DISPLACEMENT-COVARIANT TIME-FREQUENCY ENERGY DISTRIBUTIONS*

Franz Hlawatsch and Helmut Bölcskei

INTHFT, Technische Universität Wien, Gusshausstrasse 25/389, A-1040 Vienna, Austria email address: fhlawats@email.tuwien.ac.at

Abstract-We present a theory of quadratic time-frequency (TF) energy distributions that satisfy a covariance property and generalized marginal properties. The theory coincides with the characteristic function method of Cohen and Baraniuk in the special case of "conjugate operators."

1 INTRODUCTION AND OUTLINE

Important classes of quadratic time-frequency representations (QTFRs), such as Cohen's class ${ }^{1}$ and the affine, hyperbolic, and power classes [1]-[8], are special cases within a general theory of displacement-covariant QTFRs [9]. This theory (briefly reviewed in Section 2) is based on the concept of time-frequency displacement operators (DOs).
In Section 3, we shall consider the important separable case where a DO can be decomposed into two "partial DOs" (PDOs). Section 4 defines marginal properties associated to the PDOs and derives constraints on the QTFR kernels. Section 5 shows that, for "conjugate" PDOs, our theory coincides with the characteristic function method of [10, 11].

2 DISPLACEMENT-COVARIANT QTFRs

Time-Frequency Displacement Operators. A DO is a family of unitary, linear operators \mathbf{D}_{θ} defined on a linear space $\mathcal{X} \subseteq \mathcal{L}_{2}(\mathbb{R})$ of finite-energy signals $x(t)$, and indexed by the 2D "displacement parameter" $\theta=(\alpha, \beta) \in \mathcal{D}$ with $\mathcal{D} \subseteq \mathbb{R}^{2}$. By definition, \mathbf{D}_{θ} obeys a composition law

$$
\begin{equation*}
\mathbf{D}_{\theta_{2}} \mathbf{D}_{\theta_{1}}=e^{j \sigma\left(\theta_{1}, \theta_{2}\right)} \mathbf{D}_{\theta_{1} \circ \theta_{2}} \tag{1}
\end{equation*}
$$

where \circ is a binary operation such that \mathcal{D} and oform a group ${ }^{2}$ with identity element θ_{0} and inverse element θ^{-1}. The TF displacements produced by a DO are described by its displacement function (DF) $d(z, \theta)$: if a signal $x(t)$ is localized about a TF point $z=(t, f)$, then $\left(\mathbf{D}_{\theta} x\right)(t)$ is localized about some other TF point $z^{\prime}=\left(t^{\prime}, f^{\prime}\right)$ given by

$$
z^{\prime}=d(z, \theta)
$$

which is short for $t^{\prime}=d_{1}(t, f ; \alpha, \beta), f^{\prime}=d_{2}(t, f ; \alpha, \beta)$. The DF's construction is discussed in [9]. The DF is assumed to be an invertible, area-preserving mapping of \mathcal{Z} onto \mathcal{Z} (where $\mathcal{Z} \subseteq \mathbb{R}^{2}$ denotes the set of TF points $z=(t, f)$), and to obey the composition law (cf. (1))

$$
\begin{equation*}
d\left(d\left(z, \theta_{1}\right), \theta_{2}\right)=d\left(z, \theta_{1} \circ \theta_{2}\right) \tag{2}
\end{equation*}
$$

The parameter function $p\left(z^{\prime}, z\right)$ of \mathbf{D}_{θ} yields the displacement parameter θ that maps z into z^{\prime},

[^0]$$
z^{\prime}=d(z, \theta) \quad \Leftrightarrow \quad \theta=p\left(z^{\prime}, z\right)
$$
which is short for $\alpha=p_{1}\left(t^{\prime}, f^{\prime} ; t, f\right), \beta=p_{2}\left(t^{\prime}, f^{\prime} ; t, f\right)$.
Two Examples. The TF-shift operator $\mathrm{S}_{\tau, \nu}$, definer as $\left(\mathrm{S}_{\tau, \nu} x\right)(t)=x(t-\tau) e^{j 2 \pi \nu t}$, is a DO with composition law (1) $\mathbf{S}_{\tau_{2}, \nu_{2}} \mathbf{S}_{\tau_{1}, \nu_{1}}=e^{-j 2 \pi \nu_{1} \tau_{2}} \mathrm{~S}_{\tau_{1}+\tau_{2}, \nu_{1}+\nu_{2}}$, DF $t^{\prime}=$ $d_{1}(t, f ; \tau, \nu)=t+\tau, f^{\prime}=d_{2}(t, f ; \tau, \nu)=f+\nu$, and parameter function $\tau=p_{1}\left(t^{\prime}, f^{\prime} ; t, f\right)=t^{\prime}-t, \nu=p_{2}\left(t^{\prime} ; f^{\prime} ; t, f\right)=$ $f^{\prime}-f$. Another DO is the time-shift/TF-scaling operator $\mathbf{C}_{a, \tau}$ defined as $\left(\mathbf{C}_{a, \tau} x\right)(t)=\sqrt{a} x(a(t-\tau))(a>0)$, with $\mathbf{C}_{a_{2}, \tau_{2}} \mathbf{C}_{a_{1}, \tau_{1}}=\mathbf{C}_{a_{1} a_{2}, \tau_{1} / a_{2}+\tau_{2}}$, DF $t^{\prime}=d_{1}(t, f ; a, \tau)=$ $t / a+\tau, f^{\prime}=d_{2}(t, f ; a, \tau)=a f$, and parameter function $a=p_{1}\left(t^{\prime}, f^{\prime} ; t, f\right)=f^{\prime} / f, \tau=p_{2}\left(t^{\prime}, f^{\prime} ; t, f\right)=t^{\prime}-t f / f^{\prime}$.
Displacement-Covariant QTFRs. A QTFR $T_{x}(t, f)=$ $T_{x}(z)$ is called covariant to a $D O \mathbf{D}_{\theta}$ if
\[

$$
\begin{equation*}
T_{\mathbf{D}_{\theta x}}(z)=T_{x}(\tilde{z}) \quad \text { with } \tilde{z}=d\left(z, \theta^{-1}\right) \tag{3}
\end{equation*}
$$

\]

