
 
 
General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright 
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 

 You may not further distribute the material or use it for any profit-making activity or commercial gain 

 You may freely distribute the URL identifying the publication in the public portal 
 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 
  
 

   

 

 

Downloaded from orbit.dtu.dk on: May 01, 2024

Properties of predictor based on relative neighborhood graph localized FIR filters

Sørensen, John Aasted

Published in:
Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing

Link to article, DOI:
10.1109/ICASSP.1995.479713

Publication date:
1995

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Sørensen, J. A. (1995). Properties of predictor based on relative neighborhood graph localized FIR filters. In
Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (Vol. Volume 5,
pp. 3391-3394). IEEE. https://doi.org/10.1109/ICASSP.1995.479713

https://doi.org/10.1109/ICASSP.1995.479713
https://orbit.dtu.dk/en/publications/9088a945-d88f-417e-9777-d83329defc96
https://doi.org/10.1109/ICASSP.1995.479713


PROPERTIES OF PREDICTOR BASED ON RELATIVE NEIGHBORHOOD 
GRAPH LOCALIZED FIR FILTERS. 

John Aasted Sarensen 

Electronics Institute, Build. 349, Technical University of Denmark, 2800 Lyngby, Denmark 

ABSTRACT 
A time signal prediction algorithm based on Relative 
Neighborhood Graph (RNG) localized FIR filters is de- 
fined. The RNG connects two nodes, of input space 
dimension D, if their lune does not contain any ot- 
her node:. The FIR filters associated with the nodes, 
are used for local approximation of the training vec- 
tors belonging to the lunes formed by the nodes. The 
predictor training is carried out by iteration through 
3 stages: Initialization of the RNG of the training sig- 
nal by vector quantization, LS estimation of the FIR 
filters localized in the input space by RNG nodes and 
adaptation of the RNG nodes by equalizing the LS ap- 
proximation error among the lunes formed by the nodes 
of the RNG. 
The training properties of the predictor is exemplified 
on a burst signal and characterized by the normalized 
mean sqpare error (NMSE) and the mean valence of 
the RNG nodes through the adaptation. 

1. Introduction. 
A time signal predictor based on the Relative Neigh- 
borhoodl Graph (RNG), [l] used for localizing finite 
impulse response (FIR) filters in the input space of di- 
mension D of a training signal, is proposed. 
The predictor is trained during 3 stages: 

Stage 11: Initialize the RNG which quantize the input 
space of the training signal. 

Stage 2: For fixed RNG, estimate the localized FIR 
filters, associated the nodes of the RNG. 

Stage 3: If the prediction error of the training signal 
is sufficiently low then terminate training else 
adapt the RNG to the training signal and conti- 
nue from Stage 2. 

It is assumed that a training signal zn, n = 1, . . . , N 
and a dimension D of the input space is given. This 
defines the input signal vector xz = (zn,. . . , z , - D + I )  
and an augmented input vector zz = (x:, 1). From 
this, the training signal data matrix becomes X = 
[Xl, . . ., XNI. 

2. The Relative Neighborhood Graph. 
The RNG of the column vectors of the matrix P = 
[PI, .  . . , p ~ ]  where pT = ( p l , i , .  . . , p ~ , i )  associate a 
node number i to the column vector number i .  
A pair of RNG nodes i and j are connected, if the lune 
Ai,, of the corresponding vectors pi and pj does not 
contain any other column vector from P. 

If the sphere with center in x and radius T is denoted 

where d(x, y) is the distance between x and y, 
then the lune Ai,, of pi and pj is determined by . 

Ai,, = N ~ i i  d(pii Pi)) n B ( P ~ ,  d(pi ,  pi)) (2) 

or by 

The RNG incidence matrix C = [Ci,j], i ,  j = 1 , .  . . , RI 
where the element Ci,, = 1 if the RNG nodes i and j 
are connected, otherwise Ci,j = 0. The R column sums 
of C represents the valences of the respective nodes of 
the RNG. A 3-node RNG with D = 2, P = [pl,pzl p3], 
valences 1 , 2  and 1 and the Euclidean distance measure, 
is exemplified in Fig. 1. Here x, belongs to the lune 
of node 1 and 2 and xi to the lune of node 2 and 3, 
furthermore xi belongs to the intersection of the two 
lunes. The x k  does not belong to any lune. 

3. Training Algorithm. 
The predictor training algorithm, [4] requires the fol- 
lowing 3 stages: 
Stage 1: Initialization of RNG. 

[PI C] = RNG(X) .  (4) 
The method of initializating the RNG of XI such that 
all column vectors of X belongs to at least one lune 
of the RNG is as follows: Select randomly a few seed 
vectors from X and use them as RNG nodes. Then 
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associate the vectors of X not member of any lune, to 
their nearest node. Now for each node, select among 
the associated vectors, that vector with the largest di- 
stance from that node and include it as a new RNG 
node. Generate the new RNG and repeat this initiali- 
zation operation, until all columns of X are members 
of at least one RNG lune. 

