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Abstract—We present a theory of quadratic time-frequency
(TF) energy distributions that satisfy a covariance property
and generalized marginal properties. The theory coincides
with the characteristic function method of Cohen and Bara-
niuk in the special case of “conjugate operators.”

1 INTRODUCTION AND OUTLINE

Important classes of quadratic time-frequency representa-
tions (QTFRs), such as Cohen’s class’ and the affine, hy-
perbolic, and power classes [1]-[8], are special cases within
a general theory of displacement-covariant QTFRs [9]. This
theory (briefly reviewed in Section 2) is based on the concept
of time-frequency displacement operators (DOs).

In Section 3, we shall consider the important separable case
where a DO can be decomposed into two “partial DOs”
(PDOs). Section 4 defines marginal properties associated
to the PDOs and derives constraints on the QTFR kernels.
Section 5 shows that, for “conjugate” PDOs, our theory co-
incides with the characteristic function method of [10, 11].

2 DISPLACEMENT-COVARIANT QTFRs

Time-Frequency Displacement Operators. A DO is
a family of unitary, linear operators Dy defined on a linear
space X C L3(IR) of finite-energy signals z(t), and indexed
by the 2D “displacement parameter” § = (a,8) € D with
D C R?. By definition, Dy obeys a composition law

Dy, Dy, = 70102 Dy 1

where o is a binary operation such that D and o form a group?
with identity element o and inverse element §~!. The TF
displacements produced by a DO are described by its dis-
placement function (DF) d(z,6): if a signal z(¢) is localized
about a TF point z = (¢, f), then (Dg z)(¢) is localized about
some other TF point 2’ = (¢, f') given by

2 =d(z,8),

which is short for t' = di(t, f; @, 8), f = da(t, f;, B). The
DF’s construction is discussed in [9]. The DF is assumed
to be an invertible, area-preserving mapping of Z onto Z
(where Z C IR? denotes the set of TF points z = (¢, f)), and
to obey the composition law (cf. (1))

d(d(z,61),02) = d(z, 61062) . 2)

The parameter function p(2),z) of D yields the displace-
ment parameter # that maps z into 2/,

*Funding by FWF grant P10012-OPH.

1Short for Cohen’s class with signal-independent kernels.

2The group axioms are (i) 61 0 §2 € D for 01,62 € D, (ii)
f10(020 03) = (61 0 82) o 03, (ili) o0y = 6p0 6 = 6, and (iv)
9 lof8=6000"" = fp.
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2 =d(z,0) & 0=p(7,2),

which is short for a =p\(t', f';t, f), B =p2(t, f';t, F).

Two Examples. The TF-shift operator S, defined
as (Srpz)(t) = z(t—7)e’*™", is a DO with composi-
tion law (1) SrpvySry,y = e 92™12 8, L4y, DF ¢/ =
di(t, fim,v)y=t+7, f =dalt, f;7,v) = f + v, and param-
eter function 7 = p1 (¢, f';5t,f) =t —t, v =po(t', st F) =
f' — f. Another DO is the time-shift/TF-scaling operator
Co,r defined as (C,,-z)(t) = a z(a(t - T)) (e > 0),
with Cazn‘zcﬂxﬂ'l = Calaz,-rl/az-l-‘rz: DF t, = d1 (t7fv (l,’l') =
tla+ 7, f' = d2(t, f;a,7) = af, and parameter function
a=pi(t', fit,f)=F/f, T=p(t,f;t, f) =t —tf/f.

Displacement-Covariant QTFRs. A QTFR T.(¢, f) =
T:(z) is called covariant to a DO Dy if

Ip,.(2) = T=(2) with 2z =d(z,07"). (2

It can be shown [9] that all QTFRs satisfying the covariance
property (3) are given by the 2D inner product®

r.6) = [ / 2(t) 0" (t2) (DS . B) (b1, ) dtndts (4)

= [ [X0) X5 (05 . 1) (5, ) s (9
f1/f2

where h(t1,t2) is a 2D “kernel” (independent of z(t)), 20 € 2
is a fixed reference TF point, DY is the outer product of
Dj by itself!, X(f) = Fiasz(t), Do = FDpF !, and
H(f1, f2) = Fty5,Ftg—g, h{t1,t2). Conversely, all QT-
FRs (4),(5) are covariant to Dg. We note that (4) can he
written as the quadratic form

T:(2) = (z, HYz) with H? =D, . ,HD;/ (6)

p(z,20)
where H is the linear operator whose kernel is h(t;,t;), i.e.
Hz)(t) = ft, h(t,t")z(t') dt’, and <a:,y) = ft z(t) y* (t) dt.