It can be shown [9] that all QTFRs satisfying the covariance property (3) are given by the 2 D inner product ${ }^{3}$

$$
\begin{align*}
T_{x}(z) & =\int_{t_{1}} \int_{t_{2}} x\left(t_{1}\right) x^{*}\left(t_{2}\right)\left(\mathbf{D}_{p\left(z, z_{0}\right)}^{\otimes} h\right)^{*}\left(t_{1}, t_{2}\right) d t_{1} d t_{2} \tag{4}\\
& =\int_{f_{1}} \int_{f_{2}} X\left(f_{1}\right) X^{*}\left(f_{2}\right)\left(\hat{\mathbf{D}}_{p\left(z, z_{0}\right)}^{\otimes} H\right)^{*}\left(f_{1}, f_{2}\right) d f_{1} d f_{2} \tag{5}
\end{align*}
$$

where $h\left(t_{1}, t_{2}\right)$ is a 2D "kernel" (independent of $x(t)$), $z_{0} \in \mathcal{Z}$ is a fixed reference TF point, $\mathbf{D}_{\theta}^{\otimes}$ is the outer product of \mathbf{D}_{θ} by itself ${ }^{4}, X(f)=\mathcal{F}_{t \rightarrow f} x(t), \hat{\mathbf{D}}_{\theta}=\mathcal{F}_{\theta} \mathcal{F}^{-1}$, and $H\left(f_{1}, f_{2}\right)=\mathcal{F}_{t_{1} \rightarrow f_{1}} \mathcal{F}_{t_{2} \rightarrow-f_{2}} h\left(t_{1}, t_{2}\right)$. Conversely, all QTFRs (4),(5) are covariant to D_{θ}. We note that (4) can be written as the quadratic form

$$
\begin{equation*}
T_{x}(z)=\left\langle x, \mathbf{H}_{z}^{D} x\right\rangle \quad \text { with } \mathbf{H}_{z}^{D}=\mathbf{D}_{p\left(z, z_{0}\right)} \mathbf{H} \mathbf{D}_{p\left(z, z_{0}\right)}^{-1} \tag{6}
\end{equation*}
$$

where \mathbf{H} is the linear operator whose kernel is $h\left(t_{1}, t_{2}\right)$, i.e. $(\mathbf{H} x)(t)=\int_{t^{\prime}} h\left(t, t^{\prime}\right) x\left(t^{\prime}\right) d t^{\prime}$, and $\langle x, y\rangle=\int_{t} x(t) y^{*}(t) d t$.
Examples. For $\mathbf{D}_{\theta}=\mathbf{S}_{\tau, \nu}$ and $z_{0}=(0,0)$, (3) becomes the TF-shift covariance $T_{\mathbf{S}_{r, \nu x}}(t, f)=T_{x}(t-\tau, f-\nu)$ and (4) becomes Cohen's class [1]-[3]

[^1]$T_{x}(t, f)=\int_{t_{1}} \int_{t_{2}} x\left(t_{1}\right) x^{*}\left(t_{2}\right) h^{*}\left(t_{1}-t, t_{2}-t\right) e^{-j 2 \pi f\left(t_{1}-t_{2}\right)} d t_{1} d t_{2}$.
For $\mathbf{D}_{\theta}=\mathbf{C}_{a, \tau}$ and $z_{0}=\left(0, f_{0}\right)$ (with fixed $f_{0}>0$), (7) becomes the time-shift/TF-scaling covariance $T_{\mathbf{C}_{a, \tau x}}(t, f)=$ $T_{x}(a(t-\tau), f / a)$ and (4) becomes the affine class $[4,5]$
\[

$$
\begin{equation*}
T_{x}(t, f)=\frac{f}{f_{0}} \int_{t_{1}} \int_{t_{2}} x\left(t_{1}\right) x^{*}\left(t_{2}\right) h^{*}\left(\frac{f}{f_{0}}\left(t_{1}-t\right), \frac{f}{f_{0}}\left(t_{2}-t\right)\right) d t_{1} d t_{2} \tag{8}
\end{equation*}
$$

\]

for $f>0$. Further special cases of (4)-(6) are the hyperbolic class and the power classes [6]-[9].

3 THE SEPARABLE CASE

The next theorem (obtained from (1), (2)) considers a separable DO that can be decomposed into two "partial DOs."
Theorem 1. Let \mathbf{D}_{θ} with $\theta=(\alpha, \beta), \mathcal{D}=\mathcal{A} \times \mathcal{B}$ be a DO with identity parameter $\theta_{0}=\left(\alpha_{0}, \beta_{0}\right)$, and define $\theta_{\alpha}=$ $\left(\alpha, \beta_{0}\right)$ and $\theta_{\beta}=\left(\alpha_{0}, \beta\right)$. If

$$
\begin{equation*}
\theta_{\alpha} \circ \theta_{\beta}=\theta, \quad \theta_{\alpha_{1}} \circ \theta_{\alpha_{2}}=\theta_{\alpha_{12}}, \quad \theta_{\beta_{1}} \circ \theta_{\beta_{2}}=\theta_{\beta_{12}} \tag{9}
\end{equation*}
$$

with $\alpha_{12}=\alpha_{1} \bullet \alpha_{2}$ and $\beta_{12}=\beta_{1} * \beta_{2}$, where \cdot and $*$ are commutative operations, then the following results hold: ${ }^{5}$
(i) The $\mathrm{DO} \mathrm{D}_{\theta}$ can be decomposed as

$$
\mathbf{D}_{\theta}=e^{-j \sigma\left(\theta_{\alpha}, \theta_{\beta}\right)} \mathbf{B}_{\beta} \mathbf{A}_{\alpha}
$$

with the partial DOs (PDOs) $\mathbf{A}_{\alpha}=\mathbf{D}_{\theta_{\alpha}}$ and $\mathbf{B}_{\beta}=\mathbf{D}_{\theta_{\beta}}$.
(ii) The PDO \mathbf{A}_{α} is a family of linear operators indexed by the 1 D displacement parameter $\alpha \in \mathcal{A}$ with $\mathcal{A} \subseteq \mathbb{R} . \mathbf{A}_{\alpha}$ is unitary on \mathcal{X} and satisfies the composition law

$$
\mathbf{A}_{\alpha_{2}} \mathbf{A}_{\alpha_{1}}=e^{j \sigma\left(\theta_{\alpha_{1}}, \theta_{\alpha_{2}}\right)} \mathbf{A}_{\alpha_{1} \bullet \alpha_{2}}
$$

where \mathcal{A} and \bullet form a commutative group with identity element α_{0}. Analogous results hold for the PDO \mathbf{B}_{β}.
(iii) The DF of D_{θ} can be decomposed as $d(z, \theta)=$ $d^{B}\left(d^{A}(z, \alpha), \beta\right)$ with the partial DFs $d^{A}(z, \alpha)=d\left(z, \theta_{\alpha}\right)$ and $d^{B}(z, \beta)=d\left(z, \theta_{\beta}\right)$.
In the following, we assume $\sigma\left(\theta_{\alpha_{1}}, \theta_{\alpha_{2}}\right)=\sigma\left(\theta_{\beta_{1}}, \theta_{\beta_{2}}\right) \equiv 0$ so that $\mathbf{A}_{\alpha_{2}} \mathbf{A}_{\alpha_{1}}=\mathbf{A}_{\alpha_{1} \bullet \alpha_{2}}$ and $\mathbf{B}_{\beta_{2}} \mathbf{B}_{\beta_{1}}=\mathbf{B}_{\beta_{1} * \beta_{2}}$.
Eigenvalues and Eigenfunctions [10, 12]. The eigenvalues $\lambda_{\alpha, \bar{\alpha}}^{A}$ and eigenfunctions $u_{\tilde{\alpha}}^{A}(t)$ of \mathbf{A}_{α} are defined by

