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Tree-Structured Nonlinear
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Abstract—n this paper, we develop a regression tree approach
to identification and prediction of signals that evolve according
to an unknown nonlinear state space model. In this approach, a
tree is recursively constructed that partitions the p-dimensional
state space into a collection of piecewise homogeneous region
utilizing a 27-ary splitting rule with an entropy-based node
impurity criterion. On this partition, the joint density of the
state is approximately piecewise constant, leading to a nonlinear
predictor that nearly attains minimum mean square error. This

process decomposition is closely related to a generalized version of

the thresholded AR signal model (ART), which we call piecewise
constant AR (PCAR). We illustrate the method for two cases
where classical linear prediction is ineffective: a chaotic “double-
scroll” signal measured at the output of a Chua-type electronic
circuit and a second-order ART model. We show that the predic-
tion errors are comparable with the nearest neighbor approach
to nonlinear prediction but with greatly reduced complexity.

Index Terms—Chaotic signal analysis, nonlinear and nonpara-
metric modeling and prediction, piecewise constant AR models,
recursive partitioning, regression trees.

. INTRODUCTION

N

a scalar or vector-valued nonlinear response variable. Once a
cost-complexity metric known as a deviance criterion in the
book by Breimaret al. on classification and regression trees

{CART) [9] is specified, the tree can be recursively grown to

perform particular tasks such as nonlinear regression, nonlinear
prediction, and clustering [9], [13], [55], [66]. The tree-
based approach has several attractive features in the context
of nonlinear signal prediction. Unlike maximum likelihood
approaches, no parametric model is required; however, if one
is available, it can easily be incorporated into the tree structure
as a constraint. Unlike approaches based on moments, since
the tree-based model is based entirely on joint histograms, all
computed statistics are bounded and stable, even in the case
of heavy-tailed densities. Unlike most methods, e.g., nearest
neighbor, maximum likelihood, kernel density estimation, and
spline interpolation, since the tree is constructed from rank
order statistics, its performance is invariant to monotonic non-
linear transformations of the predictor variables. Furthermore,
as different branches of the tree are grown independently, the
tree can easily be updated as new data becomes available.

ONLINEAR signal prediction is an interesting and chal- Our tree-based prediction algorithm has been implemented
lenging problem, especially in applications where thé@ Matlab' using a k-d tree growing procedure that is similar,

signal exhibits unstable or chaotic behavior [30], [35], [61put not identical, to that of the S-plus functiairee( ), as
A variety of approaches to modeling nonlinear dynamicéescribed by Clarke and Pregibon [13]. Important features and
systems and predicting nonlinear signals from a sequerf@htributions of this work are the following:

of NV time samples have been proposed [12], [64] including 1)
hidden Markov models (HMM’s) [24], [25], nearest neighbor

prediction [20], [21], spline interpolation [39], [62], radial

The Takens [19] time delay embedding method is used
to construct a discrete-time phase trajectory, i.e., a
temporally evolving vector state, for the signal. This

basis functions [10], and neural networks [32], [33]. This paper
presents a stable low-complexity tree-structured approach to
nonlinear modeling and prediction of signals arising from
nonlinear dynamical systems. 2)
Tree-based regression models were first introduced as a
nonparametric exploratory data analysis technique for non-
additive statistical models by Sondquist and Morgan [58].
The regression-tree model represents the data in a hierarchical
structure where the leaves of the tree induce a nonuniform par-
tition of the data space over which a piecewise homogeneous
statistical model can be defined. Each leaf can be labeled by
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trajectory is then input to the tree-growing procedure
that attempts to partition the phase space into piecewise
homogeneous regions.

The partitioning is accomplished by adding or deleting
branches (nodes) of the tree according to a maximum
entropy homogenization principle. We test that the joint
probability density function (j.p.d.f.) is approximately
uniform within any node (parent cell) by comparing the
conditional entropy of the data points in the candidate
partition of the node (children cells) to the maximum
achievable conditional entropy in that partition. Cross-
entropy criteria for node splitting have been used in the
past, e.g., the Kullback-Liebler (KL) “node impurity”
measure goes back to Breimahal [9] and has been
proposed as a splitting criterion for tree-structured vector
quantization (TSVQ) in Perlmutteet al [47]. More
recently, Zhang [66] proposed an entropy criterion for

1The Matlab code is available by request.
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4)

5)
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multivariate binomial classification trees that is closer in piecewise constant over the generated partition. This
spirit to the method in this paper. Zhang found that the  bound can be interpreted as an asymptotic bound on the
use of the entropy criterion produces regression trees actual MSE of our regression tree under the assumption
that are more structurally stable, i.e., they exhibit less  that as the training set increases, the generated partition
variability as a function ofV, than those produced using converges a.s. to a nonrandom limiting partition. Many
the standard squared prediction error criterion. For the  authors have obtained conditions for asymptotic con-
nonlinear prediction application, which is the subject of vergence of tree-based classifiers and vector quantizers
this paper, we have observed similar advantages using [17], [45], [43], [44]. However, as this theory requires
the Pearson Chi-square test of region homogeneity in  strong conditions on the input data, e.g., independence,
place of the maximum entropy criterion of Zhang. strong mixing, or stationarity, we do not pursue issues
Similarly to Clarke and Pregibon [13], a median-based  of asymptotic convergence in this paper.

splitting rule is used to create splits of a parent cell along 7) It is shown by both simulations and experiments with
orthogonal hyperplanes, which is referred to as a median  real data that the nonlinear prediction error performance
perpendicular splitting tree in the book by Devrateal. of our regression tree is comparable with that of the
[17]. However, unlike previous methods that split only popular but more computationally intensive nonparamet-
along the coordinate exhibiting the most spread, here, the ric nearest neighbor prediction method introduced by
median splitting rule is applied simultaneously to each Farmer [20], [21]. A similar performance/computation
of thep coordinates of the phase space vector producing  advantage of our regression tree method has been estab-
2?7 subcells. This has the advantage of producing denser lished by Badelet al [10] relative to predictors based
partitions per node of the tree, and, as theary on radial basis functions (RBF'’s).

split is balanced only in the case of uniform data, the The outline of the paper is as follows. In Section Il, some
cell probabilities in the split can be used directly fobackground on nonlinear dynamical models and their phase
homogeneity testing of the parent cell. space representation is given. Section Ill continues with back-
In order to reduce the complexity of the tree, a locground on regression tree prediction, and the basic tree grow-
singular value decomposition (SVD) orthogonalizatioing algorithm is described. In Section IV, the local SVD
of the phase space data is performed prior to splittingthogonalization method is described, and the equivalence
each node. This procedure, which can be viewed a8our SVD-based predictor to ART is established. Finally, in
applying a sequence of local coordinate transformatiorSection V, experiments and simulations are presented.
produces a partition of the phase space into polygons

whose edges are defined by nonorthogonal hyperplanes. Il. PROBLEM STATEMENT

This is similar to the principal component splitting It will be implicitly assumed that all random processes are

method that has been proposed for vector quantizatig ; ; ; ;
: odic so that ensemble averages associated with the signal
of color images by Orchard and Bouman [46] and oth er ! verag ! WI 9

o . Na 0NN be consistently estimated from time averages over a single
nonorthogonal splitting rules for binary Class'f'cat'or?ealization.

