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ABSTRACT

This paper describes an effort to extend the Lempel-
Ziv algorithm to a practical universal lossy compression
algorithm. It is based on the idea of approximate string
matching with a rate-distortion (R — D) criterion, and
is addressed within the framework of vector quantiza-
tion (VQ) [4]. A practical one pass algorithm for VQ
codebook construction and adaptation for individual
signals 1s developed which assumes no prior knowledge
of the source statistics and involves no iteration. We
call this technique rate-distortion Lempel-Ziv (RDLZ).
As in the case of the Lempel-Ziv algorithm, the encoded
bit stream consists of codebook (dictionary) updates as
well as indices (pointers) to the codebook. The idea of
“trading” bits for distortion in modifying the codebook
will be introduced. Experimental results show that,
for Gaussian sources as well as real images, RDLZ per-
forms comparably, sometimes favorably, to static code-
book VQ trained on the corresponding sources or im-
ages.

1. INTRODUCTION

Dictionary coding achieves compression by replacing
blocks of source symbols by indices to some dictionary.
The dictionary is composed of blocks of source symbols,
or phrases, that are expected to occur frequently [1]. In
adaptive lossless dictionary coding such as the Lempel-
Ziv algorithm, the dictionary is built from phrases al-
ready seen in the source sequence, and subsequent oc-
currences of identical phrases are encoded by their in-
dices to the dictionary.

To extend this idea to lossy compression, phrases
from the source are matched to the dictionary with
a fidelity criterion. Along these lines, Steinberg and
Gutman proposed an algorithm that achieves a rate of
R(D/2) given an average distortion D > 0 for a large
class of sources and distortion measures [8]. Koga and
Arimoto further proved that the algorithm achieves the
rate-distortion bound asymptotically for certain sources
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and fidelity criteria [6]. Hence, there is theoretical foun-
dation and motivation for a Lempel-Ziv type of univer-
sal lossy compression algorithm.

In our work, this problem is addressed in a VQ
context. Building the dictionary has the same flavor
as constructing a VQ codebook on-line. Approximate
string matching is similar to quantizing to the “best”
code-vector, with respect to the Lagrangian R + AD.
More precisely, code-vectors are learned from the source
to be encoded, and will be modified to adapt to vari-
ations of the source distribution. No training sets or
iteration are involved. In the encoded bit stream, side
information about the evolution of the codebook is in-
serted between sequences of codebook indices. There-
fore the decoder can reconstruct an identical copy of
the codebook. The construction and adaptation of the
codebook, entropy coding of the code-vector indices,
and complexity issues will be discussed in Section 2.
Results on the performance of RDLZ as compared to
static codebook VQ will be presented in Section 3.

Similar works on adaptive quantization include [5]
which modifies code-vectors based on their partial dis-
tortions, [9] based on the “gold-washing” method, [3]
which refines the codebook at increasing intervals, and
[7] which assumes no side information and only consid-
ers scalar quantization.

2. PRACTICAL ONE PASS ALGORITHM

2.1. Constructing the Codebook

Let x = w{,zg,...,xf\,, zt € A% be a sequence of

source vectors of dimension £. The source alphabet
A may be continuous. Let d(z*,y*) be a distortion
measure on A x A‘, where A is the reconstruction al-
phabet. The codebook C is a set of reconstruction
code-vectors {cf € A*,j =1,..., M}, each of which is
associated with a cell C; = {zf|2{ = cf}, where & is
the quantized version of zf, and an index of rate r(cf)
(length of the index codes in bits).
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In [2], Chou et al. introduced .an iterative algo-
rithm called entropy-constrained vector quantization
(ECVQ) to design vector quantizers that minimize av-
erage distortion subject to an entropy constraint: i)
Given C, each zf is quantized to ! = ci such that
r(ct)+Ade(z¢, ct) is minimized. ii) Then, each cf is up-
dated to the centroid of Cj, and r(c§) = loga(1/P(C;))
is the new rate of the code-vector index. The algorithm
iterates these two steps until convergence is reached.