$$
\begin{equation*}
\left(\mathbf{A}_{\alpha} u_{\bar{\alpha}}^{A}\right)(t)=\lambda_{\alpha, \bar{\alpha}}^{A} u_{\bar{\alpha}}^{A}(t) \tag{10}
\end{equation*}
$$

they are indexed by a "dual parameter" $\tilde{\alpha} \in \tilde{\mathcal{A}}$ with $\tilde{\mathcal{A}} \subseteq \mathbb{R}$. The composition law $\mathbf{A}_{\alpha_{2}} \mathbf{A}_{\alpha_{1}}=\mathbf{A}_{\alpha_{1} \bullet \alpha_{2}}$ implies $\lambda_{\alpha_{1}}^{A} \bullet \alpha_{2}, \bar{\alpha}=$ $\lambda_{\alpha_{1}, \tilde{\alpha}}^{A} \lambda_{\alpha_{2}, \tilde{\alpha}}^{A}$, and the unitarity of \mathbf{A}_{α} implies $\left|\lambda_{\alpha, \bar{\alpha}}^{A}\right| \equiv 1$. It follows [13] that $\tilde{\alpha}$ belongs to a commutative "dual" group $(\tilde{\mathcal{A}}, \oplus)$ and that there is $\lambda_{\alpha, \tilde{\alpha}_{1}}^{A} \boldsymbol{\varpi} \tilde{\alpha}_{2}=\lambda_{\alpha, \tilde{\alpha}_{1}}^{A} \lambda_{\alpha, \tilde{\alpha}_{2}}^{A}$. These relations show that the eigenvalues must be of the form

$$
\begin{equation*}
\lambda_{\alpha, \tilde{\alpha}}^{A}=e^{j 2 \pi \mu_{A}(\alpha) \tilde{\mu}_{A}(\bar{\alpha})} \tag{11}
\end{equation*}
$$

where $\mu_{A}\left(\alpha_{1} \bullet \alpha_{2}\right)=\mu_{A}\left(\alpha_{1}\right)+\mu_{A}\left(\alpha_{2}\right), \mu_{A}\left(\alpha_{0}\right)=0, \mu_{A}\left(\alpha^{-1}\right)$ $=-\mu_{A}(\alpha)$, and $\tilde{\mu}_{A}\left(\tilde{\alpha}_{1} \tilde{\sigma_{\alpha}}\right)=\tilde{\mu}_{A}\left(\tilde{\alpha}_{1}\right)+\tilde{\mu}_{A}\left(\tilde{\alpha}_{2}\right), \bar{\mu}_{A}\left(\tilde{\alpha}_{0}\right)=0$, $\bar{\mu}_{A}\left(\tilde{\alpha}^{-1}\right)=-\tilde{\mu}_{A}(\tilde{\alpha})$. This implies $\lambda_{\alpha_{0}, \tilde{\alpha}}^{A}=\lambda_{\alpha, \bar{\alpha}_{0}}^{A}=1$ and $\lambda_{\alpha-1, \bar{\alpha}}^{A}=\lambda_{\alpha, \bar{\alpha}-1}^{A}=\lambda_{\alpha, \bar{\alpha}}^{A *}$. Analogous results hold for \mathbf{B}_{β}.

[^2]A-Fourier Transform. Assuming suitable normalization of the eigenfunctions $u_{\bar{\alpha}}^{A}(t)$, it can be shown [10, 12] that any $x(t) \in \mathcal{X}$ can be expanded into the $u_{\bar{\alpha}}^{A}(t)$ as

$$
\begin{equation*}
x(t)=\int_{\tilde{\mathcal{A}}} X_{A}(\tilde{\alpha}) u_{\tilde{\alpha}}^{A}(t)\left|\tilde{\mu}_{A}^{\prime}(\tilde{\alpha})\right| d \tilde{\alpha}=\left(\mathcal{F}_{A}^{-1} X_{A}\right)(t) \tag{12}
\end{equation*}
$$

with the A-Fourier transform (A-FT) $[10,12]$

$$
\begin{equation*}
X_{A}(\tilde{\alpha})=\left\langle x, u_{\tilde{\alpha}}^{A}\right\rangle=\int_{t} x(t) u_{\tilde{\alpha}}^{A *}(t) d t=\left(\mathcal{F}_{A} x\right)(\tilde{\alpha}) \tag{13}
\end{equation*}
$$

$\left|X_{A}(\tilde{\alpha})\right|^{2}$ is an energy density since $\int_{\tilde{\mathcal{A}}}\left|X_{A}(\tilde{\alpha})\right|^{2}\left|\tilde{\mu}_{A}^{\prime}(\tilde{\alpha})\right| d \tilde{\alpha}=$ $\int_{t}|x(t)|^{2} d t=\|x\|^{2}$. With (10), (12), and (13) we easily show

$$
\begin{equation*}
\left(\mathbf{A}_{\alpha} x\right)(t)=\int_{\tilde{\mathcal{A}}} \lambda_{\alpha, \tilde{\alpha}}^{A}\left\langle x, u_{\tilde{\alpha}}^{A}\right\rangle u_{\tilde{\alpha}}^{A}(t)\left|\tilde{\mu}_{A}^{\prime}(\tilde{\alpha})\right| d \tilde{\alpha} \tag{14}
\end{equation*}
$$

Displacement Curves. The TF displacements produced by a PDO \mathbf{A}_{α} are described by the partial $\mathrm{DF} z^{\prime}=d^{A}(z, \alpha)$ (see Theorem 1), which is short for $t^{\prime}=d_{1}^{A}(t, f ; \alpha), f^{\prime}=$ $d_{2}^{A}(t, f ; \alpha)$. For given z, the set of all $z^{\prime}=d^{A}(z, \alpha)$ obtained by varying α is a curve $\mathcal{C}_{z}^{A} \in \mathcal{Z}$ that passes through z. This curve will be called a displacement curve (DC) of the PDO \mathbf{A}_{α}. The eigenequation (10) implies that \mathbf{A}_{α} does not cause a TF displacement of $u_{\bar{\alpha}}^{A}(t)$. Hence, $u_{\bar{\alpha}}^{A}(t)$ must be TF-localized along a $D C \mathcal{C}_{z}^{A}$, where z is related to the eigenfunction index $\bar{\alpha}$. Two cases will be considered:
Case 1. The eigenfunction can be written as

$$
\begin{equation*}
u_{\tilde{\alpha}}^{A}(t)=r_{\tilde{\alpha}}^{A}(t) e^{j 2 \pi\left[b_{A}(\bar{\alpha}) \phi_{A}(t)+\psi_{A}(t)\right]} \tag{15}
\end{equation*}
$$

