DISPLACEMENT-COVARIANT TIME-FREQUENCY ENERGY DISTRIBUTIONS*

Franz Hlawatsch and Helmut Bölcskei

INTHFT, Technische Universität Wien, Gusshausstrasse 25/389, A-1040 Vienna, Austria email address: fhlawats@email.tuwien.ac.at

Abstract—We present a theory of quadratic time-frequency (TF) energy distributions that satisfy a covariance property and generalized marginal properties. The theory coincides with the characteristic function method of Cohen and Baraniuk in the special case of "conjugate operators."

1 INTRODUCTION AND OUTLINE

Important classes of quadratic time-frequency representations (QTFRs), such as Cohen's class¹ and the affine, hyperbolic, and power classes [1]-[8], are special cases within a general theory of displacement-covariant QTFRs [9]. This theory (briefly reviewed in Section 2) is based on the concept of time-frequency displacement operators (DOS).

In Section 3, we shall consider the important separable case where a DO can be decomposed into two "partial DOs" (PDOs). Section 4 defines marginal properties associated to the PDOs and derives constraints on the QTFR kernels. Section 5 shows that, for "conjugate" PDOs, our theory coincides with the characteristic function method of [10, 11].

2 DISPLACEMENT-COVARIANT QTFRs

Time-Frequency Displacement Operators. A DO is a family of unitary, linear operators \mathbf{D}_{θ} defined on a linear space $\mathcal{X} \subseteq \mathcal{L}_2(\mathbb{R})$ of finite-energy signals x(t), and indexed by the 2D "displacement parameter" $\theta = (\alpha, \beta) \in \mathcal{D}$ with $\mathcal{D} \subseteq \mathbb{R}^2$. By definition, \mathbf{D}_{θ} obeys a composition law

$$\mathbf{D}_{\theta_2} \mathbf{D}_{\theta_1} = e^{j\sigma(\theta_1, \theta_2)} \mathbf{D}_{\theta_1 \circ \theta_2} \tag{1}$$

where \circ is a binary operation such that \mathcal{D} and \circ form a group² with identity element θ_0 and inverse element θ^{-1} . The TF displacements produced by a DO are described by its *displacement function* (DF) $d(z,\theta)$: if a signal x(t) is localized about a TF point z = (t, f), then $(\mathbf{D}_{\theta} x)(t)$ is localized about some other TF point z' = (t', f') given by

$$z' = d(z, \theta)$$

which is short for $t' = d_1(t, f; \alpha, \beta)$, $f' = d_2(t, f; \alpha, \beta)$. The DF's construction is discussed in [9]. The DF is assumed to be an invertible, area-preserving mapping of Z onto Z (where $Z \subseteq \mathbb{R}^2$ denotes the set of TF points z = (t, f)), and to obey the composition law (cf. (1))

$$d(d(z,\theta_1),\theta_2) = d(z,\theta_1 \circ \theta_2).$$
⁽²⁾

The parameter function p(z', z) of \mathbf{D}_{θ} yields the displacement parameter θ that maps z into z',

$$z' = d(z, heta) \quad \Leftrightarrow \quad heta = p(z', z) \,,$$

which is short for $\alpha = p_1(t', f'; t, f), \beta = p_2(t', f'; t, f).$

Two Examples. The *TF*-shift operator $\mathbf{S}_{\tau,\nu}$, defined as $(\mathbf{S}_{\tau,\nu}\mathbf{x})(t) = \mathbf{x}(t-\tau)e^{j2\pi\nu t}$, is a DO with composition law (1) $\mathbf{S}_{\tau_2,\nu_2}\mathbf{S}_{\tau_1,\nu_1} = e^{-j2\pi\nu_1\tau_2}\mathbf{S}_{\tau_1+\tau_2,\nu_1+\nu_2}$, DF $t' = d_1(t,f;\tau,\nu) = t+\tau$, $f' = d_2(t,f;\tau,\nu) = f+\nu$, and parameter function $\tau = p_1(t',f';t,f) = t'-t$, $\nu = p_2(t',f';t,f) = f'-f$. Another DO is the time-shift/TF-scaling operator $\mathbf{C}_{a,\tau}$ defined as $(\mathbf{C}_{a,\tau}\mathbf{x})(t) = \sqrt{a} \mathbf{x}(a(t-\tau))$ (a > 0), with $\mathbf{C}_{a_2,\tau_2}\mathbf{C}_{a_1,\tau_1} = \mathbf{C}_{a_1a_2,\tau_1/a_2+\tau_2}$, DF $t' = d_1(t,f;a,\tau) = t/a + \tau$, $f' = d_2(t,f;a,\tau) = af$, and parameter function $a = p_1(t',f';t,f) = f'/f$, $\tau = p_2(t',f';t,f) = t'-tf/f'$.

