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Abstract--’We present a theory of quadratic time-frequency 
(TF) energy distributions that satisfy a covariance property 
and generalized marginal properties. The theory coincides 
with the characteristic function method of Cohen and Eara- 
niuk in the special case of ‘‘conjugate operators.” 

1 I N T R O D U C T I O N  A N D  O U T L I N E  
Important c1.asses of quadratic time-frequency representa- 
tions (QTFRs), such as Cohen’s class’ and the affine, hy- 
perbolic, and power classes [1]-[8], are special cases within 
a general theory of displacement-covariant Q T F R s  [9]. This 
theory (briefly reviewed in Section 2) is based on the concept 
of t ime-  frequlency displacement operators (DOS). 

In Section 3, we shall consider the important separable case 
where a DO can be decomposed into two “partial DOS” 
(PDOs). Section 4 defines marginal properties associated 
to the PDOs and derives constraints on the QTFR kernels. 
Section 5 shows that, for “conjugate” PDOs, our theory co- 
incides with ithe characteristic function method of [lo,  111. 

2 D I S P L A C E M E N T - C O V A R I A N T  Q T F R s  
Time-Frequency Displacement Operators .  A DO is 

a family of unitary, linear operators De defined on a linear 
space X c &(R) of finite-energy signals z ( t ) ,  and indexed 
by the 2D “displacement parameter” 6‘ = ( c u , ~ )  E 2) with 
D c R2. By definition, De obeys a composition law 

(1) De$@, = ej‘(el,eZ~ D eloez 
where o is a binary operation such that V and o form a group’ 
with identity element 60 and inverse element B-’. The TF 
displacements produced by a DO are described by its dis- 
placement func t ion  (DF) d(z,  6 ) :  if a signal z ( t )  is localized 
about a TF point z = (ti f), then (De z ) ( t )  is localized about 
some other T F  point z’ = (t’ ,  f’) given by 

z/  = d(z,  e )  , 
which is short for t‘ = d l ( t , f ; c u , p ) ,  f’ = &(t , f ;a ,P) .  The 
DF’s construmction is discussed in [9]. The DF is assumed 
to be an invertible, area-preserving mapping of 2 onto 2 
(where 2 IIt2 denotes the set of TF points z = ( t ,  f)), and 
to obey the csomposition law (cf. (1)) 

d(d(2, 61), e,) = d(z,  6 1 0 B z ) .  (2) 
The parameter func t ion  p(z’,z)  of De yields the displace- 
ment parameter B that maps z into z’, 

~~~ 

*Funding b:y FWF grant P10012-OPH. 
‘Short for Cohen’s class with signal-independent kernels. 
2The group axioms are (i) 6’1 o 82 E V for & , e 2  E V ,  (ii) 

01 o (6’2 o 83) := (61 o 8 2 )  o 83, (iii) 0 o 80 = 80 o 0 = 6 ,  and (iv) 
e- e = e 8-1 = eo. 

z’ = +,e) e 6 = p(z’, .), 
which is short for a = pl(t’, f‘; t ,  f), p = pz( t ’ ,  f ’ ; t ,  f). 

The TF-shzfi operator S,,,, defiriwl 
as (S,,,z)(t) = z(t  - 7-)eJZnvt ,  is a DO with composl- 
tion law (1) STZ.VZSTl ,V l  = STI+Tz ,v1+V2 ,  DF f ‘  = 
di(t, f; 7, v) = t + T ,  f’ = dz(t ,  f ;  7, v) = f + v, and parain- 
eter function 7- = p l ( t ’ ,  f’; t ,  f) = t’ - t ,  v = p z ( t ‘ ,  f’; t ,  f) = 
f’ - f. Another DO is the time-shifi/TF-scalang operator 
Ca,7 defined as (Ca,,z)(t)  = 6 z ( a ( t  - 7)) (a  :> 0). 

t / a  + T ,  f’ = dz ( t ,  f ;  a , ~ )  = af, and parameter function 

Displacement-Covariant Q T F R s .  A QTFR T,(t, f )  = 

T w o  Examples. 