where $b_{A}(\tilde{\alpha})$ and $\phi_{A}(t)$ are one-to-one functions and $r_{\tilde{\alpha}}^{A}(t)=$ $\sqrt{\left|b_{A}^{\prime}(\tilde{\alpha}) \phi_{A}^{\prime}(t) / \tilde{\mu}_{A}^{\prime}(\tilde{\alpha})\right|}$ in order to be consistent with (12), (13). Here, the DC \mathcal{C}_{z}^{A} is postulated to coincide with the instantaneous frequency

$$
\begin{equation*}
\nu_{\bar{\alpha}}^{A}(t)=b_{A}(\tilde{\alpha}) \phi_{A}^{\prime}(t)+\psi_{A}^{\prime}(t) \tag{16}
\end{equation*}
$$

of $u_{\tilde{\alpha}}^{A}(t)$, where $z=(t, f)$ in \mathcal{C}_{z}^{A} is related to $\tilde{\alpha}$ in that z lies on the instantaneous-frequency curve, i.e. $f=\nu_{\hat{\alpha}}^{A}(t)$.
Case 2. The Fourier transform of $u_{\bar{\alpha}}^{A}(t)$ can be written as

$$
\begin{equation*}
U_{\tilde{\alpha}}^{A}(f)=R_{\tilde{\alpha}}^{A}(f) e^{-j 2 \pi\left[b_{A}(\bar{\alpha}) \Phi_{A}(f)+\Psi_{A}(f)\right]} \tag{17}
\end{equation*}
$$

where $b_{A}(\tilde{\alpha})$ and $\Phi_{A}(f)$ are one-to-one functions and $R_{\tilde{\alpha}}^{A}(f)$ $=\sqrt{\left|b_{A}^{\prime}(\tilde{\alpha}) \Phi_{A}^{\prime}(f) / \bar{\mu}_{A}^{\prime}(\tilde{\alpha})\right|}$. Here, $\mathcal{C}_{\tilde{z}}^{A}$ is postulated to coincide with the group delay

$$
\begin{equation*}
\tau_{\tilde{\alpha}}^{A}(f)=b_{A}(\tilde{\alpha}) \Phi_{A}^{\prime}(f)+\Psi_{A}^{\prime}(f) \tag{18}
\end{equation*}
$$

of $u_{\tilde{\alpha}}^{A}(t)$, where $z=(t, f)$ in \mathcal{C}_{z}^{A} is related to $\tilde{\alpha}$ as $t=\tau_{\tilde{\alpha}}^{A}(f)$. Since in both cases the DC \mathcal{C}_{z}^{A} is really parameterized by $\tilde{\alpha}$, we shall henceforth write $\mathcal{C}_{\tilde{\alpha}}^{A}$.
Examples. The DOs $\mathbf{S}_{T, \nu}$ and $\mathbf{C}_{a, t}$ are both separable. We have $\mathbf{S}_{\tau, \nu}=\mathbf{F}_{\nu} \mathbf{T}_{\tau}$ and $\mathbf{C}_{a, \tau}=\mathbf{T}_{\tau} \mathbf{L}_{a}$ with the time-shift operator \mathbf{T}_{τ}, ν, frequency-shift operator \mathbf{F}_{ν}, and TF-scaling operator \mathbf{L}_{a} defined by $\left(\mathbf{T}_{\tau} x\right)(t)=x(t-\tau),\left(\mathbf{F}_{\nu} x\right)(t)=$ $x(t) e^{j 2 \pi \nu t}$, and $\left(\mathbf{L}_{a} x\right)(t)=\sqrt{a} x(a t)(a>0)$.
\mathbf{T}_{τ} is a "case-1 PDO" with $(\mathcal{A}, \bullet)=(\tilde{\mathcal{A}}, \tilde{\bullet})=(\mathbb{R},+)$, $\lambda_{\tau, f}^{T}=e^{-j 2 \pi \tau f}, u_{j}^{T}(t)=e^{j 2 \pi f t}, \tilde{\tau}=f, \mu_{T}(r)=-\tau$, $\tilde{\mu}_{T}(f)=f, b_{T}(f)=f, \phi_{T}(t)=t$, and $\psi_{T}(t) \equiv 0$. The DC $\mathcal{C}_{t, f}^{T}:\left(t^{\prime}, f^{\prime}\right)=(t+\tau, f)$ coincides with the instantaneous frequency $\nu_{f}^{T}(t)=f$, and the T-FT is the Fourier transform, $X_{T}(f)=\int_{t} x(t) e^{-j 2 \pi f t} d t=X(f)$.
F_{ν} is a "case-2 PDO" with $(\mathcal{A}, \bullet)=(\tilde{\mathcal{A}}, \tilde{\bullet})=(\mathbb{R},+), \lambda_{\nu, t}^{F}$ $=e^{j 2 \pi \nu t}, U_{t}^{F}(f)=e^{-j 2 \pi t f}, \tilde{\nu}=t, \mu_{F}(\nu)=\nu, \tilde{\mu}_{F}(t)=t, b_{F}(t)=$ $t, \Phi_{F}(f)=f$, and $\Psi_{F}(f) \equiv 0$. The DC $\mathcal{C}_{t, f}^{F}:\left(t^{\prime}, f^{\prime}\right)=(t, f+\nu)$ coincides with the group delay $\tau_{t}^{F}(f)=t$, and the F-FT is the identity transform, $X_{F}(t)=x(t)$.
L_{a} (defined for analytic signals) is a "case-2 PDO" with $(\mathcal{A}, \bullet)=\left(\mathbb{R}_{+}, \cdot\right),(\tilde{\mathcal{A}}, \stackrel{\bullet}{)})=(\mathbb{R},+), \lambda_{a, c}^{L}=e^{j 2 \pi c \ln a}, U_{c}^{L}(f)=$ $e^{-j 2 \pi c \ln \left(f / f_{r}\right)} / \sqrt{f}$ for $f>0$ (with fixed $f_{r}>0$), $\tilde{a}=c$, $\mu_{L}(a)=\ln a, \ddot{\mu}_{L}(c)=c, b_{L}(c)=c, \Phi_{L}(f)=\ln \left(f / f_{r}\right)$, and $\Psi_{L}(f) \equiv 0$. The DC $\mathcal{C}_{t, f}^{L}:\left(t^{\prime}, f^{\prime}\right)=(a t, f / a)$ coincides with the group delay $\tau_{c}^{L}(f)=c / f$, and the L-FT is the Mellin transform $[6,14,11] X_{L}(c)=\int_{0}^{\infty} X(f) e^{j 2 \pi c \ln \left(f / f_{r}\right)} d f / \sqrt{f}$.
Furthermore, also the DOs underlying the hyperbolic and power classes [6]-[9] are separable.