trees [17]. However, for phase space dimengion?2,

our method .utilizes gll .components of the SVD a3 Nonlinear Modeling Context

contrasted with the principal component alone. . )

When applied to nonlinear signal prediction in phase A Very general class of nonlinear signal models can be
space, the SVD-based splitting rule yields a hierarchicﬁpta'”ed by making nonlinear modifications to the celebrated
signal model, which we call piecewise constant Afnear ARMA(p, q) model

(PCAR), which is a generalization of the nonlinear p 4

autoregressive threshold (ART) model called SETAR 2(n) =Y ax(n—i)+ Y bje(n — ) 1)

by Tong [61]. This thresholded AR model has been =1 3=0

proposed for many physical signals exhibiting stochagrheree(n) is a white Gaussian driving noise with variancg

tic resonance or bistable/multistable trajectories sughhd the coefficient§a;,i = 1,---,p} and {b,;,j = 1,---,q}

as ECG cardiac signals, EEG brain signals, turbulegte constants independent ©fn) or ¢,. Let

flow, economic time series, and the output of chaotic ®) _ T
dynamical systems (see [31] and [61] for examples). A~ Xn = [#(n—=1) a(n—-2) - a(n—k)

set of coefficients of the ART model can be extractegind

from a matrix obtained as the product of the local SVD & ,

coordinate transformation matrices. A causal and stable Ef) =len=1) en=2) - ek

model can then be obtained by Cholesky factorizatidre vectors constructed froi and &’ past values ofr ande,

of this matrix. respectively. Nonlinear ARM#£&, ¢) models can be obtained
We give a simple upper bound on the difference betweén letting the coefficients (1) be functions of the ARMA state
the mean squared error of a fixed regression tree prediariables

tor and the minimum attainable mean squared prediction {ai=1,---,p} :A(X(k)7E(k’))

error. The bound establishes that a fixed regression tree ) (’;) (’;,)

predictor attains the optimal MSE when the j.p.d.f. is 5,0 =0, q) =BX,7, E7)
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where A and B are functions ofR*™* into R? and R?, p positive integer known as the (estimated) embed-
respectively. ding dimension;

This formulation has been used by Tong [61] and others; positive real numbers known as the embedding
to generate a wide class of nonlinear stochastic models. For delays.

example, we easily obtain second-order Volterra mode[s or bi-State-space reconstruction was first proposed by Whitney
linear models by choosing = [1,0, ---,0]7, B(X®, E¢)) [65], who stated conditions for identifiability of the continuous

=B". Eﬁl""), and A as the endomorphism time state trajectory in the absence of observation noise.
N k, T kYT These conditions were formally proved and extended by
AXD EF ) = xP EF)T Takens for the case of nonlinear dynamical systems exhibiting

) o chaotic behavior [11], [19], [59]. In practice, only a finite
whereA is a constant matrix with rows and(k-+£’) columns.  nymber of (generally) equispaced samples are available, and
Similarly, by exchanging the definitions fod and B in  pe embedding delay is set tg = k7, 7 = mT,, wherem is
the preceding equations, we obtain models for which thg, integer value. In this finite case, the value used-fisrvery
variance of the driving noise is a function of past values:of jmportant. Insufficiently large values lead to strong correlation
These latter models are called heteroscedastic models andm"rﬁpparent linear dependences between the coordinates. On
common in econometrics and other fields (see [18] and [31{je other hand, overly large delaysexcessively decorrelate
Moreover, we are not restricted to linear operators f@he components ak (n) so that the dynamical structure is lost
A and B. Piecewise constant state-dependent values for tﬂe ch. 3], [22], [23], [35, ch. 9], [40].
matrix A (B being kept constant) lead to a class of nonlinear Nymerous authors have addressed the problem of finding
model that is known as “piecewise ARMA” and referred t@nhe pest embedding parametersind p (see, e.g., [22], [23],
as a generalized threshold autoregressive (TAR) or a TARM#fhq [40] for detailed discussion). Selection of the dimengion
model [60]. As TARMA model coefficients depend on thgequires investigation of the effective dimension of the space
previous statesX'!), they belong to the general class okpanned by the estimated residuals. Overestimatiprengates
state-dependant models developed by Priestley [S1]. TARM#gte reconstructions with excessive variance, whereas under-
models arise in areas of time series analysis including biologtimation creates overly smooth (biased) reconstructions. A
oceanography, and hydrology. For more detailed discussigiyely used method (see [2] or [35] for a discussion on this
of nonlinear models and their range of application, see [3Q}pic) we will use for estimating is the following: If p > p is

[52], and [61]. _ the true state dimension, then the estimated trajectories will lie
In what follows, the observed data will be represented by, 5 lower dimensional manifold iR?. This occurrence can
the sampled dynamical equation be detected by testing a trajectory-dependent dimensionality

B criterion, e.g., the behavior of the algebraic dimension of the
S(n+1) =F(S5(n)) +e(n) state trajectory vectors, gsis increased [38]. We will adopt
z(n+1) =G(S(n+1)) +n(n) (2)  here the method of Fraser [22] for selectionofr equals
the time at which the first zero of the autocorrelation function

whereS(n) stands for the state vector at timgand/" andG s ie.r — min{6 > 0: C(§) = 0}, where

are (in general) unknown continuous functions frgfinto R?

andR¢?, respectivelye(rn) is an i.i.d. state noise, angn) is an N
i.i.d. observation noise. Far> 1, the observed quantity(n) O6) = 1 Za:(k)a:(k +6).
is a multichannel measurement. We focusgos 1 here. Note N -1

that the well-known linear scalar AR process of orgamay
be represented within this framework by identifyiti{S(n))
= AS(n), where A is ap x p matrix in companion form, lll. GROWING THE TREE
G(S(TL + 1)) = E?S(TL + 1)’ E, = [1’0’ i 'aO]Ta 77(”) =0,

In this section, we discuss the construction of the tree-
and $(n) = [x(n). -, a(n —p + D"

structured predictor and give a bound on the mean squared
prediction error of any fixed tree for the case thiat= p.
B. State-Space Reconstruction Method As above, letX(n) = [z(n — 1),---,z(n — p)]” be a state
Any processz(n) obeying the pair of dynamical equationsvector of dimensiorp. A pth-order tree-structured predictor
(2) is specified by its state vectsn), which is known as the implements a regression functidifn) = g(X(n)), which is
state trajectoryevolving overR?, which is known as thetate Piecewise constant a¥(n) ranges over cells, in a partition
space The process of reconstruction of the state trajectofyrx} of R [13]. The most common tree-growing procedure
from real measurements is called state-space embedding. [Bbr[13], [66] for regression and classification tries to find the
continuous time measurementst), the reconstructed statepartition of the phase space such that the predictive density

trajectory is flz(n)|z(n—1), ---, z(n —p)) is approximately constant as
the predictor variables(n — 1), ---, z(n — p) vary over any
X(n)=[z(n) z(n—-71) - x(n—75_1)]" (3) of the partition cells. As is shown below, if the tree-growing
procedure does this sucessfully, the tree-based predigtor
where byz(n) we meanz(nZ}), where can attain mean squared error that is virtually identical to that

T, >0 sampling period; of the optimal predicto®[z(n)|z(n — 1), -, z(n — p)].
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A. Regression Tree as a Quantized Predictor XK 00K X

Let I, (X (n)) be the indicator of the partition ceil;, and R *" xx_?( x X

define the vector quantizer function Co ,
[ ‘ ! ’ Depth‘!’

