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ABSTRACT

This paper presents a new statistical model of the
trajectories of speech feature vectors. In this model
each vector is assumed to correspond to a point on a
mean path that consists of a number of concatenated
straight line segments. The model characterizes both
the deviation of the trajectory from the mean path and
the deviation from the mean rate at which the vectors
move through the vector space in a way that avoids the
conditional independence assumption implicit in hid-
den Markov modeling.

The model is formulated using a state space ap-
proach in which the state vector consists of only two
elements. These represent the position on the mean
path corresponding to the present observation vector
and the rate at which points on the mean path are
moving through the vector space. A method for esti-
mating the parameters of the model using the Expec-
tation Maximization algorithm is presented.

1. INTRODUCTION

One of the key tasks in speech recognition based on
statistical methods is the calculation of the class con-
ditional probability density, p(Y | W), where Y} =
{¥1,¥2,.-.yn} is an observed sequence of N feature
vectors, and W is a particular acoustic unit, such as
a word or a phoneme. Evaluation of p(Y | W) re-
quires that' a model exist of the statistical character-
istics of feature vector sequences generated in uttering
the acoustic unit W.

The most common approach is to use Hidden Mar-
kov Models (HMMs) in which each feature vector is as-
sumed to be drawn from one of a finite number of prob-
ability distributions, each associated with a particular
discrete state [1}. It is common in using this approach
for recognition to use the joint likelihood p(YY SV | W)
as an approximation to p(YY | W), where SV rep-
resents the most likely sequence of states. However
a drawback of the HMM approach is that it assumes
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that observation vectors are statistically dependent on
only the state in which they are produced, and not on
previous observation vectors.

An different approach is the Stochastic Linear Sys-
tem Model (SLSM) in which the feature vector se-
quence is divided into segments, and the vectors within
each segment are assumed to be noisy measurements
of the response, xj, of some linear time-invariant sys-
tem to a sequence of uncorrelated random vectors [2].
In this case, the state of the model is the continuous-
valued vector, xi, rather than a discrete quantity as in
HMMs.

However, in the SLSM approach, the feature vectors
are statistically dependent on only the present state, as
in HMMs. Also, it is necessary to map each feature vec-
tor into one of the time-invariant segments that make
up the model. Because this is done using linear time
warping, there is no explicit way to model dynamic
variations in the rate at which feature vectors move
along their trajectories.

In this paper a new method of modeling sequences
of feature vectors is presented that does allow both
the statistical dependence between observation vectors,
and the rate at which vectors move along their trajecto-
ries to be characterized. The method is similar to the
SLSM approach in that it makes use of a continuous
state vector. However it also incorporates an explicit
description of the mean vector trajectory, which is pa-
rameterized by representing it as a concatenation of
straight line segments. The model permits the joint
likelihood of the observation sequence and the most
likely state vector sequence to be determined, in a way
that is analogous to the calculation of p(YN SN | W)
in HMMs.

2. THE PIECEWISE CONTINUOUS MEAN
PATH MODEL

A basic assumption underlying the model presented
here is that for an utterance of a given acoustic unit
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each observed feature vector corresponds to some point
on a mean path which the vectors take through the vec-
tor space. This can be regarded as equivalent to the
assumption in a HMM representation that each vector
is drawn from the distribution for a particular state
and therefore has a particular mean value. We denote
by uj the point on the mean path corresponding to an
observed vector yx.

A further assumption is that the mean path can
be approximated by a concatenation of straight line
segments. If the segments are numbered from 1 to P,
the path can be represented by P+ 1 segment endpoint
vectors, 40,71, ...7p- In order to describe the rate at
which the vectors u; move along the mean path, the
symbol d is used to represent the distance along the
mean path from v, to ug. If ug lies on the ith segment,
it can be expressed in terms of di by

u; =% + (dx — G)6s, (1)

where

6=l = vi-ally (2)
i=1

is the Euclidean distance along the mean path from +,

to v;, and

Bi = (ri = vi-1)/ (v = w1l (3

is the unit length vector representing the direction of
the ith segment.

The model describes two things: the way that yi is
related uy, and the way that uy is related to ug—_;. To
model yi, we define

)

and assume that z; is a correlated Gaussian random
vector. To describe the correlation in z, we represent

it by

Zg = gZp—1+ Vi1, (5)
where ¢ is a scalar between 0 and 1, and v is an un-
correlated Gaussian randomi vector with covariance X,,.
It is possible that X, may depend on the segment 7 in
which the vector vi lies.

The rationale behind (5) is that we expect the rate
at which the observed vectors, yx, move through the
vector space in the direction of the mean path to be
approximately the same as the rate at which the uz
vectors move along the mean path. This implies that
on average zy and zg_; are parallel, so that zxz_1 and
the mean of zj are related by a scalar.

