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1. INTRODUCTION A N D  ABSTRACT 

Blind separation and blind deconvolution are related 
problems in unsupervzsed learnzng. In blind separation 
[7], illustrated in Fig.la, aset  ofsources, s l ( t ) ,  . . . , sN(t),  
(different people speaking, music etc) are mixed to- 
gether linearly by a matrixa. We do not know anything 
about the sources, or the mixing process. All we receive 
are the N superpositions of them, xl(t) ,  . . . , xN(t).  The 
task is to recover the original sources by finding a square 
matrix W which is a permutation of the inverse of the 
unknown matrix, A.  The problem has also been called 
the 'cocktail-party' problem. 

In blind deconvolution [6], illustrated in Fig.lb, an 
unknown signal s(t) is convolved with an unknown tapped 
delay-line filter, a l ,  . . . , aL, giving a corrupted signal 
x(t) = a(t) * s( t )  where a(t) is the impulse response of 
the filter. The task is to  recover s(t)  by convolving x(t) 
with a learnt filter wl,  . . . , WL which reverses the effect 
of the filter a .  

Both problems are difficult. In the case of blind 
separation, the approach is generally to  assume that 
the sources, s ,  are statistically independent and non- 
gaussian, then the problem of learning W becomes the 
problem of independent component analysis (ICA), [5]. 
In the case of blind deconvolution, the approach is of- 
ten to assume that the original signal s(t) consisted of 
independent symbols (a  white process), then deconvo- 
lution becomes the problem of removing from x(t) any 
statistical dependencies across time, introduced by the 
corrupting filter a.  This process is sometimes called 
the whitenzng of x(t). 

Both ICA and whitening require higher-order statis- 
tics. Only for gaussian signals is second-order decorre- 
lation sufficient. Such higher-order statistics can come 
from the explicit estimation of cumulants and polyspec- 
tra [5, 61 or from the usage of static non-linearities 
in the stochastic weight update algorithm [3, 71. The 
Taylor series expansions of these non-linearities pro- 
duce higher-order moments. The particular higher- 
order moments produced are not rigorously related to 
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Figure 1: (a) Blind separation of 5 mixed signals. (b) 
Blind deconvolution of a single signal. 

those required to exactly calculate statistical dependen- 
cies, but nonetheless, these techniques have met with 
some success. 

In this contribution, static non-linearities are used 
in combination with an information-theoretic objective 
function, making the approach more rigorous than pre- 
vious ones. We derive a new algorithm and with it 
perform nearly perfect separation of up to  10 digitally 
mixed human speakers, better performance than any 
previous algorithms for blind separation. When used 
for deconvolution, the technique automatically cancels 
echoes and reverberations and reverses the effects of 
low-pass filtering. 

2. ENTROPY MAXIMISATION. 

The problem of reversing the convolution or static mix- 
ing of a signal or signals, s ,  is construed here as a max- 
imisation of the entropy H(y)  of a non-linearly trans- 
formed signal y = g(x) where g is some function. Con- 
sider the joint entropy of two components of y (either 
two output channels in the case of separation, or two 
time points in the case of deconvolution): 

Maximising this joint entropy consists of maximising 
the individual entropies while minimising the mutual 



Figure 2: (a) Optimal information flow through a 
squashing function (Schraudolph et a1 1992). Slope and 
threshold may be adjusted to maximise the entropy of 
fy  (y). (b) fy (y) is plotted for different values of the 
weight w. The optimal weight, wOpl transmits most 
information. 

information, I(yl, y2), shared between the two. When 
this latter quantity is zero, the two variables are sta- 
tistically independent. Both ICA and the 'whitening' 
approach to deconvolution are examples of minimising 
I(yl ,  y2) for all pairs yl and y2. This process is also 
known as redundancy reduction (Barlow 1989). 

By maximising H(y) ,  we will, in general, reduce 
I(y) .  However there are cases where the absolute min- 
imum will not be reached, because of interference from 
the other terms, H.(yi). When g is the hyperbolic tan- 
gent (or logistic) non-linearity, and the sources have 
super-gaussian (kurtosis > 3) distributions, we have 
not found this to be a problem. However, on data other 
than speech, it may well pose problems. 