4 MARGINAL PROPERTIES

We now consider a separable DO $\mathbf{D}_{\theta}=e^{-j \sigma\left(\theta_{\alpha}, \theta_{\beta}\right)} \mathbf{B}_{\beta} \mathbf{A}_{\alpha}$ where \mathbf{A}_{α} is a case-1 PDO and \mathbf{B}_{β} is a case-2 PDO (analogous results hold if \mathbf{A}_{α} is case 2 and \mathbf{B}_{β} is case 1).
Marginal Properties and Kernel Constraints. The marginal property associated to the PDO $\mathbf{A}_{\boldsymbol{\alpha}}$ states that integration of a QTFR $T_{x}(t, f)$ over the $\mathrm{DC} \mathcal{C}_{\bar{\alpha}}^{A}$ (the TF locus of $\left.u_{\tilde{\alpha}}^{A}(t)\right)$ yields the energy density $\left|X_{A}(\tilde{\alpha})\right|^{2}=\left|\left\langle x, u_{\tilde{\alpha}}^{A}\right\rangle\right|^{2}$:

$$
\begin{equation*}
\int_{i} T_{x}\left(t, \nu_{\tilde{\alpha}}^{A}(t)\right)\left[r_{\tilde{\alpha}}^{A}(t)\right]^{2} d t=\left|X_{A}(\tilde{\alpha})\right|^{2} \tag{19}
\end{equation*}
$$

Similarly, the marginal property associated to \mathbf{B}_{β} reads

$$
\begin{equation*}
\int_{f} T_{x}\left(\tau_{\bar{\beta}}^{B}(f), f\right)\left[R_{\bar{\beta}}^{B}(f)\right]^{2} d f=\left|X_{B}(\bar{\beta})\right|^{2} . \tag{20}
\end{equation*}
$$

It can be shown that a QTFR $T_{x}(t, f)$ covariant to the DO \mathbf{D}_{θ} satisfies the marginal property (19) if and only if its kernel $h\left(t_{1}, t_{2}\right)$ (cf. (4)) satisfies the constraint

$$
\begin{equation*}
\int_{t}\left(\mathbf{D}_{p\left(z(t), z_{0}\right)}^{\otimes} h\right)\left(t_{1}, t_{2}\right)\left[r_{\bar{\alpha}}^{A}(t)\right]^{2} d t=u_{\hat{\alpha}}^{A}\left(t_{1}\right) u_{\hat{\alpha}}^{A *}\left(t_{2}\right) \tag{21}
\end{equation*}
$$

with $z(t)=\left(t, \nu_{\hat{\alpha}}^{A}(t)\right)$. Similarly, (20) holds if and only if
$\int_{f}\left(\hat{\mathbf{D}}_{p\left(z(f), z_{0}\right)}^{\otimes} H\right)\left(f_{1}, f_{2}\right)\left[R_{\tilde{\beta}}^{B}(f)\right]^{2} d f=U_{\tilde{\beta}}^{B}\left(f_{1}\right) U_{\tilde{\beta}}^{B *}\left(f_{2}\right)$
with $z(f)=\left(\tau_{\tilde{\beta}}^{B}(f), f\right)$, where $H\left(f_{1}, f_{2}\right)$ is the kernel in (5).
Examples. From (19), (20), the marginal properties associated to $\mathbf{T}_{r}, \mathbf{F}_{\nu}$, and \mathbf{L}_{a} follow as $\int_{t} T_{x}(t, f) d t=|X(f)|^{2}$, $\int_{f} T_{x}(t, f) d f=|x(t)|^{2}$, and $\int_{f} T_{x}(c / f, f) d f / f=\left|X_{L}(c)\right|^{2}$, respectively. For Cohen's class (7), the constraints for the \mathbf{T}_{τ} and \mathbf{F}_{ν} marginal properties follow from (21), (22), after simplification, as $\int_{t} h\left(t_{1}-t, t_{2}-t\right) d t=1 \quad \forall t_{1}, t_{2}$ and $\int_{f} H\left(f_{1}-f, f_{2}-f\right) d f=1 \forall f_{1}, f_{2}$, respectively. For the affine class (8), the constraints for the \mathbf{L}_{a} and \mathbf{T}_{τ} marginal properties follow as $f_{0} \int_{0}^{\infty} H\left(f_{0} f_{1} / f, f_{0} f_{2} / f\right) e^{-j 2 \pi\left(f_{1}-f_{2}\right) c / f} d f / f^{2}$ $=e^{-j 2 \pi c \ln \left(f_{1} / f_{2}\right)} / \sqrt{f_{1} f_{2}}$ and $\left(f / f_{0}\right) \int_{t} h\left(f\left(t_{1}-t\right) / f_{0}, f\left(t_{2}\right.\right.$ $\left.t) / f_{0}\right) d t=e^{j 2 \pi f\left(t_{1}-t_{2}\right)}$, respectively.
Localization Function. We now assume that the DCs $\mathcal{C}_{\bar{\alpha}}^{A}, \mathcal{C}_{\bar{\beta}}^{B}$ corresponding to a dual parameter pair $\bar{\theta}=(\tilde{\alpha}, \tilde{\beta})$ intersect in a unique TF point

$$
z=l(\bar{\theta}),
$$

which is short for $t=l_{1}(\tilde{\alpha}, \tilde{\beta}), f=l_{2}(\tilde{\alpha}, \tilde{\beta})$. We shall call
$l(\tilde{\theta})$ the localization function (LF) of the separable DO D_{θ}. The LF is constructed by solving the system of equations $\nu_{\hat{\alpha}}^{A}(t)=f, \tau_{\bar{\beta}}^{B}(f)=t$ for $(t, f)=z[12]$. We assume ti.. to any $z \in \mathcal{Z}$, there exists a unique $\tilde{\theta}=(\tilde{\alpha}, \tilde{\beta})$ such that $z=l(\bar{\theta})$. Hence, $\tilde{\theta}=l^{-1}(z)$ with the inverse LF $l^{-1}(z)$. The marginal properties (19), (20) can now be written as

$$
\begin{align*}
& \int_{\tilde{\mathcal{B}}} T_{x}(l(\tilde{\theta})) n_{1}(\tilde{\theta}) d \tilde{\beta}=\left|X_{A}(\tilde{\alpha})\right|^{2} \tag{23}\\
& \int_{\tilde{\mathcal{A}}} T_{x}(l(\tilde{\theta})) n_{2}(\tilde{\theta}) d \tilde{\alpha}=\left|X_{B}(\tilde{\beta})\right|^{2} \tag{24}
\end{align*}
$$

with $n_{1}(\tilde{\theta})=\left[r_{\tilde{\alpha}}^{A}\left(l_{1}(\tilde{\theta})\right)\right]^{2}\left|\frac{\partial}{\partial \tilde{\beta}} l_{1}(\tilde{\theta})\right|, n_{2}(\tilde{\theta})=\left[R_{\tilde{\beta}}^{B}\left(l_{2}(\tilde{\theta}) ;\right.\right.$ $\left|\frac{\partial}{\partial \tilde{\alpha}} l_{2}(\tilde{\theta})\right|$. With (15)-(18), it can be shown that