For a stationary ergodic source, x can be divided
into blocks of length L, i.e. (¢f...2f), (a8 ;... 251),
etc. Steps 1) and 1i) can be applied to these blocks in
turn, and convergence to the optimal quantizer as L
and the number of L-blocks get large is expected.

However, if the stationarity assumption of the source
does not hold, at least within a finite time frame, such
a one pass block updating scheme may not give the
asymptotically optimal quantizer. We have hence stud-
ied the effect of adapting the codebook by “trading” bit
rates for distortion, through adding, splitting, deleting
and updating (towards centroids) code-vectors.

Initial Codebook

Assume the codebook C is initially empty, 1.e. M =
0. Let 7,7 = 1,2,... be the time intervals during
which the j** L-block of the source is being parsed in.
During 71, each source vector z£ is either encoded by an
existing code-vector cf,j =1,...,M, or added to the

codebook as ¢4, (quantized onto A% if A # A). This
can be done by comparing with a distortion threshold
Dy (given as a parameter):

IF dy(zf,ct) < Dy forsomek € {1,..., M},
THEN zf is mapped to the nearest ¢f, ELSE
add zf to codebook.

An initial codebook is constructed. It is clearly sub-
optimal, but the rest of the algorithm will correct this.
In practice, the initial codebook can be given a pri-
ort to avold the overhead in encoding it, which can be
substantial.

Updating Code-vectors

At the end of each 75, {c}} can be updated towards the
centroids of C; calculated during 7;, as is done in the
iterative algorithm described above. However, since
bits are spent to encode the code-vector updates, the
potential reduction in distortion must be large enough
to make this worthwhile.

Let B, bits be required to encode the difference be-
tween the centroid and the original code-vector. Since
not all code-vectors may be updated, the code-vector
index must be specified also. The average overhead to
send a code-vector update (per source vector mapped

to it) is
£ 1
NG
n(c;)

where n(cf) is the count of occurrences of ¢! during 7;.
For dy(z%, y*) = ||zt~ y*||2, the reduction in average
distortion for that code-vector cell is

AD = dy(ct, &),

where & is the centroid.
A code-vector is updated if

AAD > AR. 1)

Adding Code-vectors

During 75,7 > 1, there may be times when a source
vector zf is too far from any existing code-vector. This
may reflect a change in the source distribution, or sim-
ply a rare event. In any case, a prediction 7 of the
“popularity” of the new code-vector is involved.

A new code-vector requires a code for its index. As
will be described in Section 2.2, the indices are en-
tropy coded at the end of each 7;, based on n(cf),i =
1,..., M, gathered during 7;. Assuming that they are
prefix-free codes, one code can split into two by ex-
panding it by one bit (visualize splitting a leaf node of
the Huffman tree).

Let B, bits be required to encode the difference be-
tween the new code-vector zf with the closest existing
code-vector ci‘ Hence,

n(cg) +r(cf) + Ba

A )

AR =

and

AD = dy(ct, z%),

where zf may need to be quantized onto A¢.
With these AR and AD, the add criterion is (1).

Splitting Code-vectors

In [5], it is proposed that the code-vector with the high-
est partial distortion should split. Let D(C;, cf) be the
average distortion of C; with respect to cf. The par-
tial distortion is then defined to be P(C;)D(C;, cf). In
our work, since the criterion is to minimize R+ AD, a
different approach is taken.

Adding a new code-vector also leads to lengthening

of an existing index code by 1 bit. Hence,
r(cf) + B,
n(ef)
It is difficult to estimate A D), since it depends on

the geometry of the code-vectors. A heuristic estima-
tion is given by

AR=1+

AD = KD(Cj, cb),
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where K is a constant describing the fractional reduc-
tion in distortion by splitting the code-vector.
Unsurprisingly, the splitting criterion is again (1).

Deleting Code-vectors

In [2], code-vectors whose cells are unpopulated after
an iteration are effectively deleted from the codebook.
For our purpose, it may be worthwhile to keep the code-
vectors around, since adding them later on will involve
considerable overhead. At the end of each 7;, code-
vectors with n(ct) = 0 will be assigned a count of 1
before updating the index codes for 7j41. An exception
for this is when the codebook is already too large, in
which case some of the unpopulated code-vectors are
deleted.