with CaZ,rZ Ca,,,, = Calaz, rl/az+rz , D F  t’ = dl (t ,  f; a ,  T )  = 

a = p1 (t’, f‘; t ,  f) = f ’/ f, 7- = pz( t ’ ,  f‘; t ,  f) = t’ - t f / f ’. 

T,(z) is called covariant t o  a DO De if 

TD,,(z) = T,(Z) with Z = d(z,  6 - l )  I ? I  

It can be shown [9] that all QTFRs satisfying the covariance 
property (3) are given by the 2D inner product3 

r r  

where h(t1, t z )  is a 2D “kernel” (independent of z ( t ) ) ,  zo E 2 
is a fixed reference TF point, D’f is the outer product of 
De by itself4, X ( f )  = Ft.+rz(t), D e  = FDeF-’, and 
f f ( f i ,  f2) = Ftl+fIFt2.+-fz h(t1, t z ) .  Conversely, all QT- 
FRs (4),(5) are covariant to  De. We note that (4) can hp 
written as the quadratic form 

where H is the linear operator whose kernel is h(tl , tz) ,  i.e. 
( H z ) ( t )  = st, h( t , t ’ ) z ( t ’ )d t ’ ,  and (z,y) = L z ( t ) y * ( t ) d t .  

Examples. For De = S,,,, and zo = ( O , O ) ,  (3) becomes 
the TF-shift covariance Ts,, ,=(t ,  f) = Tx(t-7-,f-v) and (4) 
becomes Cohen’s class [1]-[3] 

31ntegrals are over the functions’ support. 
4DF acts on a 2D function y ( t1 ;  t.) as (Df y) ( t l ,  t 2 )  = 

k; k; De(ti,t;) Dg*(tz,t‘2)y(t;,t’Z)dt;dt’z, where Dg(t,t’) is the 

kernel of De. For example, (ST, y ) ( t l , t z )  = y( t1  - - , t z  - T )  

e j2*v( t1 - tz )  and ( C z , , y ) ( t l , t z )  = a y ( a ( t l  - . ) ,a ( t2- -7) ) .  
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TT(t,f) = / / z ( t l )  z*(t2) h*(tl --t, t z - t )  e-32"f(t l- tz)dtldtz.  

For De = C,,, and zo = ( 0 , f o )  (with k e d  fo > 0), (371 
becomes the time-shift/TF-scaling covariance Tcm,,,(t, f) = 

T, (a ( t -T ) ,  f l u )  and (4) becomes the affine class [4, 51 

t l  t 2  

(8) for f > 0. Further special cases of (4)-(6) are the hyperbolsc 
class and the power classes [6]-[9]. 

3 THE SEPARABLE CASE 

The next theorem (obtained from (l), (2)) considers a sep- 
arable DO that can be decomposed into two "partial DOS." 
Theorem 1. Let De with 6 = (a,@), V = A x L3 be a 

DO with identity parameter 60 = ( a o , P o ) ,  and define 6, = 
(a ,  PO) and 60 = ((YO, P).  If 

ea 0 oP = e ,  e,, 0 e,, = e,,, , eo, 0 oB2 = oPlZ (9) 

with a12 = a1 a2 and ,BIZ = 01 * 02, where 0 and * are 
commutative operations, then the following results hold? 

(i) The DO De can be decomposed as 

De = e'-ju(ea>e13) B A 
P o  

with the partial D O S  (PDOs) A, = De, and BP = De,. 

the 1D displacement parameter (Y E A with A 
unitary on X and satisfies the composition law 

(ii) The PDO A, is a family of linear operators indexed by 
E. A, is 

A,,A,, = ej'(ea1@a2) A,,.,, , 

where A and 0 form a commutative group with identity ele- 
ment a.0. Analogous results hold for the PDO Bp.  

(iii) The DF of De can be decomposed as d(z,8) = 
d B  ( d A ( z ,  cy), P )  with the partial DFs  d A ( z ,  a) = d(z,  6,) and 

In the following, we assume Cr(B,,, e,,) = a(8gl,  60,) 0 
so that A,,A,, = A,,.,, and BozBpl  = B B ~ * ~ , .  

