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A B S T R A C T  
I/ ' o l ) ~  iiliiil cshia tors  giiaraiit,ee the smallest possible es- 
1 iiliiil  io11 (~rror  c~i~crgy ovcr a11 possilde disturbances of fixed 
(.ii('i.gy. iRil(1 iirc IlicrcA'orc: r o b u s t  wit.11 respect to model un- 

iiiicl I ; ic4 i  of slatistical information on the exoge- 
11011s sigliitls. 'We haw recent,ly shown that if prediction 
( ' i w i .  is cwiisidc~iwl. t . l in i i  t,he celrl>rat,ed LMS adaptive fil- 
I criiig iiIgorit,tiiii is l /  K' opt.iriia1. I n  this paper we consider 
1)ixdicIioii of I,lic filt.er weight. vect.or itself, and for the pur- 
 ow o f  col)iiig wit t i  time-variations, exponentially weighted, 
fiiiitc-iii(!iiioi.y i i i i t l  time-varying adaptive filtering. This re- 
s id (  s i i i  some I I C W  adaptive filt.ering algorithms that may be 
iisc.ful iii ui iwrtain  arid non-stationary environments. Sim- 
itliitio1i results arc given to demonstrate the feasiblity of the 
iilgoi.it liiiis ancl 1.0 compare them with well-known H2 (or 
l(biist,-s(j 11 i i r ~  I )ns.ed ) adaptive fil t (SIX.  

1. 1NTR.ODUCTION 

Iii  coiit,ri-ist, t,o Wiener and Kalman filter theory which re- 
quire, a 1)rioi.i stat,istical information of the input data, adap- 
tive filt.ering 1ia.s been widely uscd t,o cope with time varia- 

tciii parameters and lack of such a priori knowl- 
cwtlp, following some pioneering work in robust 

c.g. [l]). t,hcre has been an increasing 
est,iniation (see [4, 5, G] and the refer- 

ciiccs t liereill) with the belief that. the resulting so-called 
I/' algorithnir; will be more robust and less sensitive to 
riiotlel uiicert.airities and parameter variations. 

' 1 ~ 1 1 ~  siiniliirit,y Ixt,ween the objectives of adaptive filter- 
iiig i i i i d  // '" '  cstimat,ion leads one to suspect some connec- 

) t i  I)el.\\,crn tlie two. Indeed it turns out (see [7]) that the 
I~I>ri1t,t.d LMS algorithm [2], which is widely used in adap- 
T filtering, is W" opt,imal. This result gives more insight 

iiito the inherent rohust,riess of LMS and why it has found 
\vide applicaliiliity in such a diverse range of problems. 

I n  t h i s  paper we furt,her pursue the connections between 
atlaplive filtering and H" estimation by considering algo- 
[.it hins for t,he ]prediction of the complete filter weight vec- 
101 '~  and lip developing a host of H" algorithms to deal with 
tirne-variat,ions and non-stationary signals. The goal of this 
paper is to outline the use of the Hm criterion in the design 
of adapt,ive filt,er algorithms. There are, no doubt, a wide 
varidy of other I f m  adaptive algorithms (not considered 
hcre) t,liat could be worthy of further scrutiny. 
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2. R O B U S T N E S S  A N D  H" E S T I M A T I O N  

H2-optimal (i.e. least-squares based) estimators, such as 
the RLS algorithm or Kalman filter, are maximum-likelihood 
and minimize the expected prediction error energy, if we as- 
sume disturbances that are "independent zero-mean Gaus- 
sian random variables". However, the question that begs 
itself is what the performance of such estimators will be if 
the assumptions on the disturbances are violated, or if there 
are modelling errors in our model so that the disturbances 
must include the modelling errors? In other words 

- i s  it possible that small disturbances and modelling 
errors m a y  lead to large estimation errors? 