To model the movement of the uy vectors, we first
define the variable ¢ to be the rate at which these
vectors move along the mean path. That is,

Zy = Yk — Ug

di = dg—1+ ck-1. (6)
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Further, we assume that ¢; is a correlated Gaussian
random variable, with a non-zero mean value y,. We
also assume that the correlation in ¢; can be described
by defining
€k = Ck — fhe (7
and writing
(8)
where h is a scalar between 0 and 1, and f; is an un-
correlated Gaussian random variable with variance o7y.
1t is useful to put the model described by (1)-(8) in
a standard state space form. To do this, we define the

system state as
d
XE = [ ex ] ’ (9)
from which (6)-(8) gives the state transition equation,

-3 15) ),

In terms of the state vector, y; can be represented by

er = heg—1+ fr-1,

11
0 A

dy
ex

0
T

He
0

de+1
€k+1

vi=[8 0] [ f: ]4—(% —GB)+zr, (11

where 0 is a column vector whose elements are all zero.

Note that if we regard y; as the output of the sys-
tem, then z; in (11) can be regarded as measurement
noise. However because z; is a colored noise sequence,
such a formulation would not be directly amenable to
state estimation by Kalman filtering. To overcome this,
a system with white observation noise can be produced
using the method of measurement differencing [3]. To
do this we define

Ny = Yi+1 —9Yk
= Hxp +pefi + (1 — 9)(v — G:Bs) + vi,(12)
where
H=[ 8 0][(1) H—g[ﬁf 0]. (13

(12) can be regarded as the output equation since vy, is
white.

3. PARAMETER ESTIMATION

In order to be able to use the model to estimate the
likelihood of an observation sequence, it is necessary to
first estimate the parameters of the model from a large
number of reference utterances of each acoustic unit of
interest. The vectors, ¥o,71,...7p can be estimated
as follows. For each reference sequence, we measure
the total Euclidean distance along the path traced out
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by the sequence from one vector to another. Then we
locate the P + 1 points on each path that divide the
trajectory into P equal length segments. Finally, we
average the points corresponding to each breakpoint to
produce the required estimates.

The remaining parameters, g, h, g, oy and X,
can be estimated using the Expectation Maximization
(EM) algorithm. Denoting by © the set of unknown pa-
rameters, we seek the values that maximize p(Y | ©),
where Y is now the collection of all reference sequences.
Using the EM algorithm [4], this is achieved by itera-
tively maximizing

Q(0,0) = E{logp(YE | ©) | Y6} (14)

with respect to ©, where E represents the collection of
sequences of values of ej corresponding to Y, and 6
is an initial estimate of ©. Note that a sequence of e
values contains all the necessary information about the
corresponding state vector sequence.

In a manner similar to that presented in {2], we
proceed by maximizing logp(YE | ©) and then take
the expected value of the result. Because v and fi are
assumed to be Gaussian, the objective function can be
written as

J = [logp(Y | E©)+logn(E | )]
= 13 (gl + (ve — 5B (e - 500}
k
— % zk: {logo? + (ex — é)*/o}}
+ constant terms, (15)
where
V& = Bide + (vi — GiBi) + 2z, (16)

er = heg-1, 17

and the summation in (15) extends over all frames of
all reference sequences.

Setting to zero the derivatives of J with respect to
the unknown parameters produces expressions that in-
volve the quantities e, e2, exex—1, di, dz, and dpdi_1.
Updating the unknown parameters using the EM al-
gorithm involves taking the expected values of these
quantities, and these can be obtained using the Kalman
smoothing algorithm as discussed in [2] and [5]. How-
ever it is important that the Kalman smoother be ap-
plied to the signal ny, rather than y, in order to satisfy
the assumption of white observation noise.

Note that in the smoothing process it is necessary
to make use of initial values of X, and o2 which depend
on which straight line segment the vector uy is located
in. Although the true position of this vector is not

known, we use the position estimated by the Kalman
smoother to determine which of these variance values
to use for each frame.

4. DISCUSSION

The continuous mean path model does not permit the
true value of p(Y{ | W) to be easily calculated. How-
ever the joint likelihood of the observation sequence
and the most likely mean path can be obtained as is
often used in HMMSs. The most likely mean path for a
particlar observation sequence is simply that obtained
from the Kalman smoother. The log of the required
likelihood can then be computed from (15).

The model presented here offers a number of at-
tractive features. Unlike the HMM and the SLSM
it provides an effective means of describing correla-
tion between adjacent feature vectors, while requiring
a much smaller state vector than the SLSM. Two alter-
native ways of representing interframe correlation are
the stochastic segment model [6] and the linear predic-
tive HMM [7]. The stochastic segment model treats
a complete segment as a multivariate Gaussian ran-
dom variable characterised by a sequence of mean vec-
tors and a very large covariance matrix. However the
very large number of elements in the covariance matrix
make training this model very difficult. In compari-
son with this approach, the model presented here has
a very much smaller number of parameters.

The mode! presented here has similarities to the lin-
ear predictive HMM, but differs in the use of a contin-
uous state vector. In addition, in the linear predictive
HMM, interframe correlation is represented by assum-
ing that the observation vectors are the output of a
vector autoregressive system. In contrast in the model
presented here, it is the difference between the observa-
tion vectors and the corresponding points on the mean
path that are the output of an autoregressive system.

This paper has described the mathematical struc-
ture of the model based on a continuous mean path,
and a method for estimating its parameters. It is hoped
that the model will provide a tool for further investiga-
tions aimed at obtaining a better understanding of the
nature of speech vector trajectories, with the ultimate
goal of developing improved recognition techniques.
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