Depth ‘0’<=> Root Node

L
QX (n) =) ulr (X(n))
k=1

Depth 2’

f— . .. T I I I I
Whe.re B = .[le’ ’Qkp] IS an _arbltrary . point mm“_' Fig. 1. Graphical depiction of the tree growing algorithm using separable
Typically, g, is taken as the centroid of regier,, but this v ary splitting rule. For > = 2 dimensional state space embedding, the

is immaterial in the following. Since the predictor functioriree is a quadtree. The root-node is split into four subcells, and the sample
(1) = g(X(n) is piecewise consiant, i is obvious thaflsbuton ofports s fourd fo e rorunior, Among e derved subset,
g(X(n)) = g(Q(X(n))), i.e., the tree-structured predictor canng is spiit further.

be implemented using only the quantized predictor variables

Q(X(n)). Therefore, given the partitiod;}, the optimal

tree-based predictor can be constructed from the multi

mensional histogram (the partition cell probabilities) as the Here, we describe the generic recursive procedure used for

&: Branch Spilitting and Stopping Rules

conditional mean of:(n), given the vectol(X (n)). growing the tree from training data. Lgtbe an estimate of
the phase space dimensignof the signal. Assume that at
B. A Bound on MSE of Tree-Structured Predictor iteration{ of the tree growing procedure, we have created a

It follows from Theorem 1 in the Appendix that if thePartition 1I' and consider the partition celt§, which we call

conditional densityf(z(n)|X(n)) is (Lipschitz) continuous the@th parent nodes at depthWe refine the partitioril’ by
of order  within all partition cells of the partitior{rs} of recursively splitting each partition cetf into 22 smaller cells,

R?, the mean squared errd#(z(n) — E[z(n)|Q(X(n))])?] Which are called children nodes of thita parent.

of the tree-structured predictor satisfies the bound To control the number of nodes of the tree, we test the
) residuals in each partition element bBf against a uniform
0 < E[(x(n) — Elz(n)|QX(n)])] distribution. If the test for uniformity fails in a particular cell,
— E[(z(n) — E[z(n)|X])?] that cell is split, an@? parent nodes at depth-1 are created.
<2max K, m2E[||X — Q°(X)|]?] (4) Otherwise, the cell is not split and is declared a terminal node.
. The set of terminal nodes are called the leaves of the tree. See
where Fig. 1 for a graphical illustration of the generic tree-growing
Q°(X(n)) minimum mean squared error quantizer oprocedure. The final tree specifies a set of leawves: - -,
{7} 7 partitioning the state-space together with the empirical
o upper bound on the mean squared valued bfstogram (cell occupancy ratg} = P(X € ;) = N, /N,
z(n) given X(n); where N, is the number of samplefsX (%)}, that fall into
K, Lipschitz constant characterizing the modulukeaf ;.
of continuity within 7. 1) Cell Uniformity Test: Here, we discuss the selection of

The upper bound in (4) is decreasing in the minimath the goodness-of-split criterion that is used to test uniformity.
power quantization erroE[||X(n) — Q°(X(n))||*] associ- As above, letX (k) denote the)-dimensional vector sampled at
ated with optimal vector quantization of the predictor varitime k75, where the reconstruction dimensigiis fixed. Many
ables. Bounds and asymptotic expressions exist for this quaiscriminants are available for testing uniformity, including
tity [29], [42], which can be used to render the upper bourt§olmogorov—Smirnov tests [37], rank-order statistical tests
(21) more explicit; however, this will not be explored here. [16], and scatter matrix tests [26]. Following Breimanal
Note that the upper bound in (4) is decreasinguinx; K., and Zhang [9], [66], we adopt an entropy-like criterion. How-
and equals zero wherf(x(n)|X(n)) is piecewise constantever, as contrasted to previous implementations [9], [66], this
in X(n), i.e., f(x(n)|X(n) = x) = X; f(x(n)|g,) I (x), criterion is implemented using simple Chi-square goodness-
whereg; € m; are arbitrary. Thus, in the case of a piecewisef-fit test of significance over the distribution of child cell
uniform conditional density, the optimal predictor ofn) probabilities.
given quantized dat&)(X(n)) is identical to the optimal For a partition{ry,---, 72} of a cell1l, let N, be the

nonlinear predictor given unquantized d&én), i.e., the tree- number of vectorsX(k), k = 1, ---, N, found in 7;. We
structured predictor attains the minimum possible predicti@ssume that the vectors falling)_into the cells are approximately
MSE. Note that for a general conditional density, bétf| X i.i.d. and thatV. , < =1, ---, 2P are approximately multino-

— @°(X)||*] and the total variationg K, } decrease as the mial distributed random variables with class probabilifigs=
sizes of the partition cell§n,}; decrease. Hence, the mea’(X(p) € #;| X (p) € II) = E[N,,|/N. These are reasonable
square prediction error can be seen from (4) to improve morassumptions when the volume of céll is small andz(n)
tonically as the conditional density(xz(n)|X(n)) becomes satisfies a long range decorrelation property (weak mixing), but
well approximated by the staircase functitw(n)|Q(X(n)) we do not pursue a proof of this here. The test of uniformity
over X(n) € RP. This forms the basis for tree-based nonlineds implemented by using the empirical cell probabilitigs=
prediction, as explained in more detail below. (N, /N) to test the uniform hypothesBy: p; = 277, i = 1,
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..+, 20 against the composite alternative hypotheHis p; where, for a scalar sequen¢e;},, the sample median is a
£ 27P 4§ =1, ..., 2 Define the Kullback-Liebler (KL) threshold such that half fall to the left and half to the right
distance betweep; and the uniform distributiop;, = 2—7

L(n/2) n even

i A mediadz; } = {x([n+11/2>v n odd
. B P
D(pi,pi) = Y_ pilog <17>
=1 ‘

andz;y < --- < x(,) denotes the rank ordered sequence.

oz X Note that when the point$X (k)},. are truly uniform over
= log2” 4+ pilog p. (5) the parent cell, the median&/%}; will tend to be near the
i=1 midpoints of the edges of the parent cell.