Obviously, a nonrobust algorithm would be one for which 
the above is true, and a robust algorithm would be one for 
which small disturbances lead to small estimation errors. 
More explicitly, in the adaptive filtering problem, where we 
assume an FIR model, the true model may be IIR, but. we 
neglect the tail of the filter response since its components 
are small. However, unless one uses a robust estimation 
algorithm, it is conceivable that this small modelling error 
may result in large estimation errors. 

The problem of robust estimation is thus an important. 
one, and the H" estimation formulation is an attempt at. 
addressing it. The idea is to come up with estimators that 
minimize (or in the suboptimal case, bound) the maximum 
energy gain from the disturbances to the estimation errors. 
This will guarantee that if the disturbances are small (in 
energy) then the estimation errors will be as small as pos- 
sible (in energy), n o  matter what the disturbances are. In 
other words the maximum energy gain is minimized over all  
possible disturbances. The robustness of the H" estimat,ors 
arises from this fact. Since they make no assumption about 
the disturbances, they have to accomodate for all conceiv- 
able disturbances, and are thus over-conservative. 

The following definition implies that the H" norm may 
be regarded as a maximum energy gain. 

Definit ion 1 ( T h e  H" N o r m )  Let h ~ )  denote the vector 
space of square-summable complex-valued causal sequrrices 
with inner product < { f k } ,  { g k }  > = E,"==, f l g k  , tohere * 
denotes complex conjugation. Let T be a transfer operator 
that maps a n  input sequence {ut} to a n  output seqcrence 
{y,}. T h e n  the H" norm of T is de$ned as 

l lvlln llTllm = SUP - 
u+n,uch2 1 1 ~ / / 2  

where the notation 
seyuence {uk>, viz., 1 1 ~ 1 1 :  = E,"=, u ; u k .  

denotes the hi?-norm of the causal 
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2.1. Problem Formulat ions 

I n  adaptive filtering we assume that we observe an output 
sequence { d , }  t,hat obeys the following linear filter model 

d, = h?w + u t ,  (1) 

where hT = [ hi1 hi, ] is a known input vec- 
t,or, w is the unknown filter weight vector that we intend to 
estimate, and { u t }  is an unknown disturbance sequence that 
may include modelling errors. Let 20, = F ( d o ,  d l ,  . . . , d ; )  
denote the estimate of w given the observations { d j }  and 
{ l a , }  from time 0 up to and including time z .  

Since we are first interested in predicting the output of 
the filter, we define the output prediction error as 

h;2 . . . 

e ,  = hTw - hTwi-1, 

i.e.. as the difference between the uncorrupted output hTw 
arid h?wt-1, the output predicted at time z - 1. Any choice 
of estimation st,rategy F(.) will induce a transfer operator 
from the disturbances { p - $ ( w - w - ~ ) ,  { ~ 1 ~ } ; = ~ }  (where w-I 
is an initial estimate of the weight vector w and p is a 
positive constant reflecting a priori knowledge of how close 
w is to w-1) to the output prediction errors that 
we shall denote by To,, (F). See Figure 1. 

In the above two problems we have asumed that the 
weight vector w is constant in time. However, in many ap- 
plications we need to cope with time-variations in w it,self. 
One approach for such non-stationary situations is to use 
a secalled exponential window. The exponential window 
gives (exponentially) larger weight to the more recent data, 
whereby we may be able to compensate for a time-varying 
w.  In particular, the prediction error and disturbance en- 
ergies will be computed as: 

where 0 < X < 1 is the so-called forgetting factor t,hat is 
chosen based upon a priori knowledge of how fast t,he weight, 
vector vanes with time. 

Now for any choice of estimator F, we shall denote by 
r ~ , j ( F )  the transfer operator from the disturbances {p -  f ( LIJ- 

wi- l ) ,  { X - ~ W , } ~ = ~ }  to the prediction errors {X-:e,};,o. 
We are thus lead to the following problem. 