Examples. For Dy = S, , and 2z, = (0,0), (3) becomes
the TF-shift covariance Ts, ,.(t ) = To(t—7, f~v) and (4)

becomes Cohen’s class [1]-[3]

3Integrals are over the functions’ support.

4Df,9 acts on a 2D function y(t1.ts) as (D;@ y) (t1,tp) =
I, . /, , Dg(t1,t;) Dj(t2,ty) y(t),ty) dt) dt,, where Dy(t,t') is the
kernel of Dy. For example, (S%, y)(t1,t2) = y(t1 — 7, t2 -T)
e??m(t1782) and (C,; y)(t1,t2) = ay(alts —7),a(t2—7)).
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T:(t,f) =//a:(tl) T* (to) B* (t1~t, ta—t) e P27/ 1=t2) gy, g,
t1vtg

7
For Dg = C,,r and 20 = (0, fo) (With fixed fo > 0), 23;
becomes the time-shift/TF-scaling covariance Tc, (%, f) =

Tz (a(t—'r), f/a) and (4) becomes the affine class [4, 5]

T,(t,f)z%[/z(tl)m tg)h( (t—t), L (tz—t))dtldtz

for f > 0. Further special cases of (4)-(6) are the hyperbo(lig
class and the power classes [6]-[9].

3 THE SEPARABLE CASE

The next theorem (obtained from (1), (2)) considers a sep-
arable DO that can be decomposed into two “partial DOs.”

Theorem 1. Let Dy with § = (a,8), D = A X B be a
DO with identity parameter 8 = (o, 8s), and define 8, =
(a,60) and 85 = (a0, B). If

faobpg =0, 0oy 000y = bay, , 05,005, = 05,5, (9)

with a1z = a1 @ a2 and Bz = B1 * B2, where e and #* are
commutative operations, then the following results hold:®
(i) The DO Dy can be decomposed as

Dy = e—-ja(b‘a,eﬁ) BﬂAa

with the partial DOs (PDOs) A, = Dy, and Bg = Dy,

(i) The PDO A, is a family of linear operators indexed by
the 1D displacement parameter a € A with A CIR. A, 1s
unitary on X and satisfies the composition law

Ao Ay, =e70faa) A
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where A and e form a commutative group with identity ele-
ment ap. Analogous results hold for the PDO Bg.

(iii) The DF of Dg can be decomposed as d(z,6)
d? (dA(z, a),ﬂ) with the partial DFs d*(z,a) = d(z,0.) and
d?(z, B) = d(z,6p).

In the following, we assume o(6u,,0a,) = 0{(0p,,08,) =0
so that Aq,Aq; = Aqajeas and Bg,Bg, = Bg,.4,.

Eigenvalues and Eigenfunctions [10, 12]. The eigen-
values A2 5 and eigenfunctions ug(t) of A, are defined by

(Ao uz)(®) = Aoaua(®); (10)

they are indexed by a “dual parameter” & € A with 4 C IR.
The composition law Aa; Aa; = Aajea, implies A2 .., 5 =

A2 s M, s, and the unitarity of A implies |AZ 5] = 1. It
follows [13] that & belongs to a commutative “dual” group
(A, ) and that there is A} 5,54, = A\a,a, Aaa,- These rela-
tions show that the elgenvalues must be of the form

)\g,& - pala)iala) , (11)
where pa(areaz) = pa(ar) + pa(az), palao) =0, pala™)
= —pa(a), and 14(G18G2) = fa(G1) +fia(e2), fa(do) =0,
fa(6™') = —fia(&). This implies \j; 5 = Mg, = 1 and

/\2_1’& = /\2’&_1 = 2’*5‘. Analogous results hold for Bg.