The standard median tree implements a binary split of parent

It is easy to show that t_he g(?neralized likelihood ratio test %" T about a hyperplane perpendicular to that coordinate
Ho versust, decidesty if D(p;, p;) <7, where the threshold ;¢ j having the largest spread of poin#?;, where the

71 selected to ensure that the probability of false rejectioHef perplane intersects this coordinate axis at the meﬁi}%n

is equal to a prescribed false alarm rate (see, e.g., [7, ch. 8).. . . . . .
X S R S is produces a pair of children cells that contain an identical
However, since the distribution db(p;,p;) is intractable . . .
number of points. In contrast, we split into 2P rectangular

under Hy, the decision threshold cannot easily be chosen t0. : . ;
satisfy a prespecified false alarm level. We instead prop duldren cells whose edges are defined bypapierpendicular

oG X =TI =1 . B
Pearson’s Chi square goodness-of-fit test statigticwhich %yperplanes of the fom{X. ¢ X = TH.}? J=1 ' P
has a central Chi square distribution und#g. In particular, Th|s.produces a Free with a denser partition than the sFandard
it can be shown [6], [7] that Pearson’s Chi square statistic rirsled|an tree having the same number of nodes. Unlike the

a local approximation to the KL distance statistic (5) in thgtandard _med|_an splitting rule tre_e, theechildren C_e”S will
sense that not have identical numbers of points unless the points are truly

uniform overlIl. This allows the cell occupancies in tbé-ary
D(fr,pr) = 1 2 + omax(§; — pi)?) split to bg used d|.rectly for uniformity testing as described in
b 2N o the previous section.
3) Stopping Rule:The last component of the tree-growing

wherex? = Ny 21‘221 ((: —ps)?/ps) is distributed as a central propedure is a stopping rule to avoid overfitting. As above,
Chi square with2? — 1 degrees of freedom undty. Qef|neX’r[_ = {ejf X(k): X(k) € 11, k =1,---, N} as the

2) Separable Splitting RuleAnother component of the Jth coordinates of the vectorX (k) falling into the hyper-
procedure for growing a tree is the method of splitingectanglell = x¥_, [«;, Bi]. Thus, each of the elements &f;;
parent cells into children cells. The standard cell spliting rult¢s in the interval[e;, 3;]. Under the assumption that these
attempts to create a pair of rectangular subcells for which glements are i.i.d. with continuous marginal probability density
marginal probabilities are identical regardless of the underlyifignction f.;n, the sample mediady; is an asymptotically
distribution. The median-based binary splitting method fathbiased and consistent estimator of the theoretical median
constructing k-d trees [5], [15], [13], [17] is commonly used}, Which is the half mass point of the marginal cumulative
for this purpose. As the median is a rank-order statistic, tH#stribution function. Conditioned oiVy, the sample median
gives the property that the predictor is invariant to monotof@s an asymptotic normal distribution [41]
transformations of the predictor variables: a property not
shared by most other nonlinear predictors. Here, we present . ; 1
a variant of the standard median splitting rule that generates T ~ N'| Ty, W . (6)
2? rectangular children cells that only have equal probabilities MU= (IS
Whenhthe data is uniform over the parent cell. A version of The stopping rule is constructed under the assumption that
this 27-ary splitting rule that generates nonrectangular ceIIsJiLs_ . . . _ - S
discussed in Section IV. 2| 1S a uniform densityf,;n(z) = 1/(3; — «;) over

Let x_, [a;, ;] denote the hyper-rectangle constructedl € [@i»/]. Under this assumptiorlfyy; = (8 + a;)/2 is

from the Cartesian product of intervals;, 3], a; < f;, e.g., the Midpoint, and the sample mediaitg, j = 1, ---, p
21 [, 3] = [ar,B1] x [z, B2] is a right parallelepiped are statistically independent. A natural stopping criterion is

in R2. We start with a partition elemerif = <P o, Bi]- to r_eguire that the numbeiy of daFa points vyithqu be

Let this partition element contaitNy; of the reconstructed Sufficiently large so that the Gaussian approximation to the
state vectorg X (k)}2_,. Define the Ny-element vectorX?, density of 77, ha_s _negllglble mass outside of the interval
=[e?X(k): X(k) €11, k=1, -+, N] as the projection of the [qi,ﬁi]. Wher_w this is _the case, it can be expectgd that
inscribed reconstruction vectors onto tjl coordinate axis. Will be a reliable estimate of the interval midpoint. More
That is, X7, is the set ofjth coordinates of thos (k) falling ~concretely, we will require thaivy satisfies

intoll, k=1, ---, N. Denote byTﬁ the sample median of N ,

the jth coordinate axis projections P|Th-TH < By —aj)/2,5=1,---,p)>1—¢ (7)

T4 = mediafe} X (k):; X(k) e ILk=1,---,N} wheree € [0, 1] is a suitable (small) prespecified constant.
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Stopping Criterion: Exact Under Gaussian Approximation D. Computational Cost
* Ty ' ' ' The steps outlined in the preceding subsections may be
sk \:'\:.5.__\ | summarized by the following tree growing algorithm:
RN . opet 1) input sampled time series and embedding
el "._\\"'*--._\_\ -— p=3 | | parameters(p, 7), Pearson’sy? test threshold
g RSN — p=5 2) initialize II° = set of all state vectors
£ N N p= 3) while nonempty nonterminal leaves exist,
820 NN == p=9 | ]
5 SO at current deptft
] : \.\"\“-5__\ 4) for each cellll’
2r N l 5)  if II' containsNy: > %4~ vectors
5 RIS 6) compute the splitting threshold¥,,,
gm_ .-'_\\\--\'4\.-_\ 1 J:17 7]3
RN 7) estimate empirical probabilities at depth
st RN [+ 1 for the children offI!
\\\\ 8) Compute Pearson’g? statistic from the
ol - - - el \ 2r prqbabllltes
10 10 Iog(:egsilcn) 10 10 9) if x? is less than threshold
10) II' is stored as a terminal leaf
Fig. 2. Family of curves describing cell subdivision stopping rule in terms 11) else
of minimum number of pointsVyy falling into a rectangular celir and the g o
probability criterione € [0, 1]. The vertical axis is the minimum number of 12) {TH“ J=1 - p} are stored
points that will be assigned to a subdivided cell, and the horizontal axis is 13) {Hiﬁ"l, k=1,---, 2ﬁ} are stored
the log of e. 14) endif
15) else II' is stored as an ’empty’ terminal leaf
Since thel?, are independent, (7) is equivalent to 16)  endif
17) endfor
p 18) I=1+1,;
1= TIP0T - T < (3 = ap)/2) s 19) gotofine 3.
=1 The computational cost associated with this tree estimation
algorithm is signal dependent. For example, in the case of a
which, under the Gaussian approximation (6), gives state space containiny realizations of a-dimensional white
noise, the trivial partitionll, = R? will generally pass the
1-P(|Z| < \/N_H)ﬁ <e uniformity test, and the algorithm will stop at the root node.