Problem 3 (Exponent ia l  Weights) Find ran Hc"-optiirinl 
estimation strategy 20; = F ( d 0 ,  d l ,  . . . , d , )  that minirnizcs 
IITA,~(F)~~,, and obtain the resulting 

F 

T 
"' I hTw = - hi w , - ~  
a? 

Figure 1: Transfer operator from disturbances to output 
prediction error. 

I n  the H" framework, robustness is ensured by mini- 
,:!i,/!:ig the maximum energy gain from the disturbances to 
the estimation errors. This leads to the following problem. 

Problem 1 ( O u t p u t  Predict ion)  Fznd an Hw-optrmal 
estzmatzon strategy wt = .T(do, d l ,  . . . , d,) that mrnrrnizes 
IlT, t (F ) l l x ,  and obtazn the resultnng 

In some applications (e.g., in system identification) one 
is interesled in estimating the weight vector itself. In such 
cases we need to define the weight prediction error 6, = 
tL' - w t - l .  As before, any choice of estimator F(.) will in- 
illice a transfer operator from the disturbances { p - i ( w  - 
K L I J ,  { L , } ; = ~ }  to the weight prediction errors {W,};=o. This 
I ransfer operat,or we designate by Ts , t (F) .  

Problem 2 (Weight Predict ion)  Find un H"-opt imal  
r..stimation strategy 70, = F ( d 0 ,  d1 ,  . . . , d , )  that minimizes 
l l T~ ,L (F ) l /m ,  und  obtain the resulting 

rf = iFf I I T ~ , ~ ( . T ) I I ~ .  

( . I )  

Another approach for dealing with time-variat.ions is t . l x  
so-called sliding or finite-memory window. I n  t,liis cast: oiic 
only considers the last L data points. Thus the prcdict,ion 
error and disturbance energies are corripiit.ctl as 

2 le,12 and 2 11',12, (S) 
j = r - L t l  ) = I  - I , +  1 

respectively. 
Defining by T L , ~ ( F ) ,  the transfer operator froin t h c  dis- 

turbances { p - : ( w  - ~ u - 1 ) :  { ~ 1 ~ } ; = ~ - ~ , ~ ~  } t.o [.tic. I ) i w l i ( t i o i i  

errors {e3}i=t-Lt, ,  we have the following pro1)kiii. 

Problem 4 (F in i te  M e m o r y  Pr . )  F'ind a n  l l 'x '-optzn/d 
estimation strategy 'wt = IF(&, ( 1 1 ,  . . . , c l , )  t lrrrt  tt2zthirtti:c.s 

l / T ~ , i ( F ) l l ~ ,  ond obtain the resulting 

r? = inf I /T=, . (~ ) / / : , -  

2.2. Solut ions 

Finding the optimum value of y i r i  t.he precctliiig ~ ~ r o l ~ l ~ ~ ~ ~ s  
essentialy amounts to finding the maximum singular valiie 
of a linear time-varying operator. Upper botirids 011 -/ ciiii 

be found by checking for the positivit,y of t,he solnt.iori o f  
a certain time-varying discrete-time Riccati reciirsioir. ill- 
t,hough bot,h approaches can be izsed in principle. thcy re- 
quire knowledge of u11 the input data vect,ors { h l } .  

Since in adaptive filtering problems we arc givcn, and 
axe forced to process, the data in real time, we callriot, st.ore 
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all the data and use the aforementioned methods to com- 
p i te  bounds for y. Therefore the main effort in H” adap- 
tive filtering is to obtain bounds on y that use simple a 
priori knowledge of the { h , }  and not their explicit values. 

