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Abstract—In this paper, we develop a regression tree approach
to identification and prediction of signals that evolve according
to an unknown nonlinear state space model. In this approach, a
tree is recursively constructed that partitions thep-dimensional
state space into a collection of piecewise homogeneous regions
utilizing a 2

p-ary splitting rule with an entropy-based node
impurity criterion. On this partition, the joint density of the
state is approximately piecewise constant, leading to a nonlinear
predictor that nearly attains minimum mean square error. This
process decomposition is closely related to a generalized version of
the thresholded AR signal model (ART), which we call piecewise
constant AR (PCAR). We illustrate the method for two cases
where classical linear prediction is ineffective: a chaotic “double-
scroll” signal measured at the output of a Chua-type electronic
circuit and a second-order ART model. We show that the predic-
tion errors are comparable with the nearest neighbor approach
to nonlinear prediction but with greatly reduced complexity.

Index Terms—Chaotic signal analysis, nonlinear and nonpara-
metric modeling and prediction, piecewise constant AR models,
recursive partitioning, regression trees.

I. INTRODUCTION

NONLINEAR signal prediction is an interesting and chal-
lenging problem, especially in applications where the

signal exhibits unstable or chaotic behavior [30], [35], [61].
A variety of approaches to modeling nonlinear dynamical
systems and predicting nonlinear signals from a sequence
of time samples have been proposed [12], [64] including
hidden Markov models (HMM’s) [24], [25], nearest neighbor
prediction [20], [21], spline interpolation [39], [62], radial
basis functions [10], and neural networks [32], [33]. This paper
presents a stable low-complexity tree-structured approach to
nonlinear modeling and prediction of signals arising from
nonlinear dynamical systems.

Tree-based regression models were first introduced as a
nonparametric exploratory data analysis technique for non-
additive statistical models by Sondquist and Morgan [58].
The regression-tree model represents the data in a hierarchical
structure where the leaves of the tree induce a nonuniform par-
tition of the data space over which a piecewise homogeneous
statistical model can be defined. Each leaf can be labeled by
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a scalar or vector-valued nonlinear response variable. Once a
cost-complexity metric known as a deviance criterion in the
book by Breimanet al. on classification and regression trees
(CART) [9] is specified, the tree can be recursively grown to
perform particular tasks such as nonlinear regression, nonlinear
prediction, and clustering [9], [13], [55], [66]. The tree-
based approach has several attractive features in the context
of nonlinear signal prediction. Unlike maximum likelihood
approaches, no parametric model is required; however, if one
is available, it can easily be incorporated into the tree structure
as a constraint. Unlike approaches based on moments, since
the tree-based model is based entirely on joint histograms, all
computed statistics are bounded and stable, even in the case
of heavy-tailed densities. Unlike most methods, e.g., nearest
neighbor, maximum likelihood, kernel density estimation, and
spline interpolation, since the tree is constructed from rank
order statistics, its performance is invariant to monotonic non-
linear transformations of the predictor variables. Furthermore,
as different branches of the tree are grown independently, the
tree can easily be updated as new data becomes available.

Our tree-based prediction algorithm has been implemented
in Matlab1 using a k-d tree growing procedure that is similar,
but not identical, to that of the S-plus function , as
described by Clarke and Pregibon [13]. Important features and
contributions of this work are the following:

1) The Takens [19] time delay embedding method is used
to construct a discrete-time phase trajectory, i.e., a
temporally evolving vector state, for the signal. This
trajectory is then input to the tree-growing procedure
that attempts to partition the phase space into piecewise
homogeneous regions.

2) The partitioning is accomplished by adding or deleting
branches (nodes) of the tree according to a maximum
entropy homogenization principle. We test that the joint
probability density function (j.p.d.f.) is approximately
uniform within any node (parent cell) by comparing the
conditional entropy of the data points in the candidate
partition of the node (children cells) to the maximum
achievable conditional entropy in that partition. Cross-
entropy criteria for node splitting have been used in the
past, e.g., the Kullback–Liebler (KL) “node impurity”
measure goes back to Breimanet al. [9] and has been
proposed as a splitting criterion for tree-structured vector
quantization (TSVQ) in Perlmutteret al. [47]. More
recently, Zhang [66] proposed an entropy criterion for

1The Matlab code is available by request.
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multivariate binomial classification trees that is closer in
spirit to the method in this paper. Zhang found that the
use of the entropy criterion produces regression trees
that are more structurally stable, i.e., they exhibit less
variability as a function of , than those produced using
the standard squared prediction error criterion. For the
nonlinear prediction application, which is the subject of
this paper, we have observed similar advantages using
the Pearson Chi-square test of region homogeneity in
place of the maximum entropy criterion of Zhang.

3) Similarly to Clarke and Pregibon [13], a median-based
splitting rule is used to create splits of a parent cell along
orthogonal hyperplanes, which is referred to as a median
perpendicular splitting tree in the book by Devroyeet al.
[17]. However, unlike previous methods that split only
along the coordinate exhibiting the most spread, here, the
median splitting rule is applied simultaneously to each
of the coordinates of the phase space vector producing

subcells. This has the advantage of producing denser
partitions per node of the tree, and, as the-ary
split is balanced only in the case of uniform data, the
cell probabilities in the split can be used directly for
homogeneity testing of the parent cell.

