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ABSTRACT

1™ optimal estimators guarantee the smallest possible es-
timation crror energy over all possible disturbances of fixed
cnergy. and are therefore robust with respect to model un-
certainties and lack of statistical information on the exoge-
nous signals.  We have recently shown that if prediction
crror is considered, then the celebrated LMS adaptive fil-
tering algorithm is H™ optimal. In this paper we consider
prediction of the filter weight vector itself, and for the pur-
posc of coping with time-variations, exponentially weighted,
finite-memory and time-varying adaptive filtering. This re-
sults in some new adaptive filtering algorithms that may be
uscful in uncertain and non-stationary environments. Sim-
ulation results arc given to demonstrate the feasiblity of the
algorithms and to compare them with well-known H? (or
least-squares based) adaptive filters.

1. INTRODUCTION

In contrast to Wiener and Kalman filter theory which re-
quire a priori statistical information of the input data, adap-
tive filtering has been widely used to cope with time varia-
tion of system parameters and lack of such a priori knowl-
edge. Recently, following some pioneering work in robust
control theory (see ¢.g. [1]), there has been an increasing
interest in minimax estimation (see [4, 5, 6] and the refer-
ences therein) with the belief that the resulting so-called
H™ algorithms will be more robust and less sensitive to
model uncertainties and parameter variations.

The similarity between the objectives of adaptive filter-
ing and //™ estimation leads one to suspect some connec-
tion between the two. Indeed it turns out (see [7]) that the
celebrated LMS algorithm [2], which is widely used in adap-
tive filtering, is H° optimal. This result gives more insight
into the inherent robustness of LMS and why it has found
wide applicability in such a diverse range of problems.

In this paper we further pursue the connections between
adaptive filtering and H™ estimation by considering algo-
rithms for the prediction of the complete filter weight vec-
tor, and by developing a host of H* algorithms to deal with
time-variations and non-stationary signals. The goal of this
paper is to outline the use of the H® criterion in the design
of adaptive filter algorithms. There are, no doubt, a wide
variety of other H™ adaptive algorithms (not considered
here) that could be worthy of further scrutiny.
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2. ROBUSTNESS AND H* ESTIMATION

H?-optimal (i.e. least-squares based) estimators, such as
the RLS algorithm or Kalman filter, are maximum-likelihood
and minimize the expected prediction error energy, if we as-
sume disturbances that are “independent zero-mean Gaus-
sian random variables”. However, the question that begs
itself is what the performance of such estimators will be if
the assumptions on the disturbances are violated, or if there
are modelling errors in our model so that the disturbances
must include the modelling errors? In other words

- @5 it possible that small disturbances and modelling
errors may lead to large estimation errors?

Obviously, a nonrobust algorithm would be one for which
the above is true, and a robust algorithm would be one for
which small disturbances lead to small estimation errors.
More explicitly, in the adaptive filtering problem, where we
assume an FIR model, the true model may be IIR, but we
neglect the tail of the filter response since its components
are small. However, unless one uses a robust estimation
algorithm, it is conceivable that this small modelling error
may result in large estimation errors.

The problem of robust estimation is thus an important
one, and the H® estimation formulation is an attempt at
addressing it. The idea is to come up with estimators that
minimize (or in the suboptimal case, bound) the maximum
energy gain from the disturbances to the estimation errors.
This will guarantee that if the disturbances are small (in
energy) then the estimation errors will be as small as pos-
sible (in energy), no matter what the disturbances are. In
other words the maximum energy gain is minimized over all
possible disturbances. The robustness of the H estimators
arises from this fact. Since they make no assumption about
the disturbances, they have to accomodate for all conceiv-
able disturbances, and are thus over-conservative.

The following definition implies that the H* norm may
be regarded as a maximum energy gain.