Once such bounds are found, the adaptive filters readily 
follow from the standard solution to the H” estimation 
probleiii (see e.g. [4]). In what follows we shall call the 
input vectors { / i t }  e x i t i n g  if ,  

N 

liin X h T h ,  = CO. 
N-iCU 

t = O  

I\/loroo~~c:r, w(: shall definc: 

illltl 
t 

j=0 J = l - L + l  

Tlic!orc!iii 1 (Solutioii  t o  P r o b l e m  1) [f the input vec- 
tor~s / t ,  urc r.rcitirag a r i d  

prl < 1, (6) 

yo = 1. (7) 
l h ( . I l  

I f  t h i s  i s  t he  case, N ~ Z  optimal H” estimator is  given b y  the 
/,A1.S algorithm with learning rutk p ,  viz. 

tut = cut-1 + p h , ( d ,  - h T w t - i )  , W - 1  ( 8 )  

Note  that., according to Theorein 1, the LMS algorithm 
guarantees that the energy of the prediction errors will 
iicvcr exc-eed t,he energy of the disturbances. 

Note also that., via ( G ) ,  Theorem 1 gives an upper bound 
on (Iic Icariiing rat,e /I, that guarant,ess the H” optimality 
of I,h4S. ’Tliis is in accordance with the well-known fact that 
I,MS I)c4iaves poorly if t,he learning rate is chosen too large. 
Tlioorciii 2 (Solut ion to Problem 2) 

(9) 
1 

7;.  = inf 
I - -  \i & ‘ ( 1 + 1 )  + &a2(Rc)’ 

rilhcrc~ ti( H,) tlciiotes the max imum singular value of R,. An 
op t ima l  N =’ estimator is given by 

w-1 (10) 

U J ~ ~ R  P, satisfies the recursion 

P,;l, = Pt-’ + h,hT - 7-T21,  (11) 

initicilized with P t ’  = (p-’  - -yFz)Z. 

Coinparing the algorithm of Theorem 2 with the RLS 
algorithm [ 3 ] ,  we note that the only difference is in the 
covariance update which, due to the subtraction of the di- 
agonal matrix -,:’I, is more conservative than that of RLS. 
This ensures that, F‘%, and hence the gain vector in Theorem 
2,  do not, tend to zero, and is reminiscent of some ad-hoc 
schemes that are employed with RLS to guarantee that the 
gain vector doe;; not, go to zero (see [ 3 ] ) .  

T h e o r e m  3 (Solut ion to P r o b l e m  3) 

(12)  

An H” estzmator a s  yzven b y  ( lo) ,  where now P, satzsjies 

Pcyl, = AP;’ + X h , h ~  - y;2hc+ihT+l,  (13) 

znztzalzzed wzth P l ‘  = p - ’ I  - 7T2hohT .  

Note that if pE < 1 (in accordance with (6)) then 

l - x  h 
r:51+- x ‘ E ’  

The second term in the above expression shows the devia- 
tion from the optimum value of y = 1, that was obtained 
in Theorem 1, and that we must pay for because of the 
time-variation in the weight vector w .  

T h e o r e m  4 (Solut ion to P r o b l e m  4) 

An H” estimator is  given b y  the following equations 

for “downdating”, with 

(16) 
(P:)-’ = P,-’ - (1 - yL2)h , -Lh , -L ,  T 

for “updating”, with 

PI<: = (P:)-’ + (1 - Yi2)ht+ih?+l. (18) 

Note, from Theorem 4, that if ,U& < 1 then yr. < 1, 
and that if p h  > 1 then Y L  > 1. However, the case p k  = 
1 deserves special attention since it leads to the following 
LMS-type finite-memory algorithm. 

Corol lary 1 (Fin i te  M e m o r y  LMS) Suppose that p h  = 
1. Then  7~ = 1, and a n  H” optimal estimator is given by 
the following LMS-type algorithm 

w,“-i = W - 1  - pht-L(dr-r.  - hT-LWt-1) (19) 

for “downdating”, and 

(20)  
T d  

W E  = wf-1 + ph t (d ,  - h l  wi-1) 

for  “updating”. 