5 Analogous results hold if 65 0 6o = 6.

A-Fourier Transform. Assuming suitable normalization
of the eigenfunctions u% (t), it can be shown [10, 12] that any
z(t) € X can be expanded into the uf (t) as

2(t) = / Xa(@) ud (6) |Ea (@) da = (FD X)), (12)
A
with the A-Fourier transform (A-FT) [10, 12]

Xa(@) = (z,uf) = / o) ul (t)dt = (Faz)@). (13)

|X4(&)|? is an energy density since f/i | Xa(&) |2t (&)| d& =
ft [z(t)|2dt = |jz||?. With (10), (12), and (13) we easily show
(Ae)t) = [ M (o) rdOlia@lda. (19
A

Displacement Curves. The TF displacements produced
by a PDO A, are described by the partial DF 2’ = d“(z, a)
(see Theorem 1), which is short for ' = d{ (¢, f;a), f =
d4(t, f; e). For given z, the set of all 2’ = d*(z,a) obtained

by varying o is a curve C2 € Z that passes through z. This
curve will be called a displacement curve (DC) of the PDO

A, . The eigenequation (10) implies that A, does not cause a
TF displacement of uZ (t). Hence, u (t) must be TF-localized

along a DC C2, where z is related to the eigenfunction index
&. Two cases will be considered:

Case 1. The eigenfunction can be written as

ué(t) — Tg(t) 12T (04 (@) A () +¥a ()] , (15)

where b4 (&) and ¢ () are one-to-one functions and r2 (t) =
\/|b’A(&) ¢4 (¢8)/i's(&)] in order to be consistent with (12),
(13). Here, the DC C2 is postulated to coincide with the
wnstantaneous frequency

vE (t) = ba(@) ¢la(t) + ¥a(t) (16)

of uZ(t), where z = (¢, f) in C2 is related to & in that z lies
on the instantaneous-frequency curve, i.e. f = v (t).

Case 2. The Fourier transform of uZ (t) can be written as
vi(f) = (17)
where b4 (&) and ®4(f) are one-to-one functions and RZ (f)

= /1b4(&) ®,(f)/ i’y (&)|. Here, C{ is postulated to coincide
with the group delay

8 (f) = ba(&@) B4(f) + TA(S) (18)

of u2(t), where z = (¢, f) in C£ is related to & as t = 72 (f).
Since in both cases the DC C2 is really parameterized by
&, we shall henceforth write C2.
Examples. The DOs S., and C. . are both separable.
We have S;, = F, T; and Cq,r = T-L, with the time-shift

operator TT, frequency-shift operator F,, and TF-scaling
operator L, defined by (T,z)(t) = z(t—71), (F,z)(t) =

z(t)e?*™¢ and (L, z)(t) = az(at) (a > 0).

T, is a “case-1 PDO” with (A,e) = (,,ci ) = (R, +),
X, = e WI) = I F o= f, () = -7,
uT(f) = f, br(f) = f, or(t) = ¢, and Yr(t) = 0. The
DC Ct,f. ', f )=+, f) coincides with the instantaneous
frequency 1/}1 (t) = f, and the T-FT is the Fourier transform,
Xr(f) = [,e(t) e dt = X(f).

Ré(f) e 927 [ba(8) 24 (£)+¥4(f)] ,
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F, is a “case-2 PDO” with (4, ) = (4,8) = (R, +), AF,
= UF(fy=e 3% b=t ppv)=v, ir(t)=t, br(t)=
t, 2r(f)=f,and Ur(f) = 0. The DCC{,: (', f)=(t, f+v)
coincides with the group delay 7 (f) = ¢, and the F-FT is
the identity transform, Xp(t) =z (t).

L. (defined for analytic signals) is a “case-2 PDO” with
(A,0) = (Ry, ), (4,8) = (R, +), AL, = &7, U(f) =
eIment/I) 1 /F for f > 0 (with fixed f, > 0), & = c,
pe(a) = Ina, fin(e) = ¢, bu(c) = ¢, ®L(f) = In(f/f,), and
Y. (f) =0. The DC C&y: (¢, f') = (at, f/a) coincides with
the group delay 7*(f) = ¢/f, and the L-FT is the Mellin
transform [6, 14, 11] X1 (c) = fooo X(f)e2metnt /i gs 1 /.

Furthermore, also the DOs underlying the hyperbolic and
power classes [6]-[9] are separable.

4 MARGINAL PROPERTIES

We now consider a separable DO Dy = e'j”(a°’95)BgAa
where A, is a case-1 PDO and Bg is a case-2 PDO (analo-
gous results hold if A, is case 2 and Bg is case 1).