In this case, only a very few computations are needed. In the
. . following, we give an estimate of the worst-case cost occurring
where Z is a standard normal random variable (zero mea .
X . ) . .~ When the terminal nodes all occur at the same depth.
and unit variance). Thus, we obtain the following stopping : .
o : - At depth! of the tree, under the assumption that all obtained

criterion: Continue subdividing the cdll as long as .

cells were stored as nonempty, nonterminal leaves, the tree

has2? cells. The average number gfdimensional vectors

Ny > 2[erf (L — ]*/7)] (8) in each leaf is
Ny — N
where erfz) = (2/y/7) [§ et dt. Use of the asymptotic (M) = 25
representation & erf(z) = erfc(z) = ¢ /(zv/7) + o(1/%)  The most computation consuming step in the algorithm is the
[3, 26.2.12] gives the log-linear smallversion of (8) splitting threshold determination procedure that requires rank
ordering each of the coordinates of the inscribed state vectors.
Ny > 2In 2p . ©) Using an optimized method (e.g., the heap-sort algorithm [50])
€ leads to a cost proportional to
N Nppo
~ obl . _ < No
The right-hand side of (8) is plotted as a function cofor Cr 2= 2" (Npe) logy (N ) = Nirop logy ol "

several values of in Fig. 2. Note that as predicted by th
asymptotic (smalk) bound (9), the curves are very close
log linear ine. As a concrete example, the criterier= 0.01
(99% of Gaussian probability mass is insidegives forp = 2:
N = 8, and forp = 4: Ng = 10 as the minimum number Crot ™ Nijo plinax log,
of data pointsVy; for which a cell will be further subdivided.

These numbers are of the same order as those obtained fidote that the expression @I, corresponds to the worst case
the volume estimation criterion used by Baeé¢lal [6]. where no cells pass thg® uniformity test until the minimal

teBy adding the computational costs obtained for each depth in
e rangel = 0, -- -, l,.x — 1, we obtain the expression of
the total cost
N]‘[O
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cell residency stopping criterion is reached. This computatior@mputed. Next, the unitary matrMZo1 of the eigenvectors
cost is well below that of the well-known nearest neighbor ones . . . i - .

- f Az is extracted via SVD. This unitary matrix is applied to
step prediction method®y y ~ (NG, /2) + N, log Ny, . Z y PP

3
Z?Tl_ to produce an equivalent but uncorrelated set of vectors
IV. COMPLEXITY REDUCTION VIA SVD ORTHOGONALIZATION Zwi

The number of leaves in the final tree, i.e., the number of ’
cells in the partition of state space, is a reasonable measure

of model complexity. However, without additional Preproynere 17, stands for the transpose of the vector containing

cessing of the data, the separable splitting rule described | i Applicat f this local orth lizati
the previous section can produce trees of greatly varyiﬁ\é’]‘} ones. Application of this focal orthogonalization pro-

complexity for state space trajectories which are identice®dure over all2? hy'per—rectan.gles;'r%, Sy T produces
up to a rotation inR?. This is an undesirable feature sincé® S€t of local coordinate rotations that results in changing
a simple transformation of coordinates in the state spa¢B€ shape of the hyper-rectangles into hyper-parallelepipeds.
such as translation, scale, and rotation, does not change Y#aen this process is repeated, these hyper-parallelepipeds are
intrinsic complexity of the process, e.g., as measured [H,rther subdivided, producing, at termination of the algorithm,
process entropy or Lyapunov exponent. a partition of the state_ space into general pontop}as

As a particularly simple example, consider the case where! e general recursion from depttto depth/ + 1 can be
the state trajectory evolves about line segment in two dimef!itten as

Zoy = Mpo, (Zys — B[Z]) + ElZ3 10

sionsz(n) = ax(n — 1) + ¢(n), wheree(n) is a white noise Z i1 = My Zt L+ C"t,, (10)
with variances2. Under the separab®-ary partitioning rule I T i

whena = +1 or a = —1, a very complex tree will result. whereC! = E[Z',,.] — My, E[Z'..].

This is because the Chi-square splitting criteria will lead to 3 it i

a tree with cell sizes on the order of magnitudecofThis
is troublesome, as a simple rotation of the axis coordinates
by an angle ofr/4 will lead the partitioning algorithm to B. Relation to Piecewise Constant AR (PCAR) Models

stop at the root node. Here, we perform a local recursivegnce the tree growing procedure terminates, the partitions
orthogonalization of the state vector prior to node splittingt ~an pe mapped back to the original state space by a

in order to produc_:e trees with fewer leaves. _Th|s prOducgéquence of backward recursions that backprojectgr}ﬁé
a new orthogonalized sequence of node variatdes that : : L .

) 7 node variables ... into the parent cellr* via the relation
are used in place oKX . to perform separable splitting and =
goodness-of-split tests discussed in the previous section. The Z;Hl =My (Zn —Cr). (11)
local recursive orthogonalization described below differs from ’ LA
a similar principal component orthogonalization for binarjteration of (11) over yields an equation for backprojection
partitioning, first described by Orchard and Bouman [46], iof Z ... to the root node. By induction ofy the forward
that all the components of the SVD are utilized for #feary recursion (10) gives the relation

partition used in this paper. 7= MXo— Cﬂzlfl (12)

A. Local Recursive Orthogonalization where X . denotes the subset of columns &F that are
mapped to terminal node’ at depth! via the sequence of

We recursively define a set of orthogonalized node Variablsﬁective maps (10), and\.. andC.. are matrices formed
y at al

as follows. LetX be ap x N matrix of samplesX(k), from the telescoping series

k=1, ---, N of the p-dimensional state trajectory. Let the l

covariance ofX (k) be denoted\x, and let it have the SVD Moy =TT A 13

(eigendecompositionkx = ML diag(Ax ,,)Mx. Define the = HJ 7 (13)

root noder® = R?. Next, define the orthogonalized set of z_l .

vectors Z o C. = Z H M, |Cy (14)
Zro = Mx(X — E[X]). i=0 [j= "

split of the root node into childrent, ---, 73, according to  For any parent noder’, the covariance matrix of the

the same separable splitting and stopping criteria as befor@tated daté .. is diagonal, which means that the components

In practice, the empirical meakl = (1/N)X1 and empirical of Z* are separable (in the mean squared sense) but not
covariance(X — X)(X — X)T /(N — 1) are used in place necessarily uniform. On this rotated data, the Chi-square test

of E[X] and Ax. for uniformity can easily be implemented on a coordinate-by-
Now, assume a split occurs at the root node and defisgordinate basis. When the tree-growing procedure terminates,
Z°, as the matrix of columns of.. that lie inside7;. we will have found a set of partition cells’, ---, i

The (empirical) mean and covariance matkiyo of Z2, are such that eachr’! = 7! contains pointsZ.. that are (ap-

J

3 proximately) uniformly distributed over’. Thus, (12) gives
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an autoregressive AR — 1) model whose coefficients are - ~ ‘ . : : T T
piecewise constant over regions of state sp¥ce. 8ok _
This can be made more transparent by writing thle
component of relation (12) as 50 8 1
p—1 40} |» “‘I& B
z(n) == an(i, )a(n — j) +wa(n)
=1 20}
X(n) e (15) > o :
wherea (i, j) = m (i, j +1)/m(i,1), ma (i, ) denotes | |

thei, j element ofM.., andw, (n) = (Z . (n) + C1L, )el

is a white noise. -40r N
Note that the coefficients for the PCAR representation (15) sl

may not be stable. There is an alternative approach to or-

thogonalizing the node variables which uses Gramm—-Schmidtso

recursions and guarantees that all PCAR coefficients are ‘ s . . . . . .

stable. This method is equivalent to constructing the Schur © 2 % 8 8 J00 120 140 60 1%

complement by adding one coordinate to each vector in the @

node, amounting to recursively synthesizing a local stable

AR(p — 1) model overp = 1, 2, 3,---. This is tantamount root node

to performing Cholesky (LDU) factorization of the local

covariance matricea ;. . [56], as contrasted with the SVD

factorization described above. In the sequel, the former method
will lead to what will be called a Schur-tree, whereas the latter
will lead to a tree called the SVD-tree.