Stage 2: Estimation of Local Filters. 
To each node i of the RNG is associated a FIR filter 
WT = ( w l , i ,  wz,;,. . ., WD,;,  W D + I , ~ ) ,  where the element 
w D + l , i  is the bias term of the filter. All filters are then 
represented by 

w =  [Wl,  ..., WR]. (5) 
The basis of W estimation, is the association of each 
training vector to the nodes of the RNG. Let the asso- 
ciation matrix 

A = [al, . . . , a ~ ]  (6) 
where a: = ( u ~ , ~ ,  . . . , u R , ~ )  and U;,, is the fraction of 
times the RNG node i takes part in forming lunes to 
which x, belongs. From this the 
Depending on how the input signal to the local filters 
are generated, 2 different local filters W and V can be 
defined: 

R 
U;,, = 1. 

In the first filter, x, is projected directly on the local 
filters W, which leads to the predictor: 

From this is obtained 

which leads to 
x n + l =  W,Tzn  (9) 

where W, are the time varying predictor coefficients. 

In the second filter, x, - p;, i = 1,. . ., R are pro- 
jected on the local filters V = [VI, . . . , VR], where v? = 
[%,j ,  . . . , "JD+l,j]. Using y n  = [Yl ,n , .  . . , YR,n], where 
y:, = [x: - pT, 11 leads to the predictor: 

R 

~ + i  = a i , n v T y i , n .  (10) 
i = l  

Rewriting leads to 

kn+l = t ruce(VTY,diag(a , ) )  (11) 

and 

= trace(diag(a,)VTYn) = truce(V:Y,) (12) 

where V, are the time varying predictor coefficients. 

For a k e d  RNG the LS-estimator of W becomes: 

R w = r  (13) 

where R = [RJ], i , j  = 1,. . . , R, wT = [wT, . . . , wg] 
and rT = [r?, . . . , rg]. 
The matrices of Eq. 13 are found as follows: 

N 

n=l 

which is the correlation matrix between the augmented 
input signal z,-l, weighted by the fraction of times 
RNG node i and j takes part in forming lunes to which 
zn - 1 belongs. 

n=l 

which is the correlation vector between 2, being pre- 
dicted, and the input signal z,-1 weighted by the fraction 
of times, the RNG node i takes part i forming the lunes 
to which z,-1 belongs. 

Using Eq. 
estimator of V becomes: 

13 in the case of a fixed RNG, the LS- 

N 

n = l  

which is the weighted correlation matrix between the 
augmented input signals yj,n-l of RNG filter number 
i and of node j. 
The right hand side becomes 

N 

(17) 
n=l 

which is the weighted correlation vector between x, 
being predicted, and the input signal yi,,-l of filter 
number i .  

Stage 3: Adaptation of the RNG to the training 
signal. 
The training signal squared error matrix E = [Ei,j], 
a', j = 1,. . . , R of the RNG is then determined as fol- 
lows: Let e,  = 2, - x,, n = 1 , .  . . , N be the training 
signal estimation error at time n. Then the squared 
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error e: is divided equally among the lunes from which 
in is generated, [5]. If the RNG node i and node j 
forms a lune ( C ~ J  = l ) ,  then Ei,,  is the sum of squared 
errors of the training signal associated that lune. 
The adaptation rule of the nodes 
P = [PI , .  . . , p i , .  . . ,PE] then becomes: 
If the valence of node i is > 1 then adapt pi in a di- 
rection such that the lune with the minimum squared 
error, which pi takes part in forming, is enlarged in 
size, and the lunes with larger squared errors are de- 
creased in size. This leads to the following adaptation 
of P: 

P n e w  = Pold  + A p  

AP = [&I, .  . . , Api, .. . , A ~ R ]  

(18) 

(19) 
where 

If the above minimum squared error is denoted minEi 
then the adaptation of node i becomes: 

where p is the adaptation constant. 

4. Investigation of the training 

The RNG training is carried out using the predictor (7) 
in the caBe of a burst signal generated from the Subba 
Rao model, [2], [4]. The signal is shown in Fig. 2. In 
Fig. 3 and Fig. 5 are shown the N M S E  depending 
of the number of iterations through the training signal. 
In Fig. 4 and Fig. 6 the corresponding mean valence 
of the RNG nodes are shown. 
The initializing parameters of the training are shown 
in the following table: 

algorithm properties. 

Fig. 5 and Fig. 6 U 

From the training experiments it is seen that the two 
cases obtain approximately the same N M S E  values; 
but the mean R N G  valence for D = 2 becomes larger 
than the mean R N G  valence for D = 3, to compensate 
the reduced local approximation capability in the case 
of D = ‘2. 
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Figure 1: Example 3-node RNG. 
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Figure 2: Subba Rao training signal. 
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Figure 3: NMSE for training on Subba Rao with D=2. 
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Figure 5: NMSE for training on Subba Rao with D=3. 
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Figure 4: Mean RNG valence for D=2. Figure 6: Mean RNG valence for D=3. 
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