4) In order to reduce the complexity of the tree, a local
singular value decomposition (SVD) orthogonalization
of the phase space data is performed prior to splitting
each node. This procedure, which can be viewed as
applying a sequence of local coordinate transformations,
produces a partition of the phase space into polygons
whose edges are defined by nonorthogonal hyperplanes.
This is similar to the principal component splitting
method that has been proposed for vector quantization
of color images by Orchard and Bouman [46] and other
nonorthogonal splitting rules for binary classification
trees [17]. However, for phase space dimension ,
our method utilizes all components of the SVD as
contrasted with the principal component alone.

5) When applied to nonlinear signal prediction in phase
space, the SVD-based splitting rule yields a hierarchical
signal model, which we call piecewise constant AR
(PCAR), which is a generalization of the nonlinear
autoregressive threshold (ART) model called SETAR
by Tong [61]. This thresholded AR model has been
proposed for many physical signals exhibiting stochas-
tic resonance or bistable/multistable trajectories such
as ECG cardiac signals, EEG brain signals, turbulent
flow, economic time series, and the output of chaotic
dynamical systems (see [31] and [61] for examples). A
set of coefficients of the ART model can be extracted
from a matrix obtained as the product of the local SVD
coordinate transformation matrices. A causal and stable
model can then be obtained by Cholesky factorization
of this matrix.

6) We give a simple upper bound on the difference between
the mean squared error of a fixed regression tree predic-
tor and the minimum attainable mean squared prediction
error. The bound establishes that a fixed regression tree
predictor attains the optimal MSE when the j.p.d.f. is

piecewise constant over the generated partition. This
bound can be interpreted as an asymptotic bound on the
actual MSE of our regression tree under the assumption
that as the training set increases, the generated partition
converges a.s. to a nonrandom limiting partition. Many
authors have obtained conditions for asymptotic con-
vergence of tree-based classifiers and vector quantizers
[17], [45], [43], [44]. However, as this theory requires
strong conditions on the input data, e.g., independence,
strong mixing, or stationarity, we do not pursue issues
of asymptotic convergence in this paper.

7) It is shown by both simulations and experiments with
real data that the nonlinear prediction error performance
of our regression tree is comparable with that of the
popular but more computationally intensive nonparamet-
ric nearest neighbor prediction method introduced by
Farmer [20], [21]. A similar performance/computation
advantage of our regression tree method has been estab-
lished by Badelet al. [10] relative to predictors based
on radial basis functions (RBF’s).

The outline of the paper is as follows. In Section II, some
background on nonlinear dynamical models and their phase
space representation is given. Section III continues with back-
ground on regression tree prediction, and the basic tree grow-
ing algorithm is described. In Section IV, the local SVD
orthogonalization method is described, and the equivalence
of our SVD-based predictor to ART is established. Finally, in
Section V, experiments and simulations are presented.

II. PROBLEM STATEMENT

It will be implicitly assumed that all random processes are
ergodic so that ensemble averages associated with the signal
can be consistently estimated from time averages over a single
realization.

A. Nonlinear Modeling Context

A very general class of nonlinear signal models can be
obtained by making nonlinear modifications to the celebrated
linear ARMA model

(1)

where is a white Gaussian driving noise with variance,
and the coefficients and
are constants independent of or Let

and

be vectors constructed from and past values of and ,
respectively. Nonlinear ARMA models can be obtained
by letting the coefficients (1) be functions of the ARMA state
variables



MICHEL et al.: TREE-STRUCTURED NONLINEAR SIGNAL MODELING AND PREDICTION 3029

where and are functions of into and ,
respectively.

This formulation has been used by Tong [61] and others
to generate a wide class of nonlinear stochastic models. For
example, we easily obtain second-order Volterra models or bi-
linear models by choosing

and as the endomorphism

where is a constant matrix with rows and columns.
Similarly, by exchanging the definitions for and in

the preceding equations, we obtain models for which the
variance of the driving noise is a function of past values of
These latter models are called heteroscedastic models and are
common in econometrics and other fields (see [18] and [31]).

Moreover, we are not restricted to linear operators for
and Piecewise constant state-dependent values for the

matrix ( being kept constant) lead to a class of nonlinear
model that is known as “piecewise ARMA” and referred to
as a generalized threshold autoregressive (TAR) or a TARMA
model [60]. As TARMA model coefficients depend on the
previous states , they belong to the general class of
state-dependant models developed by Priestley [51]. TARMA
models arise in areas of time series analysis including biology,
oceanography, and hydrology. For more detailed discussion
of nonlinear models and their range of application, see [30],
[52], and [61].

In what follows, the observed data will be represented by
the sampled dynamical equation

(2)

where stands for the state vector at time, and and
are (in general) unknown continuous functions frominto
and , respectively. is an i.i.d. state noise, and is an
i.i.d. observation noise. For , the observed quantity
is a multichannel measurement. We focus on here. Note
that the well-known linear scalar AR process of ordermay
be represented within this framework by identifying

where is a matrix in companion form,

and

B. State-Space Reconstruction Method

Any process obeying the pair of dynamical equations
(2) is specified by its state vector , which is known as the
state trajectory, evolving over , which is known as thestate
space. The process of reconstruction of the state trajectory
from real measurements is called state-space embedding. For
continuous time measurements , the reconstructed state
trajectory is

(3)

where by we mean , where

sampling period;

positive integer known as the (estimated) embed-
ding dimension;
positive real numbers known as the embedding
delays.

