbitrary linear, arrays no general

the extension of the PHD method we propose. result exists, and the uniqueness of the decomposition is a
_ difficult question that concerns the ambiguity of the array
A. The Extension manifold. Indeed, even for linear arrays, the study of ambiguity

The extension of the PHD method to arbitrary linear arrayg @ difficult task, and only a few sufficient conditions for
is now straightforward; it consists simply in adapting th&@onambiguity or necessary conditions for ambiguity are avail-
linear program (13) to these arrays. For an arbitrary line@ble. Ambiguity appears trivially for ULA’s with intersensor
array with N sensors and. real degrees of freedom, thedistance greater thah/2. This corresponds to the aliasing
vector r is now of dimension(L + 1)/2 (see Section Il) phenomenon induced by undersampling. Some specific un-
and contains all the distinct covariances presenRinThe ambiguous sparse linear arrays are known as, for instance,
steering vectors present in (13) are similarly replaced e minimum redundancy linear arrays [5]. A nontrivially
correspondindL +1)/2-dimensional complex vectors that arédmbiguous nonequispaced linear array is analyzed in [8]. In
extended versions of (3). Of course, as in (13), to solve tM&at follows, we will mainly consider unambiguous arrays as,
linear program, all these vectors have to be transformed i instance, minimum redundancy linear arrays (MRLA's). It
L-dimensional real vectors, but we do not further detail thi§ worthwhile to note that some care has to be taken when
formulation since we will later (see Section V) apply a linea®Pplying MUSIC-like algorithms to sucfully augmentable
one-to-one transformation to it to obtain a real formulatiofrays since these algorithms have to be implemented on the
that is easier to handle. augmented array in order to be indeed unambiguous [9].

For the moment, let us consider the structure of the covari-
ance matrices associated with these arrays. One can thinkcof_l_he Invertibility Issue
them as matrices or ak-dimensional vectors ifR~. ' y

The covariance matri® of the output of an arbitrary linear  The invertibility issue concerns, assuming the array is
arrays withV sensors and. real degrees of freedom can bé/nambiguous, the conditions under which the knowledge of
decomposed (2) into the contributid?), of the sources and the £ allows us to reconstruct the underlying scenario. The
contributionvI of the white noise. Sinc&, is a positive linear investigation of (2) and (4) leads to the following conclusions:
combination of dyads built on the steering vector (3) associatece If P < N, the covariance matri® (2) is rank deficient
with the array,R; belongs to the closed convex conical hull  in the absence of noise, and one can recover the scenario
of the set of the dyads. This is, again, a closed convex cone in a nhumber of different ways: MUSIC for instance. It is
with vertex at the origin whose generating elements are the easy to realize that the noise power is simply the value
dyads. Since the contribution of the additive white noise can be of the possibly multiple, minimal eigenvalue &.
constructed as a convex combinationfoequispaced dyads, < If N < P < (L —1)/2, the covariance matrix (2) is full
it clearly belongs to the interior of the same cone. The global rank even in the absence of noise, and the task is less
matrix R thus always lies in the interior of the cone. trivial. However, since the numbe&P + 1 of unknowns

A major difference with the cone associated with linear  ({a;, 1,}p=1,..., P, v) iS Smaller than the numbek of
and equispaced arrays is that except for very specific sparse real degrees of freedom, it is possible to identify the
linear arrays [5], the interior and the boundary of this cone scenario. In the absence of noise, one has to find the
are difficult to characterize in terms of the covariance matrix. solution, which is assumed to be unique, of a system
The elements on the boundary of the cone include, but are not of L nonlinear equations ir2P 4+ 1 unknowns. In the
limited to, the rank deficient matrices. Similarly, it is difficult presence of noise, one has precisely to solve the nonlinear
to characterize the set of matrices that are potential covariance optimization problem (12) we propose to replace it with
matrices of a given array, unlike in the ULA case, where these (13).
are simply the set of positive Hermitian Toeplitz matrices. * If P > (L —1)/2, the task is impossible. The covariance
However, since we are only concerned by the decomposition matrix lies in the interior of the cone even in the absence
of covariance matrices associated with true arrays, itis possible of additive noise. The unique decomposition into the
to be more specific. We will present in Sections IV-B and sum of an element on the boundary and the white noise
C the conditions under which the proposed extension of the element still exists, but this decomposition has no relation
PHD method will work. For the moment, let us say that for to the true scenario.