Eigenvalues and Eigenfunctions [lo, 121. The eigen- 
values A:,& and eigenfunctions u$(t) of A, are defined by 

d B ( Z ,  P )  = d(z,  60). 

(A, U; )  ( t )  = A,",, U: ( t )  ; (10) 

The composition law A,,A,, = A,,.,, implies At,.,,,& - - 
they are indexed by a "dual parameter" G E 2 with 2 C lR. 

A t 2 , & ,  and the unitarity of A, implies IXt,,I E 1. It  
follows [13] that  6 belongs to a commutative "dual" group 
(A,  6 )  and that there is At,61i62 = A:,,, A:,6,. These rela- 
tions show that the eigenvalues must be of the form 

A A  , (11) - ej2" P A  (e) P A  ( 6 )  
a, ,  - 

where ~ A ( w * ~ z )  = p ~ ( a i )  + p ~ ( a z ) ,  ~ A ( Q O ) = O ,  p ~ ( a - ' )  
= - p ~ ( a ) ,  and , G A ( & ~ ~ Z )  = f i ~ ( & ) + f i ~ ( G ~ ) ,  f i ~ ( 6 0 )  = 0, 
F A ( & - ' )  = - f i ;4~(&) .  This implies Ato,& = At,,, = 1 and 

= A t , & - ,  = At:&. Analogous results hold for Bo. 

5Analogous results hold if 00 o 0, = 0 

A-Fourier Transform. Assuming suitable normalization 
of the eigenfunctions &(t),  it can be shown [lo,  121 that any 
z ( t )  E X can be expanded into the &(t) as 

Z ( t )  = xA(6) U:( t )  lfia(&)I d6 = (FilXA)(t), (12) Sq 
with the A-Four ier  t rans form (A-FT) [lo,  121 

X A ( & )  = (.,U:) = z ( t )  u:*(t) d t  = (FA z)(&). (13) 

I X ~ ( t i ) 1 ~  is an energy density since sJ IXA(G)~~~~~~(G)I d 6  = 
Iz(t)12dt = 1 1 ~ 1 1 ~ .  With (lo), (12), and (13) we easily show 

1 

Displacement Curves. The TF displacements produced 
by a PDO A, are described by the partial DF z' = d A ( z ,  a )  
(see Theorem l), which is short for t' = d f ( t , f ; c u ) ,  f' = 
&(t, f; a). For given z ,  the set of all z' = d A ( z ,  a )  obtained 
by varying a is a curve Cp E Z that passes through z .  This 
curve will be called a displacement curve (DC) of the PDO 
A,. The eigenequation (10) implies that A, does not cause a 
T F  displacement of U% ( t) .  Hence, U: ( t )  must  be TF-localized 
along a D C  C,", where z i s  related to  the eigenfunction index 
6. Two cases will be considered: 

Case 1. The eigenfunction can be written as 

, (15) 
% & ( j )  A = r$(t )  e jza[bA(&)~A( t )+lLA( t ) l  

where b ~ ( 6 )  and c$A(t) are one-to-one functions and T i ( t )  = 
J l b a ( t i )  #A(t)/&(6)I in order to be consistent with (12), 
(13). Here, the DC Cp is postulated to coincide with the 
instantaneous frequency 

v& ( t )  = b A  (6) 4h ( t )  $- $> ( t )  (16) 
A 

of u$(t), where z = (t ,  f )  in C," is related to 6 in that z lies 
on the instantaneous-frequency curve, i.e. f = v: ( t ) .  

Case 2 .  The Fourier transform of u:(t) can be written as 

> (17) Uf(f) = R:(f) e - 3 2 " [ b A ( B ) ~ A ' A ( f ) + ~ A ' A ( f ) l  

where b ~ ( 6 )  and % ~ ( f )  are one-to-one functions and @(f)  
= - \ / l ba (6 )  @ L ( f ) / & ( G ) I .  Here, C," is postulated to coincide 
with the group delay 

Tf(f) = b A  (6) @L (f) -k $l (f) (18) 

of u$(t) ,  where z = (t ,  f) in C p  is related to 6 as t = ~:( f ) .  