State-space reconstruction was first proposed by Whitney
[65], who stated conditions for identifiability of the continuous
time state trajectory in the absence of observation noise.
These conditions were formally proved and extended by
Takens for the case of nonlinear dynamical systems exhibiting
chaotic behavior [11], [19], [59]. In practice, only a finite
number of (generally) equispaced samples are available, and
the embedding delay is set to , where is
an integer value. In this finite case, the value used foris very
important. Insufficiently large values lead to strong correlation
or apparent linear dependences between the coordinates. On
the other hand, overly large delaysexcessively decorrelate
the components of so that the dynamical structure is lost
[2, ch. 3], [22], [23], [35, ch. 9], [40].

Numerous authors have addressed the problem of finding
the best embedding parametersand (see, e.g., [22], [23],
and [40] for detailed discussion). Selection of the dimension
requires investigation of the effective dimension of the space
spanned by the estimated residuals. Overestimation ofcreates
state reconstructions with excessive variance, whereas under-
estimation creates overly smooth (biased) reconstructions. A
widely used method (see [2] or [35] for a discussion on this
topic) we will use for estimating is the following: If is
the true state dimension, then the estimated trajectories will lie
on a lower dimensional manifold in This occurrence can
be detected by testing a trajectory-dependent dimensionality
criterion, e.g., the behavior of the algebraic dimension of the
state trajectory vectors, asis increased [38]. We will adopt
here the method of Fraser [22] for selection of: equals
the time at which the first zero of the autocorrelation function
occurs, i.e., , where

III. GROWING THE TREE

In this section, we discuss the construction of the tree-
structured predictor and give a bound on the mean squared
prediction error of any fixed tree for the case that
As above, let be a state
vector of dimension A th-order tree-structured predictor
implements a regression function , which is
piecewise constant as ranges over cells in a partition

of [13]. The most common tree-growing procedure
[9], [13], [66] for regression and classification tries to find the
partition of the phase space such that the predictive density

is approximately constant as
the predictor variables vary over any
of the partition cells. As is shown below, if the tree-growing
procedure does this sucessfully, the tree-based predictor
can attain mean squared error that is virtually identical to that
of the optimal predictor
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A. Regression Tree as a Quantized Predictor

Let be the indicator of the partition cell and
define the vector quantizer function

where is an arbitrary point in
Typically, is taken as the centroid of region , but this
is immaterial in the following. Since the predictor function

is piecewise constant, it is obvious that
, i.e., the tree-structured predictor can

be implemented using only the quantized predictor variables
Therefore, given the partition , the optimal

tree-based predictor can be constructed from the multidi-
mensional histogram (the partition cell probabilities) as the
conditional mean of , given the vector

B. A Bound on MSE of Tree-Structured Predictor

It follows from Theorem 1 in the Appendix that if the
conditional density is (Lipschitz) continuous
of order within all partition cells of the partition of

, the mean squared error
of the tree-structured predictor satisfies the bound

(4)

where

minimum mean squared error quantizer on
;

upper bound on the mean squared valued of
given ;

Lipschitz constant characterizing the modulus
of continuity within

The upper bound in (4) is decreasing in the minimumth
power quantization error associ-
ated with optimal vector quantization of the predictor vari-
ables. Bounds and asymptotic expressions exist for this quan-
tity [29], [42], which can be used to render the upper bound
(21) more explicit; however, this will not be explored here.

Note that the upper bound in (4) is decreasing in
and equals zero when is piecewise constant
in , i.e., ,
where are arbitrary. Thus, in the case of a piecewise
uniform conditional density, the optimal predictor of
given quantized data is identical to the optimal
nonlinear predictor given unquantized data , i.e., the tree-
structured predictor attains the minimum possible prediction
MSE. Note that for a general conditional density, both

and the total variations decrease as the
sizes of the partition cells decrease. Hence, the mean
square prediction error can be seen from (4) to improve mono-
tonically as the conditional density becomes
well approximated by the staircase function
over This forms the basis for tree-based nonlinear
prediction, as explained in more detail below.

Fig. 1. Graphical depiction of the tree growing algorithm using separable
2
p-ary splitting rule. For ap̂ = 2 dimensional state space embedding, the

tree is a quadtree. The root-node is split into four subcells, and the sample
distribution of points is found to be nonuniform. Among the derived subsets,
only the one depicted by the lower left corner square is found to be nonuniform
and is split further.

C. Branch Splitting and Stopping Rules

Here, we describe the generic recursive procedure used for
growing the tree from training data. Letbe an estimate of
the phase space dimensionof the signal. Assume that at
iteration of the tree growing procedure, we have created a
partition and consider the partition cells , which we call
the th parent nodes at depthWe refine the partition by
recursively splitting each partition cell into smaller cells,
which are called children nodes of theth parent.