2.3. Genera l  Time-Variation 

In this section we shall consider a time-varying filter model 
of the form 

where the only difference with (1) is that {x~}, the weight 
vector we intend to estimate, is time-varying. As before, 
we shall denote by 2; = F ( d o , d l , .  . . , d , - l )  the prediction 
of the weight vector xI, and define the output prediction 
error as 

e ,  = h T z t  - hT2t. 

d ,  = h?x, + ut,  (21) 
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Note that since the time variation in the weight vector 
IL'1, 

is zanknozun, we shall consider it as a disturbance. Thus for 
every choice of estimator F we will have a transfer operator 
from the disturbances { ~ - + ( I L ' O - ~ O ) ,  {v ,}~=O, q-i{6zJ};=o} 
(where q is a positive constant that reflects a priori knowl- 
edge of how rapidly the weight vector zt varies with time) 
t,o the prediction errors {e,}:=,, that we shall denote by 
Tg , t (F) .  We are thus led to the following problem. 

Problem 5 (Time-Variation) Find u n  H=-opt imal  es- 
timation strategy 2 ,  = F(&, d l , .  . . , cI-1) that minimizes 
~ ~ 7 ' g , z ( F ) ~ ~ m ,  and obtain the resulting 

6s, = 2 ; + 1  -32% 

~ ' ~ 0  tell2 

c':o 

We have the following solution to the above problem. 

Theorem 5 (Solution t o  P r o b l e m  5 )  

LMS Thm. 3 Thin. 5 
1.48 1.54 1.48 

RLS A-RLS liE' 
6.00 2.08 5.11 

An H" estimator is given by 

Po (24) 

where 
Pt-' = Pt-' - -y12h,hT, (25) 

and P, satisfies the recursion 

znztzalzted wzth PO = p I  

Note, as before, that the second term in the bound yg 5 
1 + qh, reflects the deviation from the optimum value (of 
Theorem 1) that we must incur due to the time-variation 
in the weight vector xz. 

3. SIMULATION RESULTS 

Due to lack of space we shall only describe one typical sim- 
ulation result here. To this end, consider the model (21) 
where the weight vector zt is now a scalar. To reflect time- 
variation we chose 62, = .02, and to reflect both noise and 
modelling error, 

ut = .I * ( h , ~ , ) ~  + n,,  

where n, is a zero-mean Gaussian random variable with 
variance cr2 = .04. We chose 20 = -1 and considered 100 
time sampies so that z100 = 1. We predicted the output 
of the filter using various H" and H 2  adaptive algorithms 
and computed the prediction error energy for each. The 
resulting prediction error energies were averaged over 50 

independent runs, and the results are given in Table 1. The 
H" algorithms considered were LMS and the algorithms 
of Theorems 3 and 5, and the H 2  algorithms were RLS, 
exponentially-weighted RLS (denoted by A-RLS) and the 
Kalman filter (denoted by KF).  Note that the prediction 
error energies for the H" algorithms are virtually iden- 
tical, and that although the exponentially-weighted RLS 
algorithm performs significantly better than RLS and the 
Kalman filter, it does not perform as well as the H" al- 
gorithms. (The parameters used in this simulation were 
p = .9, X = .9 and q = ,0004.) 

Table 1: The H" and H 2  algorithms. 

4. C O N C L U S I O N  

In closing, we should note that if one has a priori knowledge 
of the underlying statistics and distributions of the signals, 
one is always best served by considering algorithms t,hat. arc 
specifically tuned for the situation a t  hand. On tlic ot , l i c : r  
hand, if one does not have such a priori knowletlge ; ~ i i c l  

uses an algorithm that makes specific assumpt.ions aboiit. 
the disturbances, then the algorithm may perforin poorly 
if these assumptions are iiot met. II" opt,imi~l algorit.hins 
will therefore be most applicable in uncert.ain rnviroiimrnt.~ 
where there may be modelling errors, and where the st.at.is- 
tics and/or distributions of the disturbances are not. knowri 
(or are too expensive to obtain). 
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