Since in both cases the DC C," is really parameterized by 

6, we shall henceforth write C:. 
Examples. The DOS ST,,, and Ca,-  are both separable. 

We have S,,, = F,T, and C,,, = T,L, with the time-shift 
operator T,, frequency-shift operator F,, and TF-scaling 
operator La defined by (T,z)(t)  = z ( t - T ) ,  (F,z)(t) = 
z ( t )  e32ff"t, and (La z ) ( t )  = &%(at)  ( a  > 0). 

T, is a "case-1 PDO" with (A,.) = (2,i) = ( E t + ) ,  

k(f) = f, b ~ ( f )  = f ,  h ( t )  = t ,  and ?LT(t) 0. The 
DC C z f :  (t', f') = (t  + T ,  f) coincides with the instantaneous 
frequency vT(t) = f, and the T-FT is the Fourier transform, 
X T ( ~ )  = J tz ( t )  e-32" f td t  = X ( f ) .  

AT,, = e - J 2 " 7 f ,  = , j z" f t  , '? = f, p T ( T )  = - T ,  

1026 



F, is a “case-2 PDO” with (A, 0 )  = (A, o) = (lR, +), A:‘ 

t ,  @~(f) = f, arid *~(f) z 0. The DC C c f :  (t’, f’) = ( t ,  f + ~ )  
coincides with the group delay $(f) = t ,  and the F-FT is 
the identity tramsform, X,(t) =z( t ) .  
La (defined for analytic signals) is a “case-2 PDO” with 

c- izrrc  In(f l f v )  /*Jf for f > 0 (with fixed fr > 0), 6 = c ,  
pI,(u) = lnu,  ,GL(c) = c,  b ~ ( c )  = c,  @ ~ ( f )  = ln(f/f.), and 
Ilrr,(f) f 0. The DC C t ’ :  (t’, f’) = (at ,  flu) coincides with 
the group de1a:y r,‘.(f) = c/f ,  and the L-FT is the Mellin 
transform [6, 14, 111 X L ( C )  = soM X ( f )  e32irc’n(f’fP)df/fl. 

Furthermore, also the DOS underlying the hyperbolic and 
power classes [fi]-[9] are separable. 

- -d2rrvf ,  Ur(f:)=e-’2irtf, fi=t, / L P ( V ) = V ,  , & F ( t ) = t ,  b F ( t ) =  

(A, 0 )  = (R+, .), (A, i) = (E, +), A:,~ = ejZTclna 1 U,L(f) = 

4 M A R G I N A L  P R O P E R T I E S  

We now consider a separable DO De = e-3u(ou’oP)BpA, 
where A, is a case-1 PDO and B p  is a case-2 PDO (analo- 
gous results hold if A, is case 2 and B p  is case 1). 

Marginal  P rope r t i e s  and Kernel  Constraints.  The 
marginal property associated to the PDO A, states that in- 
tegration of a QTFR Tz( t ,  f )  over the DC Cp (the TF locus 
of‘?Li(t)) yields the energy density lX~(Cy)l’ = I (z,u$) l ” :  

/ T z ( t , v f ( t ) )  [ r i ( t ) ] ‘ d t  = I X A ( ( Y ) ~ ~ .  (19) 
t 

Similarly, the marginal property associated to B p  reads 

It can be shown that a QTFR T,(t, f )  covariant to the DO 
De satisfies the marginal property (19) if and only if its kernel 
h( t1 ,  t z )  (cf. (4)) satisfies the constraint 

with z(f) = ($(f), f), where H ( f 1 ,  fz) is the kernel in (5). 

Examples.  From (19), (20), the marginal properties asso- 
ciated to T,, F,,, and L, follow as A T , ( t , f ) d t  = l X ( f ) I 2 ,  

respectively. For Cohen’s class (7), the constraints for the 
T, and F, marginal properties follow from (21), (22), af- 
ter simplification, as st h(t1 - t ,  t~ - t )  dt = 1 Vt l , t z  and 
Jr H(fl-f, fi-f) df = 1 Vfl ,  fz, respectively. For the affine 
class (8), the constraints for the La and T, marginal proper- 
ties follow as fo som H(fofl/f, f o f z l f )  e-’2rr(f1-fz)c/f  df/ f 2  
- - e--3zrrcIn(fi/f:i) 

t ) / f o )  dt = e J 2 m f ( t 1 - t 2 ) ,  respectively. 