$$
\begin{equation*}
n_{1}(\tilde{\theta})=\left|J(\tilde{\theta}) / \tilde{\mu}_{A}^{\prime}(\tilde{\alpha})\right|, \quad n_{2}(\tilde{\theta})=\left|J(\tilde{\theta}) / \tilde{\mu}_{B}^{\prime}(\tilde{\beta})\right| \tag{25}
\end{equation*}
$$

where $J(\tilde{\theta})=\frac{\partial l_{1}}{\partial \dot{\alpha}} \frac{\partial l_{2}}{\partial \tilde{\beta}}-\frac{\partial l_{2}}{\partial \dot{\alpha}} \frac{\partial l_{1}}{\partial \tilde{\beta}}$ is the Jacobian of $l(\tilde{\theta})$.
Characteristic Function Method. Following [10, 11], a class of QTFRs can be constructed as

$$
\begin{equation*}
\bar{T}_{x}(z)=\int_{\mathcal{D}} g(\theta)\left\langle x, \mathbf{D}_{\theta} x\right\rangle \Lambda\left(l^{-1}(z), \theta\right) d \theta \tag{26}
\end{equation*}
$$

with

$$
\Lambda(\tilde{\theta}, \theta)=\lambda_{\alpha, \tilde{\alpha}}^{A} \lambda_{\beta, \tilde{\beta}}^{B}\left|\mu_{A}^{\prime}(\alpha) \mu_{B}^{\prime}(\beta)\right|,
$$

where $g(\theta)=g(\alpha, \beta)$ is a kernel independent of $x(t)$ and $\left\langle x, \mathrm{D}_{\theta} x\right\rangle$ is the "characteristic function." If

$$
\begin{equation*}
g\left(\theta_{\alpha}\right)=g\left(\alpha, \beta_{0}\right)=1 \quad \text { and } \quad g\left(\theta_{\beta}\right)=g\left(\alpha_{0}, \beta\right)=1 \tag{28}
\end{equation*}
$$

then $\bar{T}_{x}(z)$ can be shown [10] to satisfy the marginal properties (generally different from (23), (24))

$$
\begin{align*}
& \int_{\tilde{\mathcal{B}}} \bar{T}_{x}(l(\tilde{\theta}))\left|\tilde{\mu}_{B}^{\prime}(\tilde{\beta})\right| d \tilde{\beta}=\left|X_{A}(\tilde{\alpha})\right|^{2} \tag{29}\\
& \int_{\overline{\mathcal{A}}} \bar{T}_{x}(l(\tilde{\theta}))\left|\tilde{\mu}_{A}^{\prime}(\tilde{\alpha})\right| d \tilde{\alpha}=\left|X_{B}(\tilde{\beta})\right|^{2} . \tag{30}
\end{align*}
$$

5 THE CONJUGATE CASE

Two PDOs \mathbf{A}_{α} and \mathbf{B}_{β} with composition laws $\mathbf{A}_{\alpha_{2}} \mathbf{A}_{\alpha_{1}}=$ $\mathbf{A}_{\alpha_{1} \bullet \alpha_{2}}$ and $\mathbf{B}_{\beta_{2}} \mathbf{B}_{\beta_{1}}=\mathbf{B}_{\beta_{1} \bullet \beta_{2}}$ are called conjugate [15] if ${ }^{6}$

$$
\begin{equation*}
\left(\mathbf{B}_{\beta} u_{\tilde{\alpha}}^{A}\right)(t)=u_{\tilde{\alpha} \bullet \beta}^{A}(t), \quad\left(\mathbf{A}_{\alpha} u_{\tilde{\beta}}^{B}\right)(t)=u_{\tilde{\beta} \bullet \alpha}^{B}(t) \tag{31}
\end{equation*}
$$

This implies $\left(\mathcal{F}_{A} \mathbf{B}_{\beta} x\right)(\tilde{\alpha})=\left(\mathcal{F}_{A} x\right)\left(\tilde{\alpha} \bullet \beta^{-1}\right)$ and $\left(\mathcal{F}_{B} \mathbf{A}_{\alpha} x\right)(\tilde{\beta})$ $=\left(\mathcal{F}_{B} x\right)\left(\tilde{\beta} \bullet \alpha^{-1}\right)$. Furthermore, using (14) we can show
Theorem 2. Conjugate PDOs \mathbf{A}_{α} and \mathbf{B}_{β} commute up to a phase factor,

$$
\begin{equation*}
\mathbf{A}_{\boldsymbol{\alpha}} \mathbf{B}_{\beta}=\lambda_{\alpha, \beta}^{A} \mathbf{B}_{\beta} \mathbf{A}_{\alpha}, \tag{32}
\end{equation*}
$$

and their eigenvalues and eigenfunctions are related as $\lambda_{\alpha, \beta}^{A}=\lambda_{\beta, \alpha}^{B *}$ and $\left\langle u_{\tilde{\alpha}}^{A}, u_{\tilde{\beta}}^{B}\right\rangle=\lambda_{\tilde{\alpha}, \bar{\beta}}^{B}$.
With (11), it follows that

$$
\lambda_{\alpha, \bar{\alpha}}^{A}=e^{ \pm j 2 \pi \mu(\alpha) \mu(\bar{\alpha})} \quad \text { and } \quad \lambda_{\beta, \tilde{\beta}}^{B}=e^{\mp j 2 \pi \mu(\beta) \mu(\tilde{\beta})}
$$

[^3]We now consider the composite operator $\mathrm{D}_{\theta}=\mathbf{D}_{\alpha, \beta}=$ $\mathbf{B}_{\beta} \mathbf{A}_{\alpha}$. With (32), it is easily shown that \mathbf{D}_{θ} satisfies the central DO composition property (1),

$$
\begin{equation*}
\mathbf{D}_{\theta_{2}} \mathbf{D}_{\theta_{1}}=\lambda_{\alpha_{2}, \beta_{1}}^{A} \mathbf{D}_{\alpha_{1} \bullet \alpha_{2}, \beta_{1} \bullet \beta_{2}}, \tag{33}
\end{equation*}
$$

as well as the relation

$$
\begin{equation*}
\mathbf{D}_{\theta^{\prime}}^{-1} \mathbf{D}_{\theta} \mathbf{D}_{\theta^{\prime}}=\lambda_{\alpha, \beta^{\prime}}^{A} \lambda_{\beta, \alpha^{\prime}}^{B} \mathbf{D}_{\theta} \tag{34}
\end{equation*}
$$