The PCAR model (12) is a generalization of the AR-
threshold (ART) model called SETAR in Tong [61]. Similarly
to the PCAR model (12), SETAR is an AR model whos
coefficients are piecewise constant over regions of state spa
however, unlike the PCAR model, these regions are restricte
to half planes. In particular, a two-level single coordinaté

pth-order SETAR model is //////////////’////"/m

l
|

W
|

\
a1o + ar1z(n — 1)+ -+ argz(n — p) + o1e(n) \

R IS o~ /// /| \\\N

if z(n —d)>Tp

16
( ) Fig. 3. Tree-structured predictor for separable splitting rule applied to a
whered € {1’ - ,p}. As far as we know, filtering, prediction, piecewise linear phase space trajectory in two dimensions. (a) Simulated state

; T ; ace trajectory in two dimensions with superimposed rectangular partition
and identification of SETAR models have only been studied fé?oduced by recursive tree (RT) growing algorithm. (b) Representation of the

the case where the switching of the AR coefficients depenglfdtree associated with the state-space trajectory depicted in (a).
on a single coordinate:(n — d) and where the switching

thresholdZ; is known. The PCAR generalization of SETARs

models allows transition thresholds to be applied to IineﬁF
combinations of past values. As will be illustrated below, th - :
orthogonalized version of the tree based partitioning algorithﬁ%agments have slopes 1.28.25, and-2.5, respectively.

is well adapted to filterin rediction and identification over Each segment contains 128 realization of the 2-D state
these modzls 9. P vector. White Gaussian i.i.d. noise of varianeé = 5

was added to the trajectory. We first applied the recursive
tree (RT) method inp = 2 state dimensions without SVD
V. EXAMPLES AND APPLICATIONS orthogonalization. Both the rectangular partition of the state
In this section, the tree-structured predictors are applied ygace [Fi.g. 3(a)] and f[he tree partitioning algori.thm [Fig. 3(b)]
various real and simulated data examples. exhibit h|gh complexny: Thg number qf terminal Ieave's of
the resulting quadtree is driven exclusively by the variance
of the additive noise. We next grew a quadtree using the
local recursive SVD orthogonalization procedure, which will
To illustrate the parsimony of the local recursive orthogde called SVD-tree here, described in Section IV. The orthog-
nalization method, we first consider a rather artificial randoonalization procedure re-expresses the state vectors in their
process that follows a piecewise linear trajectory through stdteal eigenbases at each splitting iteration and, as seen from

ace (see Fig. 3). A trajectory made of three linear segments
a two-dimensional (2-D) state space was simulated. The

A. lllustrative Examples
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6ol : root node
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Fig. 4. (a) Same simulated state-space trajectory as in Fig. 3 but with recursive SVD-tree partitioning. (b) Representation of the SVD-treg withociat
the state-space trajectory depicted in (a). (¢) The pairs of estimated (normalized) AR coefficients governing the dynamics in each cell arghplotted wi
lengths proportional to the occupancy rate (number of points) of the cell.

Fig. 4, produces a tree partitioning of lower complexity withhis graphical representation clearly reveals the existence of
many fewer leaves. As explained in Section IV, applying thiiree distinct linear segments governing the state trajectories.
recursive SVD orthogonalization on a ceij synthesizes the

local AR(1) model [recall (15)] B. Chua Circuit Experiments
We ran experiments on a physical chaotic voltage waveform,
w(n) = —azz(n — 1) + we (n) measured at the output of a “double-scroll” Chua electronic
[z(n),z(n —1)] € 7rﬁ circuit (see.[40], [4.9], anq [63]). . .
The nonlinear differential equations governing the Chua
circuit are
We denote byAé» =[1, aﬂé_]/ /1+ a2, the unit-length vector d
of the AR model synthesized in the cef]. Fig. 4(c) plots the dat oy =)
set of unit-length vectors for all cells} resulting from the dy —r—y+2
SVD-tree partition. dt i
The length of each segment is plotted proportionally to the dz _ By (17)

number of points falling into the corresponding cell. Note that dt
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We built the circuit from “off the shelf” components chosen reference value
to get the following set of parameter values= 9, 3 = 22, 209 T ‘ ' ' ' ' ‘ ‘ ‘ '
mo = —%, andm; = Z. The voltage signal at the output of
the electronic circuit was digitized. The sampling frequency °
was 14.4 kHz. We chose an embedding dimengica 4 to
generate the state trajectok( k) = [z(k), z(k—7), z(x—27), -2000 ‘ . . : : : : .

z(k — 37)]T. We used a stopping threshold &f, > 16 data 20000 > 1?%""1’?‘%"“ qﬁ?’gﬁze“z{g’?‘“s“’%?'%'wa’%?&ed&gg o
points, which corresponds to~ 3.10~2 (for p = 4) via (8).

The reconstruction delay was chosen in such a way as to
minimize the mutual information between the coordinates (see
[23] and [19]): In this case; = 4 sampling periods. A training ‘ . , ) , , , , ,
set of Ny, = 8192 points was used to grow the Schur-tree ang 50 100 150 200, 032800 o320 350 400 450 500
obtain the empirical histografi’v, /N } on the leaveqn;} of 2000 ™ T ; -

the tree. A nonlinear predictor of(n) givenz(n — 1), ---,
z(n—p+1) was implemented by approximating the conditional o

T T

meanz(n) = E[z(n)|z(n — 1), ---, z(n — p + 1)] using the
tree-induced vector quantizer functié®( ) and the empirical -2000 : ! ‘ ' ' ' ' - - .
. e . R 0 50 100 150 200 250 300 350 400 450 500
histogram. Specifically, wittQ(z(n), -+, z(n — p+ 1)) = time (in sample unit)
Eiqi‘[ﬂ'i(l’(n)v T .’L’(TL _ﬁ—i_ 1)) (@
reference value
2000 T T T T T T T T T T
ﬁ A~
> P& a1 Gnepr1) 0 ]
i(n) = 7= (18) L, vt M R T T T
Z P(&jl, Gne1, 7 (]n—ﬁ-i—l) 20000 5|0 “?r?eares ?r?elghbzo?otau—s%%g forw%?g basg(?%redi&(:‘g)n 4?0 5(')0
j=1

where{¢; } are centroids of the partition celisr; } at the leaves -2000 ——r—-21————w Zég w0 30 oo ass 200
of the tree£;, denotes the first element of the vec§pr g.—1, 5000 — _predCWonerer
-++, gn—p4+1 are the second throughh elements of the vector
Qu(n), -+, x(n —p+ 1)), and P(g) = (I/N) S Nilr (@) o W
is the empirical histogram indexed lay