P small enough, one is in the degenerate situation where the  The maximal number of identifiable (uncorrelated)
global source-contribution lies on the boundary of the cone. To sources is thu§Z — 1)/2.
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V. A MODEL-FITTING APPROACH In addition, any CBF output that corresponds to an invertible
\genario can be represented as the suni’ofeighted and

Before describing a further extension intended to improve’: : ) S ]
ifted generating functions and the contribution of the noise

the statistical performance of the method, we propose $b
make some modifications in the implementation of (13)./: ) ] ]

A possible interpretation of the linear constraints in (12) I'n this new setting and to meet the standard notation of
and (13) is that one seeks a reconstruction of the obsenlddS: We rewrite (14) as

covariance sequengeas a positive combination of a (small)

number of elementary covariance sequences, each associated Min |.X[];
with a source, and a white noise covariance sequence with subjectto: AX +vw=1">
maximal variance. The PHD method is thus also a model- X>0,v>0 (15)

fitting approach using as a criterion the maximization of the
noise variance. However, looking at the first linear constraifif,ere

I (13), which reads [|X]l1 41 norm of X, which is theA/-dimensional vector

Z“m +u="70, Gm>0 of the unknown source powers,);

o model of the noise contribution;

L-dimensional vector containing the outputs of the
CBF (9);

(L, M) matrix (M > L), the columns of which
contain the shifted and sampled generating functions

|~ IS

one notes that maximizing is indeed equivalent to minimiz-
ing >°,., am, Which is the sum of the sources powers. One can
thus replace the criterion in (13) and rewrite the program as

2

M (8)
Min Z Gm An inequality X > 0 means that all the components &f
m=1 have to be greater than or equal to zero.

Using the discrete version of Parseval's theorem, one can
show that for ALE’'s and MRLA's, all the columns oft
have the samé&; (and ¢;) norm. Since, moreover, all the
components ofA, w, b are positive, this can be seen as

This is an interesting reinterpretation of the PHD method agriganing that no spatial frequency should be privileged.
model-fitting approach that minimizes the sum of the sourceThis is our first complete formulation as an implementable
powers. Since these,,’s are greater than or equal to zerolinear program (LP) of the extended PHD method. We will
Min 3" a,, is further equivalent to minimizing theit; norm. further improve on this method in the next section by intro-

In order to work with real quantities having a physicaflucing the statistical properties kfSome remarks concerning
meaning, rather than considering the real and imaginary pBfeperties and implementation issues of this LP are in order
of r, we propose to work with the outputs of the CBF (6)i7]-
these are real and positive quantities with an obvious physicak If there are feasible points, the optimization problem has
meaning. The two approaches are equivalent, i.e., will give the a solution, say X*, v*) at a vertex of the domain. This
same solution, provided the two quantities are in a one-to-one means that there is a solution with at madststrictly
relation. This is the case if the number of evaluated beams positive components. Sincg" is always positive, there
is equal to the numbeL of real degrees of freedom of the are at mostL — 1 components of thel/-dimensional
covariance matrix. (weighting) vectorX™ that are positive.

From a technical point of view, this amounts to applying ¢ Due to the discretization of the spatial frequencies (bear-
a linear transformation to all the (column vectors that appear ings) with a step-sizé /M, a single source will generi-
in the) constraints of the linear program (14). When applied cally be reconstructed by the two neighboring nodes1
to e, which is the model of the white noise contribution, it  positive components it * thus allow us to localize, at
yields a constant vector the components of which all equal most,(L—1)/2 sources. This is also the maximal number
to 1/N; we denote itw. The number of unknowns, their of admissible sources for invertibility reasons (see Section
meanings, and the location of the optimum are not affected IV.)
by such a transformation. Note that for ULA’s or minimum < The spatial frequency to be attributed to a source associ-
redundancy linear arrays (MRLA'S), the array pattern when ated with two such positive(* components is obtained
the sensor weights all equal one is the DFT of the discrete by linear interpolation of the “indices” of the components.
co-array function. For arbitrary linear arrays, the support of The amplitude is obtained by adding the values of the
the co-array is irregular, and this is no longer true. components.