Marginal Properties and Kernel Constraints. The
marginal property associated to the PDO A, states that in-

tegration of a QTFR T.(t, f) over the DC CZ (the TF locus
of u2(t)) yields the energy density [ Xa(@)]? = Km,ué)lzz

[ ) PR at = pa@r. a9
t
Similarly, the marginal property associated to By reads

/ T.(e2(1). 1) [RE(D]) df = 1XsB)F.  (20)
f

It can be shown that a QTFR T.(¢, f) covariant to the DO
Dy satisfies the marginal property (19) if and only if its kernel
h(t1,t2) (cf. (4)) satisfies the constraint

/ (DS, oy h) (b2 [rE (0] dt = ud (01)ud* (1) (21)

t

with z(t) = (t,v£(¢)). Similarly, (20) holds if and only if
/ (DE, ()20 H) (F1,12) [RE(D]df = U (F)UF*(f2) (22)
f

with z(f) = (77 (f), f), where H(f1, f2) is the kernel in (5).

Examples. From (19), (20), the marginal properties asso-
ciated to T, F,, and L, follow as ftT,(t,f) dt = [X(H)|?,
[, Tt £ df = [2®), and [, To(c/f, D df/F = X (P,
respectively. For Cohen’s class (7), the constraints for the
T, and F, marginal properties follow from (21), (22), af-
ter simplification, as fth(tl —t,tp —t)dt = 1 Viti,t; and
ff H(fi—f, f2—f)df =1 VYfi, fo, respectively. For the affine
class (8), the constraints for the L, and T, marginal proper-
ties follow as fo [ H(fof1/f, fof2/f) e~3*"th=F2)l] gf [ 5
= e e/ [ /FFy and (f/fo) f,h(f(tr 1)/ fo, f(t-
t)/fo) dt = e/ (t1=t2)  regpectively.

Localization Function. We now assume that the DCs
ca, C[? corresponding to a dual parameter pair § = (&, 8)
intersect in a unique TF point

z=1(f),
which is short for t = l1(&, 8), f = l2(&, 3). We shall call

1(8) the localization function (LF) of the separable DO Dy.
The LF is constructed by solving the system of equations

vA@R) = §, TﬁB(f) =t for (¢, f) = z [12]. We assume ti.."
to any z € Z, there exists a unique 6 = (Ey,[;) such that
z=1(f). Hence, § = ["'(z) with the inverse LF {~1(z). The
marginal properties (19), (20) can now be written as

/_Tz(l(é)) m(8) df = |Xa(a)? (23)
B
/_ T (1(6)) n2(f) da = |X&(B))? (24
A

with m(9) = [r& (1(®)]" | Z u@)], n2(8) = [RE (10
|—é% lz(é)l. With (15)-(18), it can be shown that

m(8) = |[J@)/ia@)],  na(8) = |IEO)/Ex(B)] (25)
where J(§) = %% — %5&1% is the Jacobian of {(6).

Characteristic Function Method. Following [10, 11}, a
class of QTFRs can be constructed as

:I‘;(z)=/g(e) (z,Doz) A(I7'(2),6) do (26)
D

with a A B i 1 .

A(B, 9) = ’\a,& ’\ﬂ,ﬁ |/J'A(a) 123:] (ﬂ)' 3 2.'_/
where g(8) = g(c, ) is a kernel independent of z(t) and
(z, Dy z) is the “characteristic function.” If

9(6a) = g(o, fo) =1 and g(6s) = g(ao, B) =1, (28)

then T(2) can be shown [10] to satisfy the marginal proper-
ties (generally different from (23), (24))

[ T, (1) e ()| dB = 1Xa(&)]" (29)
B

I

/_Tz(z@) E@da = (XsBP.  (30)
A

5 THE CONJUGATE CASE

Two PDOs A, and Bg with composition laws Aq,Aq, =
Ay ea, and By, By, =Bg, g, are called congugate [15] if®

(Baug)(t) = udus(t), (Aauf)(t) =ui,,(1). (31)

This implies (FaBgz)(d)=(Faz)(GeB™") and (FrAaz)(3)
= (Fpz)(B ea™'). Furthermore, using (14) we can show

Theorem 2. Conjugate PDOs A, and Bg commute up
to a phase factor,

AsBs =\ 5BsAa, (32)
and their eigenvalues and eigenfunctions are related as
A _ yBx A B\ _ B
Aa.8 = Ago and (ud,uﬁ) = )‘d,ﬁ'
With (11), it follows that