Localization Function. We now assume that_ the DCs 

C:, C i  corresponding to a dual parameter pair 6 = ((Y,P) 

Jr Tz(4 f) df = l4t)IZ, and Jf T z ( C / f , f )  dflf = I X L ( C ) I 2 ,  

/m and ( f l f o )  J, h(f(t1 - t ) / fo ,  f(h- 

intersect in a unique TF point 

t = 1 ( 8 ) ,  

which is short for t = Zl(&,B), f = Zz(&,p). We shall call 

Z(8) the localization function (LF) of the separable DO De. 
The LF is constructed by solving the system of equations 
v i ( t )  = f, r / ( f )  = t for ( t , f )  = z [12]. We assume i:.. 

to any z E 2, there exists a unique 8 = (&,fi) such tha t  
z = l (8 ) .  Hence, 8 = l - ’ (z)  with the inverse LF Z-’(z). The 
marginal properties (19), (20) can now be written as 

( 2 3 )  

(2.1) 

- 

s, T z  ( I @ ) )  nz(8) dCy = IX,(/3)/2 

with nl(8) = [ 1 - f ( l 1 ( 8 ) ) I 2  I $ l 1 ( 8 ) I ,  nz(8) = [ ~ ; ( / > i k  
l & l 2 ( 8 ) / .  With (15)-(18), it can be shown that 

4) = IJ(S)/PL(Cy)I, nz(8) = p(@/&(B)I (23) 

where J ( 8 )  = %% - %$$ is the Jacobian of Z(8). 

class of QTFRs can be constructed as 
Characterist ic Function Method .  Following [lo,  111, a 

with 

where g ( 6 )  = g(a,,B) is a kernel independent of z ( t )  and 
(z, De z) is the “characteristic function.” If 

d e , )  = g ( a , P o )  = 1 and g(6o) = g ( a o , P )  = 1 ,  (28) 

A(8 ,Q)  = g , a  I P L ( Q ) P k ( P ) I ,  (X, 

then T,(z) can be shown [lo] to satisfy the marginal proper- 
ties (generally different from (23), (24)) 

T z  ( l (8) )  Ibk(p)I dp = IxA(6)12 

Tz(l(8)) / f iL(&) ldG = I x B ( p ) 1 2 .  (30)  

(29) 

s4 
5 THE C O N J U G A T E  C A S E  

Two PDOs A, and Bo with composition laws A,,A,, = 
A,,.,, and Bo2Bp1 = B ~ l . ~ z  are called conjuggate [15] iQ 

( B p  d ) ( t )  = ua.a(t), A (Am u f ) ( t )  = uf.,(t). (31) 

This implies (FABPz)(&) = ( F A Z ) ( & * P - ’ )  and (FBA,~)( .?)  
= (FB z ) ( p  cy-’). Furthermore, using (14) we can show 

Theorem 2. Conjugate PDOs A, and BP commute up 
to a phase factor, 

&Bo = A,”,, BOA,, (32) 
and their eigenvalues and eigenfunctions are related as 
A:,o = A;,: and ( & , U ; )  = AB -. a , B  

With (11), it follows that 

AA - = e*jz* P.(,) P ( 6 )  and AB - .FjzT P ( 0 )  P(8) 
a ,e P,4 - 

‘Note that the groups and dual groups underlying A,, Bg have 
to be identical: (A, 0 )  = (a, *) = (d, i) = (8, %). Furthermore, 
the functions , u A ( . ) , ~ B ( . ) , ~ ~ A ( . ) ,  and j2g(.) are all equal up to 
sign factors, so that we will simply write ,U(.) in the following. 