To control the number of nodes of the tree, we test the
residuals in each partition element of against a uniform
distribution. If the test for uniformity fails in a particular cell,
that cell is split, and parent nodes at depth are created.
Otherwise, the cell is not split and is declared a terminal node.
The set of terminal nodes are called the leaves of the tree. See
Fig. 1 for a graphical illustration of the generic tree-growing
procedure. The final tree specifies a set of leaves

partitioning the state-space together with the empirical
histogram (cell occupancy rate) ,
where is the number of samples that fall into
leaf

1) Cell Uniformity Test: Here, we discuss the selection of
the goodness-of-split criterion that is used to test uniformity.
As above, let denote the -dimensional vector sampled at
time , where the reconstruction dimensionis fixed. Many
discriminants are available for testing uniformity, including
Kolmogorov–Smirnov tests [37], rank-order statistical tests
[16], and scatter matrix tests [26]. Following Breimanet al.
and Zhang [9], [66], we adopt an entropy-like criterion. How-
ever, as contrasted to previous implementations [9], [66], this
criterion is implemented using simple Chi-square goodness-
of-fit test of significance over the distribution of child cell
probabilities.

For a partition of a cell , let be the
number of vectors found in We
assume that the vectors falling into the cells are approximately
i.i.d. and that are approximately multino-
mial distributed random variables with class probabilities

These are reasonable
assumptions when the volume of cell is small and
satisfies a long range decorrelation property (weak mixing), but
we do not pursue a proof of this here. The test of uniformity
is implemented by using the empirical cell probabilities

to test the uniform hypothesis
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against the composite alternative hypothesis
Define the Kullback–Liebler (KL)

distance between and the uniform distribution

(5)

It is easy to show that the generalized likelihood ratio test of
versus decides if , where the threshold

selected to ensure that the probability of false rejection of
is equal to a prescribed false alarm rate (see, e.g., [7, ch. 8]).

However, since the distribution of is intractable
under , the decision threshold cannot easily be chosen to
satisfy a prespecified false alarm level. We instead propose
Pearson’s Chi square goodness-of-fit test statistic, which
has a central Chi square distribution under In particular,
it can be shown [6], [7] that Pearson’s Chi square statistic is
a local approximation to the KL distance statistic (5) in the
sense that

where is distributed as a central
Chi square with degrees of freedom undr

2) Separable Splitting Rule:Another component of the
procedure for growing a tree is the method of splitting
parent cells into children cells. The standard cell splitting rule
attempts to create a pair of rectangular subcells for which all
marginal probabilities are identical regardless of the underlying
distribution. The median-based binary splitting method for
constructing k-d trees [5], [15], [13], [17] is commonly used
for this purpose. As the median is a rank-order statistic, this
gives the property that the predictor is invariant to monotone
transformations of the predictor variables: a property not
shared by most other nonlinear predictors. Here, we present
a variant of the standard median splitting rule that generates

rectangular children cells that only have equal probabilities
when the data is uniform over the parent cell. A version of
this -ary splitting rule that generates nonrectangular cells is
discussed in Section IV.

Let denote the hyper-rectangle constructed
from the Cartesian product of intervals , e.g.,

is a right parallelepiped
in We start with a partition element
Let this partition element contain of the reconstructed
state vectors Define the -element vector

as the projection of the
inscribed reconstruction vectors onto theth coordinate axis.
That is, is the set of th coordinates of those falling
into Denote by the sample median of
the th coordinate axis projections

median

where, for a scalar sequence , the sample median is a
threshold such that half fall to the left and half to the right

median
even
odd

and denotes the rank ordered sequence.
Note that when the points are truly uniform over
the parent cell, the medians will tend to be near the
midpoints of the edges of the parent cell.

The standard median tree implements a binary split of parent
cell about a hyperplane perpendicular to that coordinate
axis having the largest spread of points , where the
hyperplane intersects this coordinate axis at the median
This produces a pair of children cells that contain an identical
number of points. In contrast, we split into rectangular
children cells whose edges are defined by allperpendicular
hyperplanes of the form
This produces a tree with a denser partition than the standard
median tree having the same number of nodes. Unlike the
standard median splitting rule tree, thesechildren cells will
not have identical numbers of points unless the points are truly
uniform over This allows the cell occupancies in the-ary
split to be used directly for uniformity testing as described in
the previous section.

3) Stopping Rule:The last component of the tree-growing
procedure is a stopping rule to avoid overfitting. As above,
define as the
th coordinates of the vectors falling into the hyper-

rectangle Thus, each of the elements of
lies in the interval Under the assumption that these
elements are i.i.d. with continuous marginal probability density
function , the sample median is an asymptotically
unbiased and consistent estimator of the theoretical median

, which is the half mass point of the marginal cumulative
distribution function. Conditioned on , the sample median
has an asymptotic normal distribution [41]

(6)

The stopping rule is constructed under the assumption that
is a uniform density over

Under this assumption, is
the midpoint, and the sample medians
are statistically independent. A natural stopping criterion is
to require that the number of data points within be
sufficiently large so that the Gaussian approximation to the
density of has negligible mass outside of the interval

When this is the case, it can be expected that
will be a reliable estimate of the interval midpoint. More
concretely, we will require that satisfies

(7)

where is a suitable (small) prespecified constant.
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Fig. 2. Family of curves describing cell subdivision stopping rule in terms
of minimum number of pointsN� falling into a rectangular cell� and the
probability criterion� 2 [0; 1]: The vertical axis is the minimum number of
points that will be assigned to a subdivided cell, and the horizontal axis is
the log of �:

Since the are independent, (7) is equivalent to

which, under the Gaussian approximation (6), gives

where is a standard normal random variable (zero mean
and unit variance). Thus, we obtain the following stopping
criterion: Continue subdividing the cell as long as

erf (8)

where erf Use of the asymptotic
representation 1 erf erfc
[3, 26.2.12] gives the log-linear smallversion of (8)

(9)

The right-hand side of (8) is plotted as a function offor
several values of in Fig. 2. Note that as predicted by the
asymptotic (small ) bound (9), the curves are very close to
log linear in As a concrete example, the criterion
(99% of Gaussian probability mass is inside) gives for

and for as the minimum number
of data points for which a cell will be further subdivided.
These numbers are of the same order as those obtained from
the volume estimation criterion used by Badelet al. [6].

D. Computational Cost

The steps outlined in the preceding subsections may be
summarized by the following tree growing algorithm:

1) sampled time series and embedding
parameters, Pearson’s test threshold

2) set of all state vectors
3) nonempty nonterminal leaves exist,

at current depth
4) each cell
5) contains vectors
6) compute the splitting thresholds

7) estimate empirical probabilities at depth
for the children of

8) Compute Pearson’s statistic from the
probabilites

9) is less than threshold
10) is stored as a terminal leaf
11)
12) are stored
13) are stored
14)
15) is stored as an ’empty’ terminal leaf
16)
17)
18)
19) line 3.

The computational cost associated with this tree estimation
algorithm is signal dependent. For example, in the case of a
state space containing realizations of a -dimensional white
noise, the trivial partition will generally pass the
uniformity test, and the algorithm will stop at the root node.
In this case, only a very few computations are needed. In the
following, we give an estimate of the worst-case cost occurring
when the terminal nodes all occur at the same depth.

At depth of the tree, under the assumption that all obtained
cells were stored as nonempty, nonterminal leaves, the tree
has cells. The average number of-dimensional vectors
in each leaf is

The most computation consuming step in the algorithm is the
splitting threshold determination procedure that requires rank
ordering each of the coordinates of the inscribed state vectors.
Using an optimized method (e.g., the heap-sort algorithm [50])
leads to a cost proportional to

By adding the computational costs obtained for each depth in
the range , we obtain the expression of
the total cost

Note that the expression of corresponds to the worst case
where no cells pass the uniformity test until the minimal
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cell residency stopping criterion is reached. This computational
cost is well below that of the well-known nearest neighbor one-
step prediction method:

IV. COMPLEXITY REDUCTION VIA SVD ORTHOGONALIZATION

The number of leaves in the final tree, i.e., the number of
cells in the partition of state space, is a reasonable measure
of model complexity. However, without additional prepro-
cessing of the data, the separable splitting rule described in
the previous section can produce trees of greatly varying
complexity for state space trajectories which are identical
up to a rotation in This is an undesirable feature since
a simple transformation of coordinates in the state space,
such as translation, scale, and rotation, does not change the
intrinsic complexity of the process, e.g., as measured by
process entropy or Lyapunov exponent.

As a particularly simple example, consider the case where
the state trajectory evolves about line segment in two dimen-
sions , where is a white noise
with variance Under the separable -ary partitioning rule
when or , a very complex tree will result.
This is because the Chi-square splitting criteria will lead to
a tree with cell sizes on the order of magnitude ofThis
is troublesome, as a simple rotation of the axis coordinates
by an angle of will lead the partitioning algorithm to
stop at the root node. Here, we perform a local recursive
orthogonalization of the state vector prior to node splitting
in order to produce trees with fewer leaves. This produces
a new orthogonalized sequence of node variables that
are used in place of to perform separable splitting and
goodness-of-split tests discussed in the previous section. The
local recursive orthogonalization described below differs from
a similar principal component orthogonalization for binary
partitioning, first described by Orchard and Bouman [46], in
that all the components of the SVD are utilized for the-ary
partition used in this paper.

A. Local Recursive Orthogonalization

We recursively define a set of orthogonalized node variables
as follows. Let be a matrix of samples

of the -dimensional state trajectory. Let the
covariance of be denoted , and let it have the SVD
(eigendecomposition) diag Define the
root node Next, define the orthogonalized set of
vectors

The matrix is now used in place of to determine the
split of the root node into children according to
the same separable splitting and stopping criteria as before.
In practice, the empirical mean and empirical
covariance are used in place
of and

Now, assume a split occurs at the root node and define
as the matrix of columns of that lie inside

The (empirical) mean and covariance matrix of are

computed. Next, the unitary matrix of the eigenvectors

of is extracted via SVD. This unitary matrix is applied to

to produce an equivalent but uncorrelated set of vectors

where stands for the transpose of the vector containing

ones. Application of this local orthogonalization pro-

cedure over all hyper-rectangles produces
a set of local coordinate rotations that results in changing
the shape of the hyper-rectangles into hyper-parallelepipeds.
When this process is repeated, these hyper-parallelepipeds are
further subdivided, producing, at termination of the algorithm,
a partition of the state space into general polytopes

The general recursion from depthto depth can be
written as

(10)

where

B. Relation to Piecewise Constant AR (PCAR) Models

Once the tree growing procedure terminates, the partitions
can be mapped back to the original state space by a

sequence of backward recursions that backprojects the
node variables into the parent cell via the relation

(11)

Iteration of (11) over yields an equation for backprojection
of to the root node. By induction on, the forward
recursion (10) gives the relation

(12)

where denotes the subset of columns of that are
mapped to terminal node at depth via the sequence of
bijective maps (10), and and are matrices formed
from the telescoping series

(13)

(14)

where is defined as the-dimensional identity matrix.