2.2. Entropy Coding of the Codeword Indices

As mentioned before, codes for code-vector indices are
updated at the end of 7; based on n(cf) gathered during
7;. They will be in effect during 7;41. Since both the
encoder and decoder have access to n(cf), updates of
the index codes do not have to be transmitted. Entropy
codes such as Huffman code, Shannon-Fano-Elias code,
or arithmetic code can be used for this purpose.

Encoding of the source is done in a manner similar
to Lempel-Ziv coding: each source vector is encoded
by either a new code-vector or an index to the code-
book. A new code-vector is described by the index
of the nearest existing code-vector and the differential,
which can be coded by a fixed-rate scalar quantizer. At
the end of each 7;, code-vector updates are transmit-
ted likewise. Of course, escape sequences to distinguish
side information from code-vector indices are necessary,
and their overhead should be considered within the de-
sign loop. Deletion can be done synchronously at both
ends without side information.

2.3. Complexity of the Algorithm

Finally, a brief note on the algorithmic complexity. En-

coding each source vector involves computing M de(-,-) -

operations (one for each code-vector) and finding the
minimum. FEvaluating whether adding a new code-
vector is worthwhile involves one comparison between
the lowest dy(-,) and a threshold (computed at the
end of each 7;). Also, several book-keeping operations,
such as incrementing n(cf), are involved during each
encoding step.

Once every L vectors, new entropy codes for the
code-vector indices are computed. Code-vector dele-
tion, updating towards centroid, and threshold compu-
tations are also performed. As L becomes large, these
computational overheads become insignificant. Note

that L should be large enough so that accurate statis-
tics can be estimated, and small enough so that the
codebook can adapt to short-term non-stationarity.

Hence, RDLZ is of the same order in complexity
(O(MY) per source vector) as static codebook VQ in
terms of source encoding and decoding, except for tree-
structured vector quantization (TSVQ) [4], which has a
lower complexity. However, the average codebook size
M for RDLZ can be kept much smaller.
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Figure 1: Performance of ECVQ, TSVQ and RDLZ on
stationary memoryless Gaussian signals. — - - ECVQ, ...
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Figure 2: Adaptation of RDLZ Codebook. (a) Source dis-
tribution at time 1, p = 0.9, (b) codebook at time #1, (c)
source distribution at time t2, p = 0.6, (d) Codebook at
time 2. Results: RDLZ gives SQNR = 27.1 dB, rate =
2.3986; TSVQ gives SQNR = 27.1 dB, rate = 2.683
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Figure 3: Lenna encoded by RDLZ with initial codebook
designed on Barbara. PSNR = 30.84 dB, rate = 0.5142
bpp. TSVQ gives PSNR = 30.77dB, rate = 0.6854 bpp.

3. EXPERIMENTAL RESULTS

We have performed experiments on signals generated
by stationary ergodic sources. Figure 1 shows the per-
formance of RDLZ on a memoryless Gaussian signal
of 120,000 samples as compared to TSVQ and ECVQ.
From the results, it can be concluded that RDLZ per-
forms nearly as good as ECVQ and better than TSVQ
except for very low bit rates.

For non-stationary sources, RDLZ will outperform
static codebook VQ. Figure 2 shows the RDLZ code-
book at two different instants. Here, the source is a
correlated Gaussian source with varying correlations (p
from 0.9 to 0.6). Vectors of dimension 2 are used, so
that they can be conveniently plotted on the Cartesian
plane. The codebook is clearly adapting to changes in
the source statistics.

The algorithm was also tested on real images using
vectors of dimension 4 x 4. An initial codebook of size
1000 was designed on the image Barbara as described
in Section 2.1. It is then used to code Lenna (Figure 3)
and another image of a different nature (Figure 4). Re-
sults of TSVQ (trained for the corresponding images)
are included for comparison.
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