Mg = X M@B@  ang \B = (Fim kB uB)

SNote that the groups and dual groups underlying A, Bg have
to be identical: (A,e) = (B,*) = (A4,s) = (B,%). Furthermore,
the functions pA(-),uB(*),£a(*), and ag(:) are all equal up to
sign factors, so that we will simply write u(-) in the following.
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We now consider the composite operator Dy = Dy =
BsA,. With (32), it is easily shown that Dy satisfies the
central DO composition property (1),

A
D¢, Do; = Aay,60 Dareas, 81082 5 ) (33)
as well as the relation
D, DDy = Mg A5 o Do (34)

Eq. (33) implies that the separability condition (9) is met
and that the group (D, o) is commutative, 81 06z = 5 0 6:.
‘We conjecture that, in the conjugate case the DF and LF

of Dy are related as d( &, B); e, ﬁ) = l(aoﬁ, ﬂoa) or briefly

(@/T £ (B,a). (35)

To motivate (35), recall that z = I(&, §) is the intersection
of v§(t) and 77 (f). With (10) and (31), (Doug)(t) =

\;“‘1 Q.B(t) and (Dgu )(t) = /\ﬁ ﬂm Bm(t) These sig-
nals are located along the curves vf,4(t) and 7 ﬁm(f), re-

d(1(6),8) =1(606") with 67 =

spectively, whose intersection is 2’ = l(& 3, Bea). On the
other hand, since 2’ has been derived from z through a dis-
placement by 6, there should be 2’ = d(z,6). This finally

gives d(l(&,,@); a, ,6) =1I(ae® 3,0 ea) Note that the covari-
ance (3) can now be rewritten as
Tp,. (1(6)) = T:(U60677)) with 6 T=(a).
Choosing, for simplicity, the reference TF point zo in (4)-(6)
as zg = l(fo), (35) implies
1) = d(zo,éT) and p(l(é),zo) =67, (36)

Theorem 3. If Dy = BgA, is a separable DO with con-
jugate PDOs A, and Bg, and if (36) holds, then the Ds-
covariant QTFR class (6) equals the QTFR class (26). The
kernels h(t1,t2) in (6) and g(6) in (26) are related as

hts, 1) = / g°(0) Daltr,t2) 1 (e) ' (B)| dB,  (37)
D

where Dy (t1,%2) is the kernel of the DO Dy.

Proof. The QTFR T (2) in (26) can be written as T, (2) =
<x, I_{?x> with HY = f,D g% (6) A*(l_l(z), G) Dy df. Compar-
ing with (6), it remains to show that

Doy HD L L ) = / 9" (0) A(I7"(2),6) Dpdo
D

for all z. Setting z = I(), using (36), and multiplying by
: D;Tl and Dygr from left and right, respectively, this becomes

H

/ 9" (6) A(6,6) D7 Do Dyr df
JD

il

/ 6 (6) N2 PN 52 14 () ' (6)] Do do
D

\xhere (27) and (34) have been used. With I/\,’:,&|2 =

AZ 517 = 1, we obtain H = [ ¢7(8) |1/ (o) &/ (B)] Do de,
which is (37), and relates the kernels h(¢1,t2) and g(a, B)
independently of the external parameter 6. [ ]

Theorem 3 states that the covariance approach and the
characteristic function method are equivalent in the conju-
gate case. Two important conclusions can now be drawn:

e The Dg-covariant QTFR class in (4)-(6) satisfies the
marginal properties” (29), (30) if the simple kernel con-
straint (28) is met.

e The QTFR class (26) obtained with the characteristic
function method satisfies the Dy-covariance (3).

Examples. The PDOs T, and F, underlying Cohen’s
class (7) are conjugate. Hence, Cohen’s class can be con-
structed using either the covariance method or the charac-
teristic function method. It is S- ,-covariant and (assuming
that (28) is met) it satisfies also the marginal properties. An
analogous result holds for the hyperbolic class [6].

The PDOs L, and T, underlying the affine class (8) are
not conjugate. Hence, the characteristic function method
yields a class [11] that is different from the affine class and
that is not Ca,--covariant. Similarly, the power classes (7, 8]
are also based on non-conjugate operators.
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