For any parent node , the covariance matrix of the
rotated data is diagonal, which means that the components
of are separable (in the mean squared sense) but not
necessarily uniform. On this rotated data, the Chi-square test
for uniformity can easily be implemented on a coordinate-by-
coordinate basis. When the tree-growing procedure terminates,
we will have found a set of partition cells
such that each contains points that are (ap-
proximately) uniformly distributed over Thus, (12) gives
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an autoregressive AR model whose coefficients are
piecewise constant over regions of state space

This can be made more transparent by writing theth
component of relation (12) as

(15)

where denotes
the element of , and
is a white noise.

Note that the coefficients for the PCAR representation (15)
may not be stable. There is an alternative approach to or-
thogonalizing the node variables which uses Gramm–Schmidt
recursions and guarantees that all PCAR coefficients are
stable. This method is equivalent to constructing the Schur
complement by adding one coordinate to each vector in the
node, amounting to recursively synthesizing a local stable
AR model over 1, 2, 3, This is tantamount
to performing Cholesky (LDU) factorization of the local
covariance matrices [56], as contrasted with the SVD

factorization described above. In the sequel, the former method
will lead to what will be called a Schur-tree, whereas the latter
will lead to a tree called the SVD-tree.

The PCAR model (12) is a generalization of the AR-
threshold (ART) model called SETAR in Tong [61]. Similarly
to the PCAR model (12), SETAR is an AR model whose
coefficients are piecewise constant over regions of state space;
however, unlike the PCAR model, these regions are restricted
to half planes. In particular, a two-level single coordinate
th-order SETAR model is

if

if
(16)

where As far as we know, filtering, prediction,
and identification of SETAR models have only been studied for
the case where the switching of the AR coefficients depends
on a single coordinate and where the switching
threshold is known. The PCAR generalization of SETAR
models allows transition thresholds to be applied to linear
combinations of past values. As will be illustrated below, the
orthogonalized version of the tree based partitioning algorithm
is well adapted to filtering, prediction and identification over
these models.

V. EXAMPLES AND APPLICATIONS

In this section, the tree-structured predictors are applied to
various real and simulated data examples.

A. Illustrative Examples

To illustrate the parsimony of the local recursive orthogo-
nalization method, we first consider a rather artificial random
process that follows a piecewise linear trajectory through state

(a)

(b)

Fig. 3. Tree-structured predictor for separable splitting rule applied to a
piecewise linear phase space trajectory in two dimensions. (a) Simulated state
space trajectory in two dimensions with superimposed rectangular partition
produced by recursive tree (RT) growing algorithm. (b) Representation of the
quadtree associated with the state-space trajectory depicted in (a).

space (see Fig. 3). A trajectory made of three linear segments
in a two-dimensional (2-D) state space was simulated. The
segments have slopes 1.25,0.25, and 2.5, respectively.

Each segment contains 128 realization of the 2-D state
vector. White Gaussian i.i.d. noise of variance
was added to the trajectory. We first applied the recursive
tree (RT) method in state dimensions without SVD
orthogonalization. Both the rectangular partition of the state
space [Fig. 3(a)] and the tree partitioning algorithm [Fig. 3(b)]
exhibit high complexity. The number of terminal leaves of
the resulting quadtree is driven exclusively by the variance
of the additive noise. We next grew a quadtree using the
local recursive SVD orthogonalization procedure, which will
be called SVD-tree here, described in Section IV. The orthog-
onalization procedure re-expresses the state vectors in their
local eigenbases at each splitting iteration and, as seen from
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(a) (b)

(c)

Fig. 4. (a) Same simulated state-space trajectory as in Fig. 3 but with recursive SVD-tree partitioning. (b) Representation of the SVD-tree associated with
the state-space trajectory depicted in (a). (c) The pairs of estimated (normalized) AR coefficients governing the dynamics in each cell are plotted with
lengths proportional to the occupancy rate (number of points) of the cell.

Fig. 4, produces a tree partitioning of lower complexity with
many fewer leaves. As explained in Section IV, applying the
recursive SVD orthogonalization on a cell synthesizes the
local AR(1) model [recall (15)]

We denote by the unit-length vector

of the AR model synthesized in the cell Fig. 4(c) plots the
set of unit-length vectors for all cells resulting from the
SVD-tree partition.

The length of each segment is plotted proportionally to the
number of points falling into the corresponding cell. Note that

this graphical representation clearly reveals the existence of
three distinct linear segments governing the state trajectories.

B. Chua Circuit Experiments

We ran experiments on a physical chaotic voltage waveform,
measured at the output of a “double-scroll” Chua electronic
circuit (see [40], [49], and [63]).