Fig. 5(a) and (b) show time segments of actual measur_%jOO ) ) , ) ‘ . ) ) .
and predicted output Chua circuit voltages using the Schur-tree © 50 100 150 Z‘t?:]e(inf:mplei%?t) 350 400 450 500
predictor and the popular but costlier nearest neighbor (NN)

L . .. . b
prediction method, respectively. The NN prediction method is ()
briefly summarized below. Fig. 5. One step forward predictor for the sampled output of the Chua

.. . . . ._electronic circuit. (a) SVD-Tree algorithm. (b) the nearest neighbor algorithm.
The NN prediction method consists of finding in a learning @) g ®) 9 g

sequencel, = X(n), n = 1, ---, N the pointX(j), 1 <

4 < N in the state space that is the closest (in some metric) SETAR Time Series Simulations

to the current observatiorX(t)_ and defir!ing the predictor Fig. 6 presents results for the simulated SETAR model
as X(t +1) = X(5 + 1). As is shown in Devroyeet al.
[17], under certain technical conditions, the mean squared
prediction error of the NN predictor decreases to zeravin
The NN predictor was implemented in a manner identical to
the one proposed by Farmer [21]. While more sophisticatedThe time series{z(k)} was embedded in a three-
implementations of NN predictors are available, see, e.g., [timensional (3-D) reconstructed state spdge= 3) with

[20], and [54], they require higher implementation complexitynit delay =. The 8-ary Schur-tree was grown according to
than Farmer’s implementation for only a small improvemerthe methods described in Section IV. Fig. 6(a) shows time
in prediction error performance. We performed benchmarks $egments of the actual and predicted SETAR time series and
Matlab 4.2c on a Sun Ultra-1 workstation for 512 one-stegppe associated prediction error. Fig. 6(b) gives a graphical
predictions of the SETAR model described above. The CRigpiction of the 8-ary tree. Fig. 6(c) shows the the estimates
run times were 33.2 s for SVD-tree versus 115.3 s for the N&f the AR vectors governing the SETAR model in each cell
prediction algorithm, respectively, with comparable predictioobtained from the recursive local orthogonalization. Note that
error performance. these estimated AR vectors cluster in two directions that

1.71z,_1—0.81z9+0.3564¢1, x_1>0

2(k)=9 _0 56215 _» — 3.91+¢s, Tr <0,
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Bimodal SETAR Time Series
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Fig. 6. SETAR time series from (5.3). (a) One step forward predictor trajectory and prediction errors obtained from Schur—Tree algorithm.afly) Eight-
tree constructed from a 3-D state phase space using Schur—Tree algorithm. (c) Unit-length AR direction vectors.

closely correspond to the two AR(2) regimes of the actutime series correspond to the first coordinéi€t)) of the
SETAR model (5.3). system sampled at a peridd= 0.4s.?

The reconstruction dimension was varied from 2-5, but the
reconstruction delay is maintained to a constant valae4h.

The prediction error variance is estimated fr@vnpredicted
The discrete-time Bssler system generates a chaotic mewsalues by

surementz(t) generated by the nonlinear set of differential

D. Rassler Simulations

. N
equations Z B
(e — )
V= i=1
dr N '
at Y7 > (@i —7)?
dy i=1
at ~ toy
dx The Schur-tree was grown from phase space time series
d; =b+4zz—cx (19) of durationN = 500, and the training set consisted of 8192

phase space state vectors. Fig. 7 shows the one-step forward
prediction and errors for NN and Schur-tree methods applied
wherez, y, and z are components of the 3-D state vector do the Rissler time series. Note that both NN and Schur-tree
the Rossler system. predictors have similar trajectories, although the more complex
We simulated (19) using the following set of parameter
values:a = 0,15, b = 0,2, andc¢ = 10. The set of nonlinear 2To simulate this chaotic system by numerically integrating this set of

led ordi diff ial . ically i ordinary differential equationsy must be set to a much smaller value than
coupled ordinary difierential equations were numerically intgge sampling step of the recorded time series in order to avoid numerical

grated, using an order 3 Runge—Kutta approach. The recordeshbilities. The integration was performed with a time increniéns h/64.
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Fig. 7. Simulated time series, one step forward predicted values, and pfeg. 8. Normalized prediction error variance as a function of the reconstruc-
diction errors for the first coordinate of theo&sler systenip = 3) using (a) tion dimension for (a) the voltage output of a Chua electronic circuit and (b)
the NN algorithm and (b) the Schur-tree algorithm. the simulated Bssler time series.

NN implementation achieves somewhat smaller prediction &§yp_tree: the Schur-tree is guaranteed to give a stable model.
ror. The spikes observed in the Schur-tree prediction residuglsy|| the cases, the NN algorithm slightly outperforms the tree-
are due to transitions between the local models in phase Spgfgseq methods, but the improvement is obtained at a significant

. ) increase in computational burden.
E. Algorithm Comparisons
A comparison of the performance of the four different one-
step forward prediction methods discussed in this paper is VI. CONCLUSIONS

illustrated in Fig. 8 for the Chua circuit measurements andWe have presented a low-complexity algorithm based on
the Rossler simulation. The four methods stu.d|ed are recursive state space partitioning for performing near-optimal
. the tree-structured predictor of Section I1I-C (RT); nonlinear prediction and identification of nonlinear signals.

. the SVD-tree discussed in Section IV; We have also derived local SVD and Schur decomposition
. the Schur-tree discussed in Section IV; versions that are naturally suited to piecewise constant AR
. the nearest neighbor (NN) algorithm. models (SETAR). These algorithms were numerically illus-

Note the relative performance advantage of the recursitrated for simulated SETAR measurements, simulated chaotic
Schur-tree as compared with the SVD-tree. We believe thatasurements, and voltage measurements obtained from a
this is due to the instability of the AR model obtained fronChua electronic circuit.
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The tree based prediction approach presented here is relatethe upper bound in (21) is decreasing imx; K, and
to the classification and regression tree (CART) technique [84juals zero whefi(y|x) is piecewise constant in, i.e., f (y|z)
and adaptive tree-structured vector quantization (TSVQ) [14} ¥; f(y|xi;) I, (x), wherezi; € =; are arbitrary. Thus, in
The main difference is our use of a locally defined recuthis case, use of quantized predictor variables do not degrade
sive SVD orthogonalization and its intrinsic applicability taptimal prediction MSE. In addition, note that the upper bound
piecewise linear generalizations of thresholded AR (SETAR) (21) is decreasing in the mean square quantization error
models [61]. Our tree structure with SVD orthogonalizatiogssociated with quantizing the predictor variablBg| X —
is also related to (unitary) transform coding [27], where thg(X)||2]. Bounds and asymptotic expressions exist for this

difference is that the orthogonalization is applied locally anguantity [29], [42] which can be used to make the bound (21)
recursively to each splitting node. Future work will includenore explicit.

detection of the local linearized dynamics and regularization Tpe following lemmas will be useful in the proof of
for smoothing out model discontinuity between partition cell§hegrem 1.