Eq. (33) implies that the separability condition (9) is met and that the group (\mathcal{D}, \circ) is commutative, $\theta_{1} \circ \theta_{2}=\theta_{2} \circ \theta_{1}$.
We conjecture that, in the conjugate case, the DF and LF of \mathbf{D}_{θ} are related as $d(l(\tilde{\alpha}, \tilde{\beta}) ; \alpha, \beta)=l(\tilde{\alpha} \bullet \beta, \tilde{\beta} \bullet \alpha)$ or briefly

$$
\begin{equation*}
d(l(\tilde{\theta}), \theta)=l\left(\tilde{\theta} \circ \theta^{T}\right) \quad \text { with } \theta^{T}=(\alpha, \beta)^{T} \triangleq(\beta, \alpha) \tag{35}
\end{equation*}
$$

To motivate (35), recall that $z=l(\bar{\alpha}, \tilde{\beta})$ is the intersection of $\nu_{\tilde{\alpha}}^{A}(t)$ and $\tau_{\vec{\beta}}^{B}(f)$. With (10) and (31), $\left(\mathbf{D}_{\theta} u_{\tilde{\alpha}}^{A}\right)(t)=$ $\lambda_{\alpha, \tilde{\alpha}}^{A} u_{\tilde{\alpha} \bullet \beta}^{A}(t)$ and $\left(\mathbf{D}_{\theta} u_{\tilde{\beta}}^{B}\right)(t)=\lambda_{\beta, \tilde{\beta} \bullet \alpha}^{B} u_{\tilde{\beta} * \alpha}^{B}(t)$. These signals are located along the curves $\nu_{\bar{\alpha} * \beta}^{A}(t)$ and $\tau_{\overline{\hat{\beta}} \boldsymbol{\alpha}}^{B}(f)$, respectively, whose intersection is $z^{\prime}=l(\tilde{\alpha} \bullet \beta, \tilde{\beta} \bullet \alpha)$. On the other hand, since z^{\prime} has been derived from z through a displacement by θ, there should be $z^{\prime}=d(z, \theta)$. This finally gives $d(l(\tilde{\alpha}, \tilde{\beta}) ; \alpha, \beta)=l(\tilde{\alpha} \bullet \beta, \bar{\beta} \bullet \alpha)$. Note that the covariance (3) can now be rewritten as

$$
T_{\mathrm{D}_{\theta} x}(l(\tilde{\theta}))=T_{x}\left(l\left(\tilde{\theta} \circ \theta^{-T}\right)\right) \quad \text { with } \theta^{-T}=\left(\beta^{-1}, \alpha^{-1}\right) .
$$

Choosing, for simplicity, the reference TF point z_{0} in (4)-(6) as $z_{0}=l\left(\tilde{\theta}_{0}\right)$, (35) implies

$$
\begin{equation*}
l(\tilde{\theta})=d\left(z_{0}, \tilde{\theta}^{T}\right) \quad \text { and } \quad p\left(l(\tilde{\theta}), z_{0}\right)=\tilde{\theta}^{T} . \tag{36}
\end{equation*}
$$

Theorem 3. If $\mathbf{D}_{\theta}=\mathbf{B}_{\beta} \mathbf{A}_{\alpha}$ is a separable DO with conjugate PDOs \mathbf{A}_{α} and \mathbf{B}_{β}, and if (36) holds, then the $\mathbf{D}_{\theta^{-}}$ covariant QTFR class (6) equals the QTFR class (26). The kernels $h\left(t_{1}, t_{2}\right)$ in (6) and $g(\theta)$ in (26) are related as

$$
\begin{equation*}
h\left(t_{1}, t_{2}\right)=\int_{\mathcal{D}} g^{*}(\theta) D_{\theta}\left(t_{1}, t_{2}\right)\left|\mu^{\prime}(\alpha) \mu^{\prime}(\beta)\right| d \theta \tag{37}
\end{equation*}
$$

where $D_{\theta}\left(t_{1}, t_{2}\right)$ is the kernel of the $\mathrm{DO} \mathrm{D}_{\theta}$.
Proof. The QTFR $\bar{T}_{x}(z)$ in (26) can be written as $\bar{T}_{x}(z)=$ $\left\langle x, \overline{\mathbf{H}}_{z}^{D} x\right\rangle$ with $\overline{\mathbf{H}}_{z}^{D}=\int_{\mathcal{D}} g^{*}(\theta) \Lambda^{*}\left(l^{-1}(z), \theta\right) \mathbf{D}_{\theta} d \theta$. Comparing with (6), it remains to show that

$$
\mathbf{D}_{p\left(z, z_{0}\right)} \mathbf{H} \mathbf{D}_{p\left(z, z_{0}\right)}^{-1}=\int_{\mathcal{D}} g^{*}(\theta) \Lambda^{*}\left(l^{-1}(z), \theta\right) \mathbf{D}_{\theta} d \theta
$$

for all z. Setting $z=l(\tilde{\theta})$, using (36), and multiplying by $\mathrm{D}_{\tilde{\hat{\theta}} T}^{-1}$ and $\mathrm{D}_{\bar{\theta} T}$ from left and right, respectively, this becomes

$$
\begin{aligned}
\mathbf{H} & =\int_{\mathcal{D}} g^{*}(\theta) \Lambda^{*}(\tilde{\theta}, \theta) \mathbf{D}_{\tilde{\theta}^{-1}}^{-1} \mathbf{D}_{\theta} \mathbf{D}_{\bar{\theta} T} d \theta \\
& =\int_{\mathcal{D}} g^{*}(\theta)\left|\lambda_{\alpha, \bar{\alpha}}^{A}\right|{ }^{2}\left|\lambda_{\beta, \tilde{\beta}}^{B}\right|^{2}\left|\mu^{\prime}(\alpha) \mu^{\prime}(\beta)\right| \mathbf{D}_{\theta} d \theta
\end{aligned}
$$

where (27) and (34) have been used. With $\left|\lambda_{\alpha, \bar{\alpha}}^{A}\right|^{2}=$ $\left|\lambda_{\beta, \beta}^{B}\right|^{2}=1$, we obtain $\mathbf{H}=\int_{\mathcal{D}} g^{*}(\theta)\left|\mu^{\prime}(\alpha) \mu^{\prime}(\beta)\right| \mathbf{D}_{\theta} \mathrm{d} \theta$, which is (37), and relates the kernels $h\left(t_{1}, t_{2}\right)$ and $g(\alpha, \beta)$ independently of the external parameter $\tilde{\theta}$.

Theorem 3 states that the covariance approach and the characteristic function method are equivalent in the conjugate case. Two important conclusions can now be drawn:

- The D_{θ}-covariant QTFR class in (4)-(6) satisfies the marginal properties ${ }^{7}$ (29), (30) if the simple kernel constraint (28) is met.
- The QTFR class (26) obtained with the characteristic function method satisfies the \mathbf{D}_{θ}-covariance (3).
Examples. The PDOs \mathbf{T}_{τ} and \mathbf{F}_{ν} underlying Cohen's class (7) are conjugate. Hence, Cohen's class can be constructed using either the covariance method or the characteristic function method. It is $\mathbf{S}_{\tau, \nu}$-covariant and (assuming that (28) is met) it satisfies also the marginal properties. An analogous result holds for the hyperbolic class [6].
The PDOs \mathbf{L}_{a} and \mathbf{T}_{τ} underlying the affine class (8) are not conjugate. Hence, the characteristic function method yields a class [11] that is different from the affine class and that is not $\mathbf{C}_{a, r}$-covariant. Similarly, the power classes $[7,8]$ are also based on non-conjugate operators.