The nonlinear differential equations governing the Chua
circuit are

(17)
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We built the circuit from “off the shelf” components chosen
to get the following set of parameter values

and The voltage signal at the output of
the electronic circuit was digitized. The sampling frequency
was 14.4 kHz. We chose an embedding dimension to
generate the state trajectory

We used a stopping threshold of data
points, which corresponds to (for ) via (8).
The reconstruction delay was chosen in such a way as to
minimize the mutual information between the coordinates (see
[23] and [19]): In this case, sampling periods. A training
set of points was used to grow the Schur-tree and
obtain the empirical histogram on the leaves of
the tree. A nonlinear predictor of given

was implemented by approximating the conditional
mean using the
tree-induced vector quantizer function and the empirical
histogram. Specifically, with

(18)

where are centroids of the partition cells at the leaves
of the tree, denotes the first element of the vector

are the second throughth elements of the vector
and

is the empirical histogram indexed by
Fig. 5(a) and (b) show time segments of actual measured

and predicted output Chua circuit voltages using the Schur-tree
predictor and the popular but costlier nearest neighbor (NN)
prediction method, respectively. The NN prediction method is
briefly summarized below.

The NN prediction method consists of finding in a learning
sequence the point

in the state space that is the closest (in some metric)
to the current observation and defining the predictor
as As is shown in Devroyeet al.
[17], under certain technical conditions, the mean squared
prediction error of the NN predictor decreases to zero in
The NN predictor was implemented in a manner identical to
the one proposed by Farmer [21]. While more sophisticated
implementations of NN predictors are available, see, e.g., [1],
[20], and [54], they require higher implementation complexity
than Farmer’s implementation for only a small improvement
in prediction error performance. We performed benchmarks in
Matlab 4.2c on a Sun Ultra-1 workstation for 512 one-step
predictions of the SETAR model described above. The CPU
run times were 33.2 s for SVD-tree versus 115.3 s for the NN
prediction algorithm, respectively, with comparable prediction
error performance.

(a)

(b)

Fig. 5. One step forward predictor for the sampled output of the Chua
electronic circuit. (a) SVD-Tree algorithm. (b) the nearest neighbor algorithm.

C. SETAR Time Series Simulations

Fig. 6 presents results for the simulated SETAR model

The time series was embedded in a three-
dimensional (3-D) reconstructed state space with
unit delay The 8-ary Schur-tree was grown according to
the methods described in Section IV. Fig. 6(a) shows time
segments of the actual and predicted SETAR time series and
the associated prediction error. Fig. 6(b) gives a graphical
depiction of the 8-ary tree. Fig. 6(c) shows the the estimates
of the AR vectors governing the SETAR model in each cell
obtained from the recursive local orthogonalization. Note that
these estimated AR vectors cluster in two directions that
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(a) (b)

(c)

Fig. 6. SETAR time series from (5.3). (a) One step forward predictor trajectory and prediction errors obtained from Schur–Tree algorithm. (b) Eight-ary
tree constructed from a 3-D state phase space using Schur–Tree algorithm. (c) Unit-length AR direction vectors.

closely correspond to the two AR(2) regimes of the actual
SETAR model (5.3).

D. Rössler Simulations

The discrete-time R̈ossler system generates a chaotic mea-
surement generated by the nonlinear set of differential
equations

(19)

where and are components of the 3-D state vector of
the R̈ossler system.

We simulated (19) using the following set of parameter
values: and The set of nonlinear
coupled ordinary differential equations were numerically inte-
grated, using an order 3 Runge–Kutta approach. The recorded

time series correspond to the first coordinate of the
system sampled at a period .2

The reconstruction dimension was varied from 2–5, but the
reconstruction delay is maintained to a constant value
The prediction error variance is estimated frompredicted
values by

The Schur-tree was grown from phase space time series
of duration , and the training set consisted of 8192
phase space state vectors. Fig. 7 shows the one-step forward
prediction and errors for NN and Schur-tree methods applied
to the R̈ossler time series. Note that both NN and Schur-tree
predictors have similar trajectories, although the more complex

2To simulate this chaotic system by numerically integrating this set of
ordinary differential equations,h must be set to a much smaller value than
the sampling step of the recorded time series in order to avoid numerical
instabilities. The integration was performed with a time incrementh0

= h=64:
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(a)

(b)

Fig. 7. Simulated time series, one step forward predicted values, and pre-
diction errors for the first coordinate of the R¨ossler system(p̂ = 3) using (a)
the NN algorithm and (b) the Schur–tree algorithm.

NN implementation achieves somewhat smaller prediction er-
ror. The spikes observed in the Schur-tree prediction residuals
are due to transitions between the local models in phase space.

E. Algorithm Comparisons

A comparison of the performance of the four different one-
step forward prediction methods discussed in this paper is
illustrated in Fig. 8 for the Chua circuit measurements and
the R̈ossler simulation. The four methods studied are

• the tree-structured predictor of Section III-C (RT);
• the SVD-tree discussed in Section IV;
• the Schur-tree discussed in Section IV;
• the nearest neighbor (NN) algorithm.

Note the relative performance advantage of the recursive
Schur-tree as compared with the SVD-tree. We believe that
this is due to the instability of the AR model obtained from

(a)

(b)

Fig. 8. Normalized prediction error variance as a function of the reconstruc-
tion dimension for (a) the voltage output of a Chua electronic circuit and (b)
the simulated R̈ossler time series.