Instead of fitting a model to the covariance matrix (or  Strictly speaking, the two neighboring elements never
sequence), we now fit a model to the outputs of the CBF. allow us to exactly reconstruct a missing generating
Indeed, the description given in Sections Il and IV about the function; other elements (distributed over the domain)
structure of the set of the covariance matrices can be trans- contribute as well. The amplitude of these further con-
posed on the CBF side: All potential CBF outputs belong to the tributing elements can be monitored by choosing the
positive cone, whose generating functions &/ — v) (8). discretization stef /M. This step should also be chosen

subject to Z U AO(vp) +v ey =1
m=1

with — a, > 0. (14)
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in accordance with the accuracy one expects from théth A and B arbitrary matrices, and {r4) the trace of the

array. square matrixd. Rewriting the CBF outpuf; (6), (9) as
* The solution(X*, v*) given by a simplex algorithm may 1 X

have less thark positive components. Such a solution is T =N? do* (fr.)RdO(fr)

termed degenerate and standard software can handle this 1 - d6( i) dO*(f)

case. =—1tr <R#)
e In practice, only an estimaté of b is available. The N N

maximal number L — 1)/2 of sources will then almost :itr (RP})

always be needed to reconstribctThe difficulty is then N

to decide whether a source with low amplitude is indeeglith P, a projection matrix and denotindysx, = 45, — ¥,
a source or is induced by the estimation error and/or tielation (17) yields

discretization step. Deciding how many sources there are, 1

or which sources are true ones, is a detection problem. An E(AyAye) = 5 1 (RPLRP,)
a priori evaluation of the detection threshold of the array lev
should thus be performed so that one can make a decision = TNd |dO; R db,)? (18)
by looking at the amplitudes. This is a standard difficulty
for localization algorithms if the number of sources ignd fork = ¢, one obtains
not assumed to be known. 1
E(Ay) = vk
VI. FURTHER EXTENSIONS which is a standard result [11] in power spectrum estimation.

In what follows, we shall assume that the valuelhfwhich
: ; L iS the number of snapshots, is large enough for the outputs
as in the basic PHD methad, the madel-fitting is performea of the beams to be considered to be real Gaussian random

exactly, i.e., without any discrepancy between the observatigfis. ; ) .
and the reconstructed model. There is no real justification varlrlables with meap;, and covariance given by (18), although

need for that since the observations, which are the CBF outptH g only holds .as.ymptotlcally Iff". These relations then fully
o S €Tine the statistical properties bf Let us denote by the
b in (15), are corrupted by estimation errors ¢

covariance matrix ob whose elements are defined in (18). A
consistent estimat® of X is obtained by replacing: by R
in the evaluation of the elements in (18).

In all the previous formulations (12), (14), and (15), as well

1>

Ab=b-0
due to the fact that onlyl” snapshots are available. Thergs |mproving the Performance
is indeed no reason to ask for a perfect fit under such LA .
circumstances, and the maximum likelihood technique, forWe now propo§e to use thf es:uma!bi to whiten the
instance, is precisely one way to specify how the model sholf@servation vectob. We defineb = %~1/2) and apply the
be made to fit the observations. In these parametric approact$géne transformation to the other elements of the LP (15), i.e.,
the structure of the model (the number of sources) has to W8 Similarly premultiply A andw by %:~1/2 to obtain A and
known as well as a very precise initial point. We do not mak@. The components of the second memibeof the linear
this assumption here and handle simultaneously the detectimmstraints are now decorrelated and have unit variance.
and estimation problem. This linear transformation does not change the location
of the optimum if no further modification is introduced. It
makes, in some sense, all the constraints equally valid or
o ) important. In order to introduce some flexibility in the equality
We now present the statistical properties of the CBF outpgnstraints, we propose to replace them by constraints having
and, more precisely, those bf They will allow us to modify 4 |ower and upper bound. The idea behind this modification

the optimization problem. Under the standard model for the . . Lk

) . . S the following. Since the observations brare corrupted by
snapshots presented in Section Il, it is generally assumed t . .