We describe how to maximise H(y) ,  firstly for blind 
separation. 

3. BLIND SEPARATION. 

When g is a linear function (ie: yi = xy=l w i j q ) ,  
H(y) can be increased merely by increasing the vari- 
ances of the outputs without bound. Consider, how- 
ever, the case when g consists of a linear combination 
followed by a non-linear squashing function, such as 

where wo is a vector of 'bias' weights. In this case, too 
large a weight matrix W will lead to saturation of the 
outputs a t  5 1 .  Too small a weight matrix will lead to 
outputs clustered around zero. Both extremes yield a 
low entropy probability density function (pdf) for y .  
In other words, 

will be small. Fig.2a shows the highest entropy pdf of 
a single squashed output y for a single input x and a 

single weight w. In Fig.2b, a family of such pdfs is 
shown for different values of w. To find the optimal 
w's (those which maxinlise H ( y ) ) ,  we use the following 
equation, relating the multivariate density functions of 
x and y (Papoulis 1984): 

f x  (x) 
fy (y )  = - I J I  

where IJI is the absolute value of the Jacobian of the 
transformation. The Jacobian is the determinant of the 
matrix of partial derivatives, [dyi/axjlij. For a linear 
transformation followed by a non-linear function, 

where d is the slope of the ith output function. For 
(2), d = 1 - y:. Substituting (4) into (3) gives: 

H(y)  = E[ln lJl] + H(x). (6) 

To maximise this by changing W, we need only concen- 
trate on the first term, which can be maximised using 
a stochastic gradient ascent rule, utilising (5): 

This yields the simple rules for W and wo: 

The Awo rule centres the tanh function on the input 
data x. The first term in the A W  rule forces the out- 
puts y to represent different components of the inputs 
(because any degenerate W will be an unstable point 
of the learning dynamics). The second term (an anti- 
Hebbian term) stops saturation. These opposing forces 
are exactly balanced to make the outputs find indepen- 
dent components in the inputs, and adjust their weight 
vectors to achieve maximum entropy along each com- 
ponent [see (I)]. Because y is a non-linear function of 
the inputs, the anti-Hebbian term in (8) supplies the 
higher-order cross-moments necessary to find the inde- 
pendent components (see discussion in [4, 5, 21). The 
difference with the Herault-Jutten rule [7], is that the 
particular cross-moments used are well-motivated by 
our information-theoretic objective. 

4. BLIND DECONVOLUTION. 

The same reasoning as above can be applied to the 
blind deconvolution problem. If we apply a static non- 
linear function g to produce y(t) in Figure l(b),  then we 



can write the system either as a cascade of convolutions 
or as a matrix equation: 

where y ,  x and s are vectors corresponding to time se-- 
ries, and A and W are matrices. When the filtering is 
causal, A and W will be lower triangular (Toeplitz). 
Because A-' will also be causal, we can invert the ef- 
fect of A with W.  We can apply the same strategy as 
with blind separation, namely to  maximise the entropy 
of the output vector y .  Analogously to  (7), this corre- 
sponds to  maximising, by adjusting w( t ) ,  the log of the 
absolute value of the Jacobian of the transformation 
from x to  y: 

Here we sum over a time series of length M ,  and yl(t) 
is the slope of the squashing function, g, with respect 
to its input a t  time t .  The  size of M is chosen so as to  
be larger than the length of the filter w(t) but smaller 
than the length of the whole time series so that  we have 
an ensemble of time series and may justify the maximi- 
sation of the entropy of the random vector y. Because 
W is lower-triangular, its determinant is simply the 
product of its diagonal values, which amounts to  w f .  
This leads to  the following simple1 rules for changing 
weights, when g = tanh: 

Here, WL is the 'leading' weight, and the w ~ - j ,  where 
j > 0, are tapp-ed delay lines linking xt-j t o  yt. In 
these rules, only the leading weight adjusts with a weight- 
normalisation term, while the delay weights attempt to  
simply decorrelate the past input from the present out- 
put. This latter process is what enables this technique 
to  reverse the effect of low-pass filtering, and to  remove 
echoes and reverberations from time series. 