Definition 1 (The H* Norm) Let hy denote the vector
space of square-summable complez-valued causal sequences
with inner product < {fr}, {gx} > = Z:O=o fegr . where %
denotes complex conjugation. Let T be a transfer operator
that maps an input sequence {u;} to an output sequence

{y:}. Then the H*® norm of T is defined as

llyll,

2

sup
u#0,u€ho

where the notation ||ul|, denotes the ho—norm of the causal

sequence {ux}, viz., ||u||; = Z:cj—_o Upuk.
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2.1. Problem Formulations

In adaptive filtering we assume that we observe an output
sequence {d;} that obeys the following linear filter model

di:h?w-{—vi, (1)

where hT = [ hiv  hiz hin ] is a known input vec-
tor, w is the unknown filter weight vector that we intend to
estimate, and {v; } is an unknown disturbance sequence that
may include modelling errors. Let w; = F(do,d1,...,d:)
denote the estimate of w given the observations {d;} and
{h,} from time O up to and including time 1.

Since we are first interested in predicting the output of
the filter, we define the output prediction error as

T T
ei = h; w— h; wi—,

i.e., as the difference between the uncorrupted output hTw
and hTwi_1, the output predicted at time 7 — 1. Any choice
of estimation strategy F(.) will induce a transfer operator

from the disturbances {u~ 2 (w—w_1), {vj};=0} (Where w_,
is an initial estimate of the weight vector w and p is a
positive constant reflecting a priori knowledge of how close
w is to w—1) to the output prediction errors {e;};_o, that
we shall denote by T,:(F). See Figure 1.

—_—
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T (F) —
—_— € =

T
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Figure 1: Transfer operator from disturbances to output
prediction error.

In the H* framework, robustness is ensured by mini-
mizing the maximum energy gain from the disturbances to
the estimation errors. This leads to the following problem.

Problem 1 (Output Prediction) Find an H*-optimal
estimation strategy wi; = F(do,d1,...,d:) that minimizes
7o {F)N.., and obtain the resulting

inf x| T (Pl

07

2
)

.
o lesl?

2=
wtw—ws P4y il
(2)
In some applications (e.g., in system identification) one
is interested in estimating the weight vector itself. In such
cases we need to define the weight prediction error @; =
w — wi—1. As before, any choice of estimator F(.) will in-

It

inf » SUPy veh,

duce a transfer operator from the disturbances {u__%(w -
w_1}, {¢, };=0} to the weight prediction errors {@;};_o. This
transfer operator we designate by Te :(F).

Problem 2 (Weight Prediction) Find an H*-optimal
estimation strategy w; = F(do,ds,...,d:) that minimizes
T F)l . and obtain the resulting

22 = inf |[To ()2,
ol

In the above two problems we have asumed that the
weight vector w is constant in time. However, in many ap-
plications we need to cope with time-variations in w itself.
One approach for such non-stationary situations is to use
a so-called ezponential window. The exponential window
gives (exponentially) larger weight to the more recent data,

“whereby we may be able to compensate for a time-varying

T
w— hlw;_1
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w. In particular, the prediction error and disturbance en-
ergies will be computed as:

i i
Z)\_] le;I°  and Z)\ﬂ[u][{
1=0 =0

where 0 < A < 1 is the so-called forgetting factor that is
chosen based upon a priori knowledge of how fast the weight
vector varies with time.

Now for any choice of estimator F, we shall denote by

(3)

T,i(F) the transfer operator from the disturbances {1~ 3 (w—

'U/‘—-]),‘{)\—%‘Uj};zo} to the prediction errors {/\_%61}320,
We are thus lead to the following problem.

Problem 3 (Exponential Weights) Find an H -oplimal
estimation strategy w; = F(do,d1,...,d:;) that minimizes
T (F)|lo, and obtain the resulting

R

I

infr ||Thi (F)IE
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()
Another approach for dealing with time-variations is the
so-called sliding or finite-memory window. In this case one

only considers the last L data points. Thus the prediction
error and disturbance energies are computed as

inf

i

Supw,u €ho

i

Z le;]* and

j=i~L41

i

S Il

J=i— L1

(5)

respectively.
Defining by T, (F), the transfer operator from the dis-
1
turbances {u~2 (w — w—1),{v;};oi_ 141} to the prediction

errors {e;} r+1, We have the following problem.