o ; . . estimation errors, there is no reason to ask the reconstructed
R in (1) is such thatl'R is a sample of a complex Wishart

distribution with7" degrees of freedom and parameter matrigpOcjel to fit exactly these observations; it is more adequate to

- A T i ] ask the reconstructed model to pass within—saystandard
V}EHSE filgl?r?eE?ejn)Aelllzen:eﬁt:)f}}% ﬁr:g h_a137i[]i()_] mijy @NATij Geviations of the observations once they have been whitened.
’ ' This amounts to put tubearound the observations and to ask
1 the reconstructed model to stay within it. It is an easy way to
E(ArjArpy,) = T T Tin- (16) remain within the linear programming framework while taking
into account the estimation errors. The LP (15) thus becomes

A. Statistical Properties of the Beams

In a more compact form, this relation implies Min [|X |1

subject toz— SI<AX v < z—i—él

1
Er(ARA) U (AR B) = Zwr(RARB)  (17) X>0,0>0 (19)
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wherel denotes arl.-dimensional column vector of ones, and The implementation of our method is extremely easy and
all the in equalities between vectors have to be considerstaightforward. The simplex algorithm from any scientific
component-by-component. program library can be used. There are only two parameters
The parametef, which is the radius of the tube, is obviouslythat have to be tuned. One of them ig (the number of
an important one. Let us indicate how to choose its value. tolumns inA) that fixes the discretization step of the spatial
order to be able to ignore for the moment the errors due fiequencies. The results are quite insensitive to its value,
the discretization of the spatial frequencies, assume that firevided it is taken large enough. If it is too small, the
true scenario generatiny can exactly be described by ourreconstruction of an intermediate column by its two neighbors
model, i.e., there exist&* such that the reconstructed secondill be poor, and other columns will be required creating
member, which is denoteti X*), equalsh. We then want spurious sources. We tak®/ as a multiple ofL, which is
to chooseé such that despite the additive estimation errorthe numbers of rows id, and the number of real degrees
this exact representation belongs to the solution set of (18§.freedom inR. Below, we takeM = 10L. It is important
Taking into account the whitening step, we have to chabseo link the discretization step to the expected accuracy of the

such that with probability close to one array, which is somehow proportional to its size, and this is an
N N easy way to achieve it. The second parametér vshich is the

|b(X*) = b <6 radius of the tube; we commented about its value at the end
N . of Section VI-B, and below, we take it equal @8+/Log (L).

Since E(b) = b(X*), the components of the difference |et us also mention again that our method often produces

b(X*) — b are, asymptotically iril’, zero-mean independentspurious sources, i.e., more sources are detected than are

normalized Gaussian random variables. We thus have to tai@ually simulated. Their amplitudes are, in general, quite

§ so that the probability that the maximum of theseandom small, and both their number and amplitudes decrease as

variables be larger thaé in absolute value is close to zero.M and/oré increases. Remember that for ULA’s, the PHD

It is easy to show that has then to be of the order ofmethod—which corresponds to our method with infinite
Log(L), i.e., the maximum ofL independent standardand 6 = O—always has a maximum numbey — P — 1

Gaussian variabléncreasesas \/Log(L). of spurious peaks. The results we present are obtained by
Incidentally, since the optimum, say, of (19) is a feasible keeping among the detected sources/t@ources with highest
point, it satisfies amplitude.
BX) bl <6