Acknowledgment

We thank H.G. Feichtinger, A. Papandreou, and R. Baraniuk for interesting discussions.

References

[1] P. Flandrin, Temps-fréquence. Paris: Hermès, 1993.
[2] F. Hlawatsch and G.F. Boudreaux-Bartels, "Linear and quadratic time-frequency signal representations," IEEE Signal Proc. Mag., vol. 9, no. 2, pp. 21-67, April 1992.
[3] L. Cohen, "Generalized phase-space distribution functions," J. Math. Phys., vol. 7, pp. 781-786, 1966.
[4] J. Bertrand and P. Bertrand, "Affine time-frequency distributions," Chapter 5 in Time-Frequency Signal AnalysisMethods and Applications, ed. B. Boashash, LongmanCheshire, Melbourne, Australia, 1992, pp. 118-140.
[5] O. Rioul and P. Flandrin, "Time-scale energy distributions: A general class extending wavelet transforms," IEEE tions: A general class extending wavelet transtorms, 192.
[6] A. Papandreou, $\underset{\text { F. Hlawatsch, and G.F. Boudreaux-Bartels, }}{ }$ "The hyperbolic class of quadratic time-frequency representations, Part I," IEEE Trans. Signal Processing, vol. 41, no. 12, pp. 3425-3444, Dec. 1993.
[7] $\begin{aligned} & \text { P. Hlawatsch, A. Papandreou, and G.F. Boudreaux-Bartels, }\end{aligned}$ "The power classes of quadratic time-frequency representa," tions: A generalization of the affine and hyperbolic classes," Proc. 27th A silomar Conf., Pacific Grove, CA, pp. 1265-1270, Nov. 1993.
[8] A. Papandreou, F. Hlawatsch, and G.F. Boudreaux-Bartels, "A unified framework for the scale covariant affine, hyperbolic, and power class quadratic time-frequency representations using generalized time shifts," Proc. IEEE ICASSP-95, Detroit, MI, May 1995.
[9] F. Hlawatsch and H. Bölcskei, "Unified theory of displace-ment-covariant time-frequency analysis," Proc. IEEE-SP Int. Sympos. Time-Frequency Time-Scale Analysis, Philadelphia, PA, Oct. 1994, pp. 524-527.
[10] R.G. Baraniuk, "Beyond time-frequency analysis: Energy densities in one and many dimensions," Proc. IEEE ICASSP94, Adelaide, Australia, Apr. 1994, vol. 3, pp. 357-360.
[11] L. Cohen, "The scale representation," IEEE Trans. Signal Processing, vol. 41, no. 12, pp. 3275-3292, Dec. 1993.
[12] R.G. Baraniuk and D.L. Jones, "Unitary equivalence: A new twist on signal processing," to appear in IEEE Trans. Signat twist on sig
Processing.
[13] W. Rudin, Fourier Analysis on Groups. Wiley, 1967.
[14] J.P. Ovarlez, "La transformation de Mellin: un outil pour l'analyse des signaux à large bande," Thèse Univ. Paris 6 , 1992.
[15] F. Hlawatsch and H. Bölcskei, "Quadratic time-frequency distributions based on conjugate operators," in preparation.

[^4]
[^0]: *Funding by FWF grant P10012-ÖPH.
 ${ }^{1}$ Short for Cohen's class with signal-independent kernels.
 ${ }^{2}$ The group axioms are (i) $\theta_{1} \circ \theta_{2} \in \mathcal{D}$ for $\theta_{1}, \theta_{2} \in \mathcal{D}$, (ii) $\theta_{1} \circ\left(\theta_{2} \circ \theta_{3}\right)=\left(\theta_{1} \circ \theta_{2}\right) \circ \theta_{3}$, (iii) $\theta \circ \theta_{0}=\theta_{0} \circ \theta=\theta$, and (iv) $\theta^{-1} \circ \theta=\theta \circ \theta^{-1}=\theta_{0}$.

[^1]: ${ }^{3}$ Integrals are over the functions' support.
 ${ }^{4} \mathbf{D}_{\theta}^{\otimes}$ acts on a 2D function $y\left(t_{1}, t_{2}\right)$ as $\left(\mathbf{D}_{\theta}^{\otimes} y\right)\left(t_{1}, t_{2}\right)=$ $\int_{t_{1}^{\prime}} \int_{t_{2}^{\prime}} D_{\theta}\left(t_{1}, t_{1}^{\prime}\right) D_{\theta}^{*}\left(t_{2}, t_{2}^{\prime}\right) y\left(t_{1}^{\prime}, t_{2}^{\prime}\right) d t_{1}^{\prime} d t_{2}^{\prime}$, where $D_{\theta}\left(t, t^{\prime}\right)$ is the kernel of \mathbf{D}_{θ}. For example, $\left(\mathbf{S}_{\tau, \nu}^{\otimes} y\right)\left(t_{1}, t_{2}\right)=y\left(t_{1}-\tau, t_{2}-\tau\right)$ $e^{j 2 \pi \nu\left(t_{1}-t_{2}\right)}$ and $\left(\mathbf{C}_{a, \tau}^{\otimes} y\right)\left(t_{1}, t_{2}\right)=a y\left(a\left(t_{1}-\tau\right), a\left(t_{2}-\tau\right)\right)$.

[^2]: ${ }^{5}$ Analogous results hold if $\theta_{\beta} \circ \theta_{\alpha}=\theta$.

[^3]: ${ }^{6}$ Note that the groups and dual groups underlying $\mathbf{A}_{\alpha}, \mathbf{B}_{\beta}$ have to be identical: $(\mathcal{A}, \bullet)=(\mathcal{B}, *)=(\tilde{\mathcal{A}}, \tilde{\bullet})=(\tilde{\mathcal{B}}, \tilde{*})$. Furthermore, the functions $\mu_{A}(\cdot), \mu_{B}(\cdot), \tilde{\mu}_{A}(\cdot)$, and $\tilde{\mu}_{B}(\cdot)$ are all equal up to sign factors, so that we will simply write $\mu(\cdot)$ in the following.

[^4]: ${ }^{7}$ Due to (25), the marginal properties (29), (30) will be identical to the marginal properties (23), (24) and, in turn, (19), (20) if and only if the LF's Jacobian is $J(\tilde{\theta})= \pm \tilde{\mu}_{A}^{\prime}(\tilde{\alpha}) \bar{\mu}_{B}^{\prime}(\tilde{\beta})$. We conjecture that, in the conjugate case, this relation is always satisfied and the two sets of marginal properties are thus equivalent.