Displacement-Covariant QTFRs. A QTFR $T_x(t, f) = T_x(z)$ is called *covariant to a DO* \mathbf{D}_{θ} if

$$T_{\mathbf{D}_{\theta}x}(z) = T_x(\tilde{z}) \quad \text{with } \tilde{z} = d(z, \theta^{-1}).$$
 (3)

It can be shown [9] that all QTFRs satisfying the covariance property (3) are given by the 2D inner $product^3$

$$T_{x}(z) = \int_{t_{1}} \int_{t_{2}} x(t_{1}) x^{*}(t_{2}) \left(\mathbf{D}_{p(z,z_{0})}^{\otimes} h \right)^{*}(t_{1},t_{2}) dt_{1} dt_{2}$$
(4)
$$= \int_{f_{1}} \int_{f_{2}} X(f_{1}) X^{*}(f_{2}) \left(\hat{\mathbf{D}}_{p(z,z_{0})}^{\otimes} H \right)^{*}(f_{1},f_{2}) df_{1} df_{2}$$
(5)

where $h(t_1, t_2)$ is a 2D "kernel" (independent of x(t)), $z_0 \in \mathcal{Z}$ is a fixed reference TF point, $\mathbf{D}_{\theta}^{\otimes}$ is the outer product of \mathbf{D}_{θ} by itself⁴, $X(f) = \mathcal{F}_{t_1 \to f} x(t)$, $\hat{\mathbf{D}}_{\theta} = \mathcal{F} \mathbf{D}_{\theta} \mathcal{F}^{-1}$, and $H(f_1, f_2) = \mathcal{F}_{t_1 \to f_1} \mathcal{F}_{t_2 \to -f_2} h(t_1, t_2)$. Conversely, all QT-FRs (4),(5) are covariant to \mathbf{D}_{θ} . We note that (4) can be written as the quadratic form

$$T_x(z) = \left\langle x, \mathbf{H}_z^D x \right\rangle \quad \text{with} \ \mathbf{H}_z^D = \mathbf{D}_{p(z,z_0)} \mathbf{H} \mathbf{D}_{p(z,z_0)}^{-1}, \quad (6)$$

where **H** is the linear operator whose kernel is $h(t_1, t_2)$, i.e. $(\mathbf{H}x)(t) = \int_{t'} h(t, t') x(t') dt'$, and $\langle x, y \rangle = \int_t x(t) y^*(t) dt$.

Examples. For $\mathbf{D}_{\theta} = \mathbf{S}_{\tau,\nu}$ and $z_0 = (0,0)$, (3) becomes the TF-shift covariance $T_{\mathbf{S}_{\tau,\nu}x}(t,f) = T_x(t-\tau,f-\nu)$ and (4) becomes Cohen's class [1]-[3]

³Integrals are over the functions' support.

 ${}^{4}\mathbf{D}_{\theta}^{\otimes} \text{ acts on a 2D function } y(t_{1}, t_{2}) \text{ as } \left(\mathbf{D}_{\theta}^{\otimes} y\right)(t_{1}, t_{2}) = \int_{t_{1}^{\prime}} \int_{t_{2}^{\prime}} D_{\theta}(t_{1}, t_{1}^{\prime}) D_{\theta}^{*}(t_{2}, t_{2}^{\prime}) y(t_{1}^{\prime}, t_{2}^{\prime}) dt_{1}^{\prime} dt_{2}^{\prime}, \text{ where } D_{\theta}(t, t^{\prime}) \text{ is the kernel of } \mathbf{D}_{\theta}. \text{ For example, } (\mathbf{S}_{\tau,\nu}^{\otimes} y)(t_{1}, t_{2}) = y(t_{1} - \tau, t_{2} - \tau) e^{j2\pi\nu(t_{1} - t_{2})} \text{ and } (\mathbf{C}_{\alpha,\tau}^{\otimes} y)(t_{1}, t_{2}) = a y \left(a(t_{1} - \tau), a(t_{2} - \tau)\right).$

0-7803-2431-5/95 \$4.00 © 1995 IEEE

^{*}Funding by FWF grant P10012-ÖPH.

¹Short for Cohen's class with signal-independent kernels.