1
7=t~
Problem 4 (Finite Memory Pr.) Find an 1™ -optimal
estimation strategy w; = F(do,dy,...,d:) that minimizcs
|Te,i(F)llo, and obtain the resulting

v = inf 172 (F))%-

2.2. Solutions

Finding the optimum value of v in the preceding problems
essentialy amounts to finding the maximum singular value
of a linear time-varying operator. Upper bounds on v can
be found by checking for the positivity of the solution of
a certain time-varying discrete-time Riccati recursion. Al-
though both approaches can be used in principle, they re-
quire knowledge of all the input data vectors {h,}.

Since in adaptive filtering problems we are given, and
are forced to process, the data in real time, we cannot store



all the data and use the aforementioned methods to com-
pute bounds for . Therefore the main effort in H* adap-
tive filtering is to obtain bounds on < that use simple a
priori knowledge of the {h;} and not their explicit values.

Once such bounds are found, the adaptive filters readily
follow from the standard solution to the H estimation
problem (see e.g. [4]). In what follows we shall call the
input vectors {h;} exciting if,

N
Zh,Th, = occ.
i=0

Morcover, we shall define

lim
N =00

Iy = sup Iz;]‘h,' , h=inf h?h,‘
; 1

@

and
=1 v

| T L T
R,=-:E h;h; , R; g h;h; .
; 0'1% 1y

y=

j=i—L+1
Theorem 1 (Solution to Problem 1) If the input vec-
tors h; are cxciting and

uh <1,

(6)
then

Yo = L. (7)
If this is the case, an optimal H® estimator is given by the
LMS algorithm with learning rate p, viz.

(8)

Note that, according to Theorem 1, the LMS algorithm
guarantees that the energy of the prediction errors will
never exceed the energy of the disturbances.

Note also that, via (6), Theorem 1 gives an upper bound
on the learning rate p that guarantess the H* optimality
of LLMS. This is in accordance with the well-known fact that
L.MS behaves poorly if the learning rate is chosen too large.
Theorem 2 (Solution to Problem 2)

7o = inf -
' PIEESs)

where &( R;) denotes the mazimum singular value of R;. An
optimal H™ estimator is given by

Pih;

wi = wi—y + phi(di — h,Twi_l) , w1

1
T (R

(9)

T
w; = Wi—1 + Im(dz —h; wi_t), w-1 (10)
where P; satisfies the recursion

PR = P74 hih] — 4701, (11)

initialized with Py' = (p™' — 473 1.

Comparing the algorithm of Theorem 2 with the RLS
algorithm [3], we note that the only difference is in the
covariance update which, due to the subtraction of the di-
agonal matrix 21, is more conservative than that of RLS.
This ensures that P;, and hence the gain vector in Theorem
2, do not tend to zero, and is reminiscent of some ad-hoc
schemes that are employed with RLS to guarantee that the
gain vector does not go to zero (see [3]).
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Theorem 3 (Solution to Problem 3)

1—-A

vX < maz (ph, 1+ )- (12)

[ adl

An H® estimator is given by (10), where now P; satisfies

P = AP 4 Mh] = 4% hihY (13)

initialized with Pyt = ™I — v *hoh{ .
Note that if zh < 1 (in accordance with (6)) then
1— X

A

The second term in the above expression shows the devia-
tion from the optimum value of v = 1, that was obtained
in Theorem 1, and that we must pay for because of the
time-variation in the weight vector w.

B+

[l sl

Theorem 4 (Solution to Problem 4)
h +&(RE)

TRl "

7L < sup

An H® estimator is given by the following equations

Pfh;_y,

—_— k(i kD wi 15
_]-+h,‘T_LPidhi—L(d L i—-LW 1) ( O)

d
wi_y = Wi—1 +

for “downdating”, with

(P =P = (U= 2"k, (16)
ond d Pih, T, d -
Wi = Wiy F 1+h,TPihi(di—hi wi1) (17)

for “updating”, with
PR = (PY™ + (L= i Dhihly. (18)

Note, from Theorem 4, that if uh < 1 then vy, < 1,
and that if gk > 1 then v, > 1. However, the case uh =
1 deserves special attention since it leads to the following
LMS-type finite-memory algorithm.