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We now consider the composite operator De = D,,B = 
BOA,. With (32), it is easily shown that De satisfies the 
central DO composition property (l), 

(33) 

(34) 

A 
DezDel = X n z , ~ I  D a l - 2 , ~ l - ~ z  , 

as well as the relation 

DB,l De De, = X t , y  X i , a ,  D e .  

Eq. (33) implies that the separability condition (9) is met 
and that the group (D, 0) is commutative, 81 o 6 2  = 6 2  o 81. 

We conjecture that, in the conjugate case, the DF  and LF 
ofD0 arerelatedasd(Z(G,P);cy,b) = Z(&o,B, /3oa)  orbriefly 

d(Z(G),B)  = Z ( 6 o e T )  with 6 T = ( a , p ) T  @,cy). (35) 

To motivate (35), recall that  z = Z(C.,,L?) is the intersection 
of v i ( t )  and $(f). With (10) and (31), (De&)(t) = 

A t , &  u i e p ( t )  and (De U ; )  ( t )  = u&(t). These sig- 
nals are located along the curves viep(t)  and -ri,(f), re- 

spectively, whose intersection is z’ = l (G o p, $ o a). On the 
other hand, since z’ has been derived from z through a dis- 
placement by 0, there should be z’ = d(z,B). This finally 
gives d (  I(&, p); cy, p)  = Z(G p, p cy). Note that the covari- 
ance (3) can now be rewritten as 

TD,z ( I ( @ )  = Tz ( Z(e o e-.)) with KT = (p-’, a-’) . 

Choosing, for simplicity, the reference TF point zo in (4)-(6) 
as zo = I ( & ) ,  (35) implies 

I ( @  = d(zo, gT) and p (  I(#), 20) = eT . (36) 

Theorem 3. If De = BOA, is a separable DO with con- 
jugate PDOs A, and Bg, and if (36) holds, then the De- 
covariant QTFR class (6) equals the QTFR class (26). The 
kernels h(t1, t z )  in (6) and g(6) in (26) are related as 

h(t1,tz) = s*(O) De(t1,tz) lP’(a)P’(P)lde, (37) s, 
where D ~ ( t 1 , t z )  is the kernel of the DO De. 

Proof. The QTFR T, ( z )  in (26) can be written as T,(z) = 
(z, H:z) with Hf = s, g”(0) A*(Z-’(z),O) De de. Compar- 
ing with (6), it remains to show that 

= g*(e)  ~ * ( l - ’ ( z ) , o )  Dedo L 
fnr all z.  Setting z = Z(e), using (36), and multiplying by 
Di; a n d  D ~ T  from left and right, respectively, this becomes 

H = /: g ” ( 0 )  A*(8,0) D$ DO DgT dB 

Y*(O) IX:,6l2I$,BI2 IP’(a)P’(P)l De de =s, 
where (27) and (34) have been used. With IX:,,l2 = 
IXJf,,j/2 = 1, we ohtain H = S,g*(Q) Ip’(cy)~’((p)i Dodo, 
n.hich is (37), and relates the kernels h(tl,t2) and g(cr,p) 
iiitlcpendently of the external parameter 0.  

Theorem 3 states that the covariance approach and the 
characteristic function method are equivalent in the conju- 
gate case. Two important conclusions can now be drawn: 

The De-covariant QTFR class in (4)-(6) satisfies the 
marginal properties7 (29), (30) if the simple kernel con- 
straint (28) is met. 
The QTFR class (26) obtained with the characteristic 
function method satisfies the De-covariance (3). 

The PDOs T, and F, underlying Gohen’s 
class (7) are conjugate. Hence, Cohen’s class can be con- 
structed using either the covariance method or the charac- 
teristic function method. It is S,,,-covariant and (assuming 
that (28) is met) it satisfies also the marginal properties. An 
analogous result holds for the hyperbolic class [6]. 

The PDOs La and T, underlying the affine class (8) are 
not conjugate. Hence, the characteristic function method 
yields a class [ll] that is different from the affine class and 
that is not Ca.,-covariant. Similarly, the power classes [7, 81 
are also based on non-conjugate operators. 
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