²The group axioms are (i) $\theta_1 \circ \theta_2 \in \mathcal{D}$ for $\theta_1, \theta_2 \in \mathcal{D}$, (ii) $\theta_1 \circ (\theta_2 \circ \theta_3) = (\theta_1 \circ \theta_2) \circ \theta_3$, (iii) $\theta \circ \theta_0 = \theta_0 \circ \theta = \theta$, and (iv) $\theta^{-1} \circ \theta = \theta \circ \theta^{-1} = \theta_0$.

$$T_{x}(t,f) = \int_{t_{1}} \int_{t_{2}} x(t_{1}) x^{*}(t_{2}) h^{*}(t_{1}-t,t_{2}-t) e^{-j2\pi f(t_{1}-t_{2})} dt_{1} dt_{2}.$$
⁽⁷⁾

For $\mathbf{D}_{\theta} = \mathbf{C}_{a,\tau}$ and $z_0 = (0, f_0)$ (with fixed $f_0 > 0$), $\begin{cases} 1 \\ 3 \end{cases}$ becomes the time-shift/TF-scaling covariance $T_{\mathbf{C}_{a,\tau}x}(t, f) =$ $T_x(a(t-\tau), f/a)$ and (4) becomes the affine class [4, 5]

$$T_x(t,f) = \frac{f}{f_0} \int_{t_1} \int_{t_2} x(t_1) x^*(t_2) h^* \left(\frac{f}{f_0}(t_1-t), \frac{f}{f_0}(t_2-t)\right) dt_1 dt_2$$

for f > 0. Further special cases of (4)-(6) are the hyperbolic class and the power classes [6]-[9].

3 THE SEPARABLE CASE

The next theorem (obtained from (1), (2)) considers a separable DO that can be decomposed into two "partial DOS."

Theorem 1. Let D_{θ} with $\theta = (\alpha, \beta), \ \mathcal{D} = \mathcal{A} \times \mathcal{B}$ be a DO with identity parameter $\theta_0 = (\alpha_0, \beta_0)$, and define $\theta_{\alpha} =$ (α, β_0) and $\theta_\beta = (\alpha_0, \beta)$. If

$$\theta_{\alpha} \circ \theta_{\beta} = \theta, \quad \theta_{\alpha_1} \circ \theta_{\alpha_2} = \theta_{\alpha_{12}}, \quad \theta_{\beta_1} \circ \theta_{\beta_2} = \theta_{\beta_{12}} \quad (9)$$

with $\alpha_{12} = \alpha_1 \bullet \alpha_2$ and $\beta_{12} = \beta_1 * \beta_2$, where \bullet and * are commutative operations, then the following results hold:⁵ (i) The DO \mathbf{D}_{θ} can be decomposed as

$$\mathbf{D}_{\theta} = e^{-j\sigma(\theta_{\alpha},\theta_{\beta})} \mathbf{B}_{\beta} \mathbf{A}_{\alpha}$$

with the partial DOs (PDOs) $\mathbf{A}_{\alpha} = \mathbf{D}_{\theta_{\alpha}}$ and $\mathbf{B}_{\beta} = \mathbf{D}_{\theta_{\beta}}$. (ii) The PDO \mathbf{A}_{α} is a family of linear operators indexed by the 1D displacement parameter $\alpha \in \mathcal{A}$ with $\mathcal{A} \subseteq \mathbb{R}$. \mathbf{A}_{α} is unitary on \mathcal{X} and satisfies the composition law

$$\mathbf{A}_{\alpha_2}\mathbf{A}_{\alpha_1} = e^{j\sigma(\theta_{\alpha_1},\theta_{\alpha_2})} \mathbf{A}_{\alpha_1 \bullet \alpha_2}$$

where \mathcal{A} and \bullet form a commutative group with identity element α_0 . Analogous results hold for the PDO \mathbf{B}_{β} .

(iii) The DF of \mathbf{D}_{θ} can be decomposed as $d(z, \theta) =$ $d^B(d^A(z, \alpha), \beta)$ with the partial DFs $d^A(z, \alpha) = d(z, \theta_\alpha)$ and $d^B(z,\beta) = d(z,\theta_\beta).$

In the following, we assume $\sigma(\theta_{\alpha_1}, \theta_{\alpha_2}) = \sigma(\theta_{\beta_1}, \theta_{\beta_2}) \equiv 0$ so that $\mathbf{A}_{\alpha_2} \mathbf{A}_{\alpha_1} = \mathbf{A}_{\alpha_1 \bullet \alpha_2}$ and $\mathbf{B}_{\beta_2} \mathbf{B}_{\beta_1} = \mathbf{B}_{\beta_1 * \beta_2}$.

Eigenvalues and Eigenfunctions [10, 12]. The eigenvalues $\lambda^{A}_{\alpha,\tilde{\alpha}}$ and eigenfunctions $u^{A}_{\tilde{\alpha}}(t)$ of \mathbf{A}_{α} are defined by

$$\left(\mathbf{A}_{\alpha} u_{\tilde{\alpha}}^{A}\right)(t) = \lambda_{\alpha,\tilde{\alpha}}^{A} u_{\tilde{\alpha}}^{A}(t); \qquad (10)$$