A. First Example

and combining the two last inequalities, one has We consider a minimum redundancy linear array with four
e T sensors [3], [5]. The sensors are at positips1, 4, 6} (half
[B(X7) = b(X)] < 26 wavelengths). The exact covariance maffbhasL = 13 real
which implies, taking into account the fact thitis of order d€grees of freedom. An estimaeis obtained fromil” = 100
T-1 that shapshots. It is used to evaluate the CBF at 13 equispaced
' . bearings (9), which are the componentg.oi/ is taken equal
[b(X*) = b(X)| < 26/VT. to 10L, and the matrix4 is thus of dimension (13,130). The
) . . y ~ discretization step in spatial frequency is tiyg/ ~ 7-1073.
The variance ob(X) and, thus, ofX, is of orderé®/T. This  The scenario [12] consists of two sources that have a

is how the usual asymptotic order of convergence, with respegimmon SNR of 0 dB with respect to the white noise=
to the number?’ of snapshots, enters in this scheme. ay = 1 andv = 1 in (2). We simulated three different

This parameteé also plays an important role in the sparsity;i,ations:

ISSUE. waously, i |_t_|s takt_an much too "”?fg_é? =0is 1) Inthe first case, the two sources are at spatial frequencies
the optimum (no positive weight), whereas if it is taken too 0 and 0.07 (0 and &0

small (or zero), the solutions will be nondegenerate, i.e., will 2) In the second case, the spatial frequencies are 0 and
have L positive weights (which is the situation for the PHD 0.06 (0 and 6.9) '

method). In general, the true solution lies in between these3) The spatial frequencies are 0 and 0.05 (0 and)5.7

two extremities. This indicates that the valueifluences T d standard deviati f th timated tial
the number of sources (positive weights) in the solution. T? € means and standard deviations ot the estimated spatia

simulations show that this is indeed the case. Fortunately, 5??”;”0:8;5’ obta5|neddfr60rr]: ;1]00 w;)?epindflr;t ;réals,ﬁieogwen
values around/Log (L), the sensitivity is reasonably low, and" '@ (? .h'n row ('Sml oft |s.ta elSt € d(' ) w 7 and 8
we do not need to adapt this parameter to the noise realizatidis >c [this is equivalent to using (15)], and in row 7 and 8,

dRs.
We further comment on these issues in the simulations. §|s taken equal td = 0'8. Log (L) = L3.
Only the very last decimal is affected when the raddus

varies between 1 and 2. This parameter is thus not really
sensitive for these scenarios. Note, however, that this radius
We apply the approach described above to simulated ddtas a direct influence on the estimates of the amplitudes of
Thus, only an estimat& (1) of R, which is obtained froni’ the sources that are systematically underestimated and whose
observations (the snapshots), is available. bias increases with. In the last set of simulations, the spatial

VII. SIMULATION RESULTS
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TABLE | TABLE I
REsuLTs OVER 400 TRIALS FOR THREE DIFFERENT TWO-SOURCES SCENARIO. REsuLTs OVER 400 TRIALS FOR A FIVE SENSORSFIVE SOURCES
THE ARROW HAS FOUR SENSORS AT PosiTioN (0, 1, 4, 6). Rws 5 SCENARIO. THE ARRAY HAs FIVE SENSORS ATPosiTIoNs (0, 1, 4,
AND 6 PRESENT THERESULTS FOR THEBASIC PISARENKO EXTENSION. 9, 11). Ir Is NONREDUNDANT WITH A GAP IN THE COARRAY
Rows 7 AND 8 PRESENT THE RESULTS FOR THEIMPROVED EXTENSION -
source number 1 2 3 4 5
sotrce number 1 2 1 2 1 2 i) source power in dB 0 0 0 0 0
source power in dB 0 0 0 0 0 0 spatial frequency v 0 .08 .16 .24 .32
spatial frequency v 0 07 0 .06 0 .05 est. spatial freq. v | -.0104 | .0890 | .1603 | .2341 | .3189
CR stdt dev. on v .0066 | .0066 || .0080 | .0080 | .0103 | .103 est. stdt dev. on v | .0045 | .0064 | .0055 | .0050 | .0037
estimated spatial freq. | -.0043 | .0727 || -.0051 | .0673 - - 0 CR stdt dev. on v | .0023 | .0028 | .0030 | .0028 | .0023
estimated stdt dev. 0176 | .0169 || .0227 | .0237 - -
estimated spatial freq. | .0008 | .0710 || .0003 | .0622 || .0002 | .0552 || 1.3
estimated stdt dev. 0087 | .0087 || .0099 | .0103 || .0114 | .0125 the ML approach, that is able to handle this case. Our approaCh

allows us to separate the sources without any specific tuning of

frequency separation was too small for the PHD method—(1%)f WO parameters/ andé. The same parameters as before
or (19) with § = 0—to work correctly; for some realizations, &€ UsedM = 10L andé = 0.8/Log(L)).