A related issue for future study is how to deal with larger | ayyma 1: Define the optimal  predictorjiy v (X) =
values of the imbedding dimensign The 27-ary splitting rule E[Y|X] based on the predictor variable¥. Assume that

proposed here produces subcells of equal volume but giveﬁj some subse#t of R™, the densityfy|x (y|z) is Lipschitz

model with complexity, i.e., the number of free parameters, .- ous of order almost everywhere i € .4 and that
exponential ing. Therefore, to avoid the need for unreasonabl

LY?|X] < m2 < oo (as.). Thenjiy x(z) is pointwise
L < my c .S.). Hy | x p
Iarge. amognts of tra'lr.npg datd, r.nus't be held as small as ontinuous almost everywhere overe A.
possible without sacrificing quantization error performance. e .
: " Proof of Lemma 1:First, observe that for any two functions

reasonable alternative would be to use the standard binagry : . :

o . ) - P r and f>, we have by the triangle inequality
splitting rule for growing the model: restricting tf28 splitting s 1/ s s 1 s
rule to implementation of the subcell uniformity tests. lfi— fol = Ifl/ ( 1/ - 2/ )+ f2/ ( 1/ - f2/ )|

<IAPNAZ = BRI 167P1A - 57 (22)

Therefore, by definition of the conditional mean, for arbitrary
Let X andY be real vectofR™) and scalar valued randomz;, z> € A

variables, respectively. Let the joint distribution &f, ¥ have

the Lebesgue densitfx v (x, y). Define the marginalgx ()

APPENDIX

ity x (21) — iy x (22)]

and fy (y) and, for anyz satisfying f(x) > 0, the conditional < /dy|y| | fyix (Wler) — fyvx (y|®2)]
density fyx (y|x). Given a setA, the conditional density
function fy| x (y|) is said to be Lipschitz continuous of order < /dy|y|f¢/|§((y|:c1)|f;/|§((y|:c1) _ f%?((y|$2)|
a >0 almost everywhere i € A (in the Hellinger metric) if
there exists a finite constaif 4, called a Lipschitz constant, / 1/2 1/2 1/2
+ /d - .
such that for anye;, £, € A for which fx (x1), fx(x2) > 0 vyl Wil (o) = fyx (vle2)]

(23)
1/2 1/2 2 @

/'fY|X(y|x1) ~ ixle)l" dy < Kaller —=2||". (20) Applying the Cauchy—Schwartz inequality to the two integrals

Lipschitz continuity of the above form is a common explicitn the expression at bottom of (23)

smoothness condition assumed for probability measures and 2

densities [34], [36]. Lipschitz continuity implies pointwise </ dy|y|f¢/|§((y|:c1)|f$/|§((y|:c1) —f%;(y|$2)|)

continuity of fy|x (y|x) for almost ally [34].

For an arbitrary vectorr € R™ and a discrete set of < /dy|y|2fy|x(y|1’1)
vectorsQ = {qy, g5, ---} In R™, let @, Q: R™ — Q, be
a vector function (a vector quantizer) operating anThe '/dy|f§1//|§((y|$l) _ f11v/|§((y|‘”2)|2
set of quantization cell§{w;, w2, ---} are defined as the

inverse imagedQ~'(q,), @ (q,), ---} of elements ofQ. and similarly for the second integral. Hence, Lipschitz conti-
The following theorem provides a bound on the increase in thelity of fy-x (y|x) overx € A gives the bound
minimum mean square prediction error due to quantization °f|ﬂy|x($1) _ /fLY|X($2)|2
the predictor variables.
Theorem 1:Let {x;}; be a partition ofR™. Assume that < 2max E[y2|:c]/dy|fé/|§((y|:c1) — fé/li((y|:c2)|2
for eachi the density fy|y (y|x) is Lipschitz continuous of ) N
order« > 0 almost everywhere i € 7;, and letK,, be the < 2my Kall1 — 22| (24)
associated Lipschitz constant. Assume also #gt%|X] < where K4 < oc is the associated Lipschitz constant. This
m? < oo (a.s.). Then establishes the lemma.
2 o o ased on quantized predictor varia .

S2m?XK’“mYEH|X — Xl (21) Assume thatfy |y (v|x) ?s Lipschit;o continuous of ordes

whereQ?(x) = %; #i; I..(x) andzi; € R™ are the quantiza- almost everywhere i € «; and thatE[Y?|X] < m{ < oo

i

tion vectors defined in Lemma 2. (a.s.). Then, for any quantization cel] c R™, there exists

I
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a pointxi; € m; such that
iyi(x) = fiyx (xi;), Yz € ;.

Furthermore, the pointi; satisfies the equation
[ sy @)1(@) = i (@) )

where Px (m;) = [, f(x)dzx.
Proof of Lemma 2:By definition of conditional expecta-
tion, fiyiq(®) = [ dyyfyiq(y|Q(x)), where

Frio01Q(@) = [ dafyix(ulo)f()/Px()

777

(1]

remw

(2]
is the conditional density df given Q(X) = Q(z). Invoking
Fubini's theorem [53] to permute the order of integration, w 3]
obtain the Lebesgque-Steiltjes integral representation [4]

firyie(x) :% /m- d:cf(:c)/dyny|X(y|$) [:
1 ~
e /m dP(z)jiy|x(x) T EM )

(8]
fqe]

[10]

where dP(z) f(xz)dx. By Lemma 1, jiy|x(x) is
continuous, and therefore, by the mean value theorem
Lebesgue—Steiltjes integrals [53], there exists a péirg =,
such that
1
Px(ﬂi)

This establishes the Lemma.
Proof of Theorem 1:Define

[ ar@ivic@) =it sem. ol

[12]
O
[13]

AP EE(Y - BY|QXO)] - BV - BIY|X]). pa

That A% >0 follows directly from the fact that the condi-
tional mean estimato[Y'|X] minimizes mean square pre-[!
diction error. Next, we deal with the right-hand side of
(21). It is easily verified by iterated expectation tHg{y” —  [16]
E[Y|QX))EY|QX)]] = 0, andE[(Y — E[Y|X])E[Y|X]] [
= 0 (orthogonality principle of nonlinear estimation). Theref1g]
fore

A? =E[(Y - E[Y|QX))Y] - E[(Y - E[Y|X])Y]
= E[(EY|X] - EY|Q(X)])Y]
= E[(E[Y]X] - E[V|Q(X)) E[Y | X]].

9]

[19]
[20]
[21]
Thus, by Fubini [8], we have the integral representation

A2 = / dzljiy x (&) — iy 10 @)y x () (&)

- Z/ dzljiy|x(x) — fiy|o(@)]iyx (@) f(z) (25)

[22]

[23]

[24]

where thej, quantities are defined as in Lemmas 1 and 5!
Invoking the latter lemma, there exists a po#it € 7; such
that jiy|o(x) = fiy|x (i), ¢ € m, and [ dxliiy|x(z) —
fry|x (xi;)] f(x) = 0. Therefore, from (25)

A% = Z /m da|fiyx (%) — fovx (i) | f (@)

[26]
[27]
(28]

[29]

whereQ°(x) = 3; zi; I, (x).
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Application of the bound (24) ofiy|x(x1) — jiy|x (®2)]?
obtained in the course of proving Lemma 1 yields

A% <2mi max Kn, > / dx||z — =is||* f (=)

=2m} max K B[||X — Q°(X)]|*]
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