5.  RESULTS. 

Results were obtained using 7 second speech segments 
from various speakers. All signals were sampled a t  

'The corresponding rules for non-causal filters are substan- 
tially more complex. 

Figure 3: A 5 x 5 information maximisation network 
performed blind separation, learning the unmixing ma- 
trix w. The  outputs, u = g-l (y) ,  are shown here 
unsquashed by the sigmoid. They can be visually 
matched to  their corresponding sources, s ,  even though 
their order was different and some (for example u l )  
were recovered as negative (upside down). 

8kHz from the output of the auxiliary microphone of 
a Sparc-10 workstation, and the waveforms were nor- 
malised t o  lie roughly between -3 and 3. Training of 
the weights was done with a 'small-batch' variant of 
stochastic gradient ascent: in which weights were ad- 
justed every 100 or so presentations of time points. To 
ensure stationarity in the training sequence, the time 
index was permuted before training. An important fac- 
tor was the choice of learning rates-the proportional- 
ity constants in (8)-(9) and (13)-(14). A typical value 
was 0.001. It was helpful to  reduce the learning rate 
during learning for convergence to  good solutions. 

5.1. Blind separation resu l t s .  

The architecture in Fig . la  and the algorithm in (8)- 
(9) was sufficient t o  perform blind separation. A ran- 
dom mixing matrix, A, was generated with values usu- 
ally uniformly distributed between -1 and 1. This was 
used to  make the mixed time series, x from the origi- 
nal sources, s .  The  unmixing matrix, W, and the bias 
vector wo were then trained. 

For two sources, convergence is normally achieved 
in less than one pass through tKe data .  An example 
run with five sources is shown in Fig.3. T h e  mixtures, 
x, formed an incomprehensible babble. This unmixed 
solution was reached after around lo6 time points were 
presented, equivalent to  about 20 passes through the 



complete time ~ e r i e s . ~  Any residual interference in WX 
was  inaudible, and the matrix WA was, on inspection, 
a permutation and rescaling of the identity matrix. In 
our most ambitious attempt, ten sources (six speakers, 
rock music, raucous laughter, a gong and the Hallelujah 
chorus) were successfully separated, though this took 
many hours. 

In all our attempts at blind separation, the algo- 
rithm has only failed when more than one of the sources 
were gaussian white noise or when the mixing matrix, 
A,  was almost singular, both pathological conditions 
for blind separation algorithms. 
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Figure 4: Blind deconvolution results. (a, e, i) Filters 
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used to  convolve speech signals, (b, f, j) their inverses, 
(c, g, k) deconvolving filters learnt by the algorithm, 
and (d, h ,  1) convolution of the convolving and decon- 
volving filters. See text for further explanation. 
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5.2. Blind deconvolution results. 

Figure 4 shows various filters, their ideal inverses and 
the filters learnt by iteration of (13) and (14) using 
convolved speech signals. When filter taps were ad- 
jacent as in Fig.4a-d, the system learnt a whitening 
filter, Fig.4c, which flattened the amplitude spectrum 
up to  the Nyquist limit of 4kHz. Otherwise, when 
the taps were spaced further apart, and the speech 
was convolved with a finite filter, Fig.4e-h, or a trun- 
cated infinite filter, Fig.4i-1, good approximations to  
the inverse filters were learnt, without interference from 
'whitening' effects. The learning was sensitive enough 

2This took on the order of 5 minutes on a Sparc-10, using 
efficient vectorised Matlab @ code. 
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to replicate, in Fig.4k, the correction term on the left 
of Fig.4j1 caused by truncation of t,he exponentially de- 
caying echoes in Fig.4i. 

We have also combined the blind separation and 
deconvolution techniques, and performed simultaneous 
unmixing and deconvolution. More details appear in 
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