Corollary 1 (Finite Memory LMS) Suppose that uh =
1. Then v =1, and an H* optimal estimator is given by
the following LMS-type algorithm

wiy = wicy — phiop(dieL — hi_pwis1) (19)
for “downdating”, and
wi = wd  + phi(d; — rFwi ) (20)

for “updating”.
2.3. General Time-Variation

In this section we shall consider a time-varying filter model
of the form

di = hi zi + vi, (21)
where the only difference with (1) is that {z:}, the weight
vector we intend to estimate, is time-varying. As before,
we shall denote by £; = F(do,d1,...,di~1) the prediction
of the weight vector z;, and define the output prediction
error as

T T 4
e, = h; xz; — h; Z,.



Note that since the time variation in the weight vector

zi,
0T = Zit1 — X;

is unknown, we shall consider it as a disturbance. Thus for
every choice of estimator F we will have a transfer operator
from the disturbances {u“é(zo—io), {v;};=0, q‘%{éxj};zo}
(where ¢ is a positive constant that reflects a priori knowl-
edge of how rapidly the weight vector z; varies with time)
to the prediction errors {e;}j—o, that we shall denote by
Ty,i(F). We are thus led to the following problem.

Problem 5 (Time-Variation) Find an H® -optimal es-
timation strategy £; = F(do,d1,...,di—1) that minimizes

[1Tg.i(F)ll,, and obtain the resulting
2 _ 2
Yo =f | Toi(Fll
2
e
=inf sup lellz
F x9,v,62€hy

ptzo — 2of2 + [Jolf3 + ¢~ |jéz]l5
(22

We have the following solution to the above problem.
Theorem 5 (Solution to Problem 5)
e <1+ gh. (23)

An H® estimator is given by

. N Pihi - R
Tigl = Ty —|'- I‘m((ﬂ — h;‘rl}), To (24)
where .
Pl =P =95 k], (25)

and B; satisfies the recursion
Py = [Pi"l +(1 - 79_2)hih?]_1 +ql, (26)
initialized with Py = pl.

Note, as before, that the second term in the bound v4 <
1 + gh, reflects the deviation from the optimum value (of
Theorem 1) that we must incur due to the time-variation
in the weight vector z;.

3. SIMULATION RESULTS

Due to lack of space we shall only describe one typical sim-
ulation result here. To this end, consider the model (21)
where the weight vector z; is now a scalar. To reflect time-
variation we chose dz; = .02, and to reflect both noise and
modelling error,

v; = .1 % (h,-:z?i)3 + n;,

where n; is a zero-mean Gaussian random variable with
variance o? = .04. We chose zo = —1 and considered 100
time samples so that 100 = 1. We predicted the output
of the filter using various H* and H? adaptive algorithms
and computed the prediction error energy for each. The
resulting prediction error energies were averaged over 50

independent runs, and the results are given in Table 1. The
H® algorithms considered were LMS and the algorithms
of Theorems 3 and 5, and the H? algorithms were RLS,
exponentially-weighted RLS (denoted by A-RLS) and the
Kalman filter (denoted by KF). Note that the prediction
error energies for the H* algorithms are virtually iden-
tical, and that although the exponentially-weighted RLS
algorithm performs significantly better than RLS and the
Kalman filter, it does not perform as well as the H™ al-
gorithms. (The parameters used in this simulation were
g =.9, A =.9and g =.0004.)

LMS | Thm. 3 | Thm. 5
Yooglei® | 148 [ 154 1.48
RLS | A-RLS KF
Socgleil” [ 600 | 208 5.11

Table 1: The H*® and H? algorithms.
4. CONCLUSION

In closing, we should note that if one has a priori knowledge
of the underlying statistics and distributions of the signals,
one is always best served by considering algorithms that are
specifically tuned for the situation at hand. On the other
hand, if one does not have such a priori knowledge and
uses an algorithm that makes specific assumptions about
the disturbances, then the algorithm may perform poorly
if these assumptions are not met. [I™ optimal algorithms
will therefore be most applicable in uncertain environments
where there may be modelling errors, and where the statis-
tics and/or distributions of the disturbances are not known
(or are too expensive to obtain).
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