SVD-tree; the Schur-tree is guaranteed to give a stable model.
In all the cases, the NN algorithm slightly outperforms the tree-
based methods, but the improvement is obtained at a significant
increase in computational burden.

VI. CONCLUSIONS

We have presented a low-complexity algorithm based on
recursive state space partitioning for performing near-optimal
nonlinear prediction and identification of nonlinear signals.
We have also derived local SVD and Schur decomposition
versions that are naturally suited to piecewise constant AR
models (SETAR). These algorithms were numerically illus-
trated for simulated SETAR measurements, simulated chaotic
measurements, and voltage measurements obtained from a
Chua electronic circuit.
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The tree based prediction approach presented here is related
to the classification and regression tree (CART) technique [9]
and adaptive tree-structured vector quantization (TSVQ) [14].
The main difference is our use of a locally defined recur-
sive SVD orthogonalization and its intrinsic applicability to
piecewise linear generalizations of thresholded AR (SETAR)
models [61]. Our tree structure with SVD orthogonalization
is also related to (unitary) transform coding [27], where the
difference is that the orthogonalization is applied locally and
recursively to each splitting node. Future work will include
detection of the local linearized dynamics and regularization
for smoothing out model discontinuity between partition cells.
A related issue for future study is how to deal with larger
values of the imbedding dimensionThe -ary splitting rule
proposed here produces subcells of equal volume but gives a
model with complexity, i.e., the number of free parameters,
exponential in Therefore, to avoid the need for unreasonably
large amounts of training data, must be held as small as
possible without sacrificing quantization error performance. A
reasonable alternative would be to use the standard binary
splitting rule for growing the model: restricting the splitting
rule to implementation of the subcell uniformity tests.

APPENDIX

Let and be real vector and scalar valued random
variables, respectively. Let the joint distribution of have
the Lebesgue density Define the marginals
and and, for any satisfying , the conditional
density Given a set , the conditional density
function is said to be Lipschitz continuous of order

almost everywhere in (in the Hellinger metric) if
there exists a finite constant , called a Lipschitz constant,
such that for any for which 0

(20)

Lipschitz continuity of the above form is a common explicit
smoothness condition assumed for probability measures and
densities [34], [36]. Lipschitz continuity implies pointwise
continuity of for almost all [34].

For an arbitrary vector and a discrete set of
vectors in let be
a vector function (a vector quantizer) operating onThe
set of quantization cells are defined as the
inverse images of elements of
The following theorem provides a bound on the increase in the
minimum mean square prediction error due to quantization of
the predictor variables

Theorem 1: Let be a partition of Assume that
for each the density is Lipschitz continuous of
order almost everywhere in , and let be the
associated Lipschitz constant. Assume also that

(a.s.). Then

(21)

where and are the quantiza-
tion vectors defined in Lemma 2.

The upper bound in (21) is decreasing in and
equals zero when is piecewise constant in, i.e.,

, where are arbitrary. Thus, in
this case, use of quantized predictor variables do not degrade
optimal prediction MSE. In addition, note that the upper bound
in (21) is decreasing in the mean square quantization error
associated with quantizing the predictor variables

Bounds and asymptotic expressions exist for this
quantity [29], [42] which can be used to make the bound (21)
more explicit.

The following lemmas will be useful in the proof of
Theorem 1.

Lemma 1: Define the optimal predictor
based on the predictor variables Assume that

for some subset of , the density is Lipschitz
continuous of order almost everywhere in and that

(a.s.). Then, is pointwise
continuous almost everywhere over

Proof of Lemma 1:First, observe that for any two functions
and , we have by the triangle inequality

(22)

Therefore, by definition of the conditional mean, for arbitrary

(23)

Applying the Cauchy–Schwartz inequality to the two integrals
in the expression at bottom of (23)

and similarly for the second integral. Hence, Lipschitz conti-
nuity of over gives the bound

(24)

where is the associated Lipschitz constant. This
establishes the lemma.

Lemma 2: Define the optimal predictor
based on quantized predictor variables

Assume that is Lipschitz continuous of order
almost everywhere in and that
(a.s.). Then, for any quantization cell , there exists
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a point such that

Furthermore, the point satisfies the equation

where
Proof of Lemma 2:By definition of conditional expecta-

tion, , where

is the conditional density of given Invoking
Fubini’s theorem [53] to permute the order of integration, we
obtain the Lebesgque–Steiltjes integral representation

where By Lemma 1, is
continuous, and therefore, by the mean value theorem for
Lebesgue–Steiltjes integrals [53], there exists a point
such that

This establishes the Lemma.
Proof of Theorem 1:Define

That follows directly from the fact that the condi-
tional mean estimator minimizes mean square pre-
diction error. Next, we deal with the right-hand side of
(21). It is easily verified by iterated expectation that

0, and
0 (orthogonality principle of nonlinear estimation). There-

fore

Thus, by Fubini [8], we have the integral representation

(25)

where the quantities are defined as in Lemmas 1 and 2.
Invoking the latter lemma, there exists a point such
that , and

0. Therefore, from (25)

Application of the bound (24) on
obtained in the course of proving Lemma 1 yields

where
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