the location of one of the two strongest sources had little to do
with the true location and the global result is not given since VIIl. CONCLUSIONS

It Taq nc: meaning. . h d We have presented an extension of the Pisarenko method
tIs aiso interesting to mention that as opposed to thRat allows us to handle sparse linear arrays. Its computational

maximum likelihood method, the initialization has no mfluencgOst is, in general, quite reasonable. The number of operations

on the results since the problem is convex, and the Opt'rr]lJr@t1uired to perform one iteration of a simplex algorithm in

IS unique. . : : . order to solve a linear program with constraints and\/
For the array simulated in this example, the covariangg, o o\ins is proportional to the square of iifin M), and the
matrix R contains the covarianceg§, £ = 0,1, ---, 6}. '

number of iterations is, in general, considered to be linear [16]
build der 7 Toenpli . 113 H(min(L, M). The computational load is thus mainly cubic in
£, one can build an order oeplitz covariance mat.rlx.[ in(L, M) and, thus, quite similar to these of high-resolution
[14] and apply standa_rd localization algorithms. This is, ethods. Our approach has, however, several advantages over
course, not a necessity for our approach (see the_ Sec?ﬁ'gse methods. There is no need to krewriori the number
example below) and has been chosen to ease comparisons rEzmrces. Although some sort of detection scheme has to be
to -be_ sure that_ the array presents no ambiguity. The readgiyey 15 our procedure to detect and discard weak spurious
Is invited to verify that other a}lgonthms have a much POOT&Efoaks, knowing the number of sources is actually of no help
performance. Even for the ea_S|est case (_the tWO_ first column r?ﬁur approach. For arbitrary arrays and in difficult situations
Table ), a MUSI_C-t_ype aI_gonthm so_m_et|me_s fails to solve th_ uch as closely spaced sources; see Section VII-A), it has, in
tWO. Sources. This is not in contradlct!on with the asymptou eneral, better performance than other methods. In even more
optimality of _thedse approlachiﬂsutgjltcsgnply meahns tha; mbt fificult situations (closely spaced sources whose number is
pre-asymptotic domain [14], oes not have the eé&ual to the number of sensors, see Section VII-B), it continues

possible performance. to work with reasonable performance, whereas no other stan-
dard high-resolution method actually applies. The maximum
likelihood method can, of course, handle such situations. Even
We take an example of a sparse linear non redundant ariagne assumes the number of sources to be known, however,
[1] for which there is a gap in the co-array. The array habke difficulty lies in the necessary initialization procedure.
five sensors at positionf, 1, 4, 9, 11} (half wavelengths). Without an excellent initial point, the maximum likelihood
The exact covariance matriX hasL = 21 of real degrees of method does not converge to the true global maximum, making
freedom. All the covariances going from to r1; are present it useless.
once in R except forrg, which is missing. We simulate five Some simulation results have been presented to allow us
uncorrelated sources in white noise at spatial frequenciest®,ascertain the performance of the method. The simulations
0.08, 0.16, 0.24, and 0.32, all with SNR equal to 0 dB. Theave been performed on linear arrays, but more general arrays
number of snapshots is equal ¥ = 100. We present the can be handled as well. When the number of sources equals
results obtained from (19) in Table Il for 400 independerdr exceeds the number of sensors, it does not seem that
trials. They are reasonably close to the Cramer—Rao bourdmpeting methods actually exist, except for the conventional
which is also given in the table. beamformer, whose performance in resolution is poor. The
Note that since the number of sources is equal to the numiséatistical performance is quite good, and our method actually
of sensors, the matrix is full rank, even in the absence ofitperforms the basic Pisarenko method when it is applicable.
noise, so that an augmentation technique [13], [14] has to Bkeoretical analysis of the performance of our method is under
used. Here, however, sineg is missing, the extended arrayinvestigation.
can only be of limited aperture, and the difficulty remains the Several modifications of the approach or extensions to
same. Since the sources are too close to be separated byother problems can be developed. As far as the localization
CBF, there does not seem to be an existing method, other thmiablem considered here is concerned, one can generalize the

This means, that using the components of the order 4 ma

B. Second Example
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approach to handle additive noise with arbitrary unknownz2] J. J. Fuchs, “Extension of the Pisarenko method to sparse linear arrays,”

spatial spectral density [15].

(1]
(2]

(3]

(4]

(5]
(6]
(7]
(8]
(9]
[20]

[11]

[13]

REFERENCES
[14]

D. H. Johnson and D. E. DudgeoArray Signal Processing: Concept
and Techniques. Englewood Cliffs, NJ, Prentice-Hall, 1993.
J. J. Fuchs and H. Chuberre, “A deconvolution approach to sour¢&5]
localization,” IEEE Trans. Signal Processingpl. 42, pp. 1462—-1470,
June 1994. [16]
D. R. Fuhrmann and F. C. Robey, “Structured covariance estimation
via maximal representation of convex sets,’Hroc. ICASSP1991, pp.
3249-3252.
J. H. McClellan and S. W. Lang, “Spectral estimation for sensor arrays,”
IEEE Trans. Acoust., Speech, Signal Processi, ASSP-31, pp.
349-358, Apr. 1983.
A. T. Moffet, “Minimum redundancy linear arraysfEEE Trans. An-
tennas Propagat.yol. AP-16, pp. 172-175, Mar. 1968.
U. Grenander and G. Szegdpeplitz Forms and Their Applications.
Berkeley, CA: Univ. Calif. Press, 1958.
D. G. Luenberger,Linear and Non-Linear Programming.Reading,
MA: Addison-Wesley, 1973.
A. Manikas and C. Proukakis, “Study of ambiguities of linear arrays,
in Proc. ICASSPyol. 1V, 1994, pp. 549-55.
Y. I. Abramovich et al., “Ambiguities in DOA estimation for nonuni-
form linear antenna arrays,” iRroc. ISSPA1996, pp. 631-634.
K. S. Miller, Complex Stochastic Processe®Reading, MA: Addison-
Wesley, 1974.
R. W. Schafer and A. V. OppenheirBjgital Signal Processing. En-
glewood Cliffs, NJ: Prentice-Hall, 1975.

in Proc. ICASSPyol. lll, May 1995, pp. 2100-2103.

F. Haber, S. Pillai, and Y. Bar-Ness, “A new approach to array geometry
for improved spatial spectrum estimatiorPtoc. IEEE, vol. 73, pp.
1522-1524, Oct. 1985.

Y. |. Abramovichet al., “Positive definite Toeplitz completion for fully
augmentable nonuniform linear arrays,”Bmoc. ICASSPyol. V, May
1996, pp. 2551-2554.

J. J. Fuchs, “Linear programming in spectral estimation: Application to
array processing,” ifProc. ICASSPyol. VI, May 1996, pp. 3161-3164.
A. Schrijver, Theory of Linear and Integer ProgrammingNew York:
Wiley, 1986.

Jean-Jacques FuchgM’79) was born in France
in 1950. He graduated from thigcole Suprieure
d’Electricité, Paris, France, in 1973 and received
the M.S. degree in electrical engineering from the
Massachusetts Institute of Technology, Cambridge,
in 1974.

After a short period in industry with Thomson-
C.S.F., he joined the Institut de Recherches en In-
formatique et Sygimes Agatoires (IRISA), Rennes,
France, in 1976. Since 1983, he has been Profes-
sor of Electrical Engineering at the Univegsitle

Rennes 1. His research interests shifted from adaptive control and identi-
fication to signal processing. He is now involved in array processing and
radar.