they are indexed by a "dual parameter" $\tilde{\alpha} \in \tilde{\mathcal{A}}$ with $\tilde{\mathcal{A}} \subseteq \mathbb{R}$. The composition law $\mathbf{A}_{\alpha_2}\mathbf{A}_{\alpha_1} = \mathbf{A}_{\alpha_1 \bullet \alpha_2}$ implies $\lambda^A_{\alpha_1 \bullet \alpha_2, \tilde{\alpha}} = \lambda^A_{\alpha_1, \tilde{\alpha}} \lambda^A_{\alpha_2, \tilde{\alpha}}$, and the unitarity of \mathbf{A}_{α} implies $|\lambda^A_{\alpha, \tilde{\alpha}}| \equiv 1$. It follows [13] that $\tilde{\alpha}$ belongs to a commutative "dual" group $(\tilde{\mathcal{A}}, \tilde{\bullet})$ and that there is $\lambda_{\alpha, \tilde{\alpha}_1 \tilde{\bullet} \tilde{\alpha}_2}^A = \lambda_{\alpha, \tilde{\alpha}_1}^A \lambda_{\alpha, \tilde{\alpha}_2}^A$. These relations show that the eigenvalues must be of the form

$$\lambda^{A}_{\alpha,\tilde{\alpha}} = e^{j2\pi\,\mu_{A}(\alpha)\,\tilde{\mu}_{A}(\tilde{\alpha})}\,,\tag{11}$$

where $\mu_A(\alpha_1 \bullet \alpha_2) = \mu_A(\alpha_1) + \mu_A(\alpha_2)$, $\mu_A(\alpha_0) = 0$, $\mu_A(\alpha^{-1}) = -\mu_A(\alpha)$, and $\tilde{\mu}_A(\tilde{\alpha}_1 \bullet \tilde{\alpha}_2) = \tilde{\mu}_A(\tilde{\alpha}_1) + \tilde{\mu}_A(\tilde{\alpha}_2)$, $\tilde{\mu}_A(\tilde{\alpha}_0) = 0$, $\tilde{\mu}_A(\tilde{\alpha}^{-1}) = -\tilde{\mu}_A(\tilde{\alpha})$. This implies $\lambda^A_{\alpha_0,\tilde{\alpha}} = \lambda^A_{\alpha,\tilde{\alpha}_0} = 1$ and $\lambda^A_{\alpha^{-1},\tilde{\alpha}} = \lambda^A_{\alpha,\tilde{\alpha}^{-1}} = \lambda^{A^*}_{\alpha,\tilde{\alpha}}$. Analogous results hold for \mathbf{B}_{β} .

A-Fourier Transform. Assuming suitable normalization of the eigenfunctions $u_{\tilde{\alpha}}^{A}(t)$, it can be shown [10, 12] that any $x(t) \in \mathcal{X}$ can be expanded into the $u_{\tilde{\alpha}}^{A}(t)$ as

$$x(t) = \int_{\tilde{\mathcal{A}}} X_A(\tilde{\alpha}) \, u_{\tilde{\alpha}}^A(t) \, |\tilde{\mu}'_A(\tilde{\alpha})| \, d\tilde{\alpha} = (\mathcal{F}_A^{-1} X_A)(t) \,, \quad (12)$$

with the A-Fourier transform (A-FT) [10, 12]

$$X_A(\tilde{\alpha}) = \left\langle x, u_{\tilde{\alpha}}^A \right\rangle = \int_t x(t) \, u_{\tilde{\alpha}}^{A*}(t) \, dt = (\mathcal{F}_A \, x)(\tilde{\alpha}) \,. \tag{13}$$

 $|X_A(\tilde{\alpha})|^2$ is an energy density since $\int_{\tilde{A}} |X_A(\tilde{\alpha})|^2 |\tilde{\mu}'_A(\tilde{\alpha})| d\tilde{\alpha} =$ $\int_{t} |x(t)|^2 dt = ||x||^2$. With (10), (12), and (13) we easily show

$$(\mathbf{A}_{\alpha} x)(t) = \int_{\tilde{\mathcal{A}}} \lambda_{\alpha,\tilde{\alpha}}^{A} \left\langle x, u_{\tilde{\alpha}}^{A} \right\rangle u_{\tilde{\alpha}}^{A}(t) \left| \tilde{\mu}_{A}^{\prime}(\tilde{\alpha}) \right| d\tilde{\alpha} \,. \tag{14}$$

Displacement Curves. The TF displacements produced by a PDO \mathbf{A}_{α} are described by the partial DF $z' = d^A(z, \alpha)$ (see Theorem 1), which is short for $t' = d_1^A(t, f; \alpha), f' =$ $d_2^A(t, f; \alpha)$. For given z, the set of all $z' = d^A(z, \alpha)$ obtained by varying α is a curve $C_z^A \in \mathbb{Z}$ that passes through z. This curve will be called a *displacement curve* (DC) of the PDO \mathbf{A}_{α} . The eigenequation (10) implies that \mathbf{A}_{α} does not cause a TF displacement of $u_{\tilde{\alpha}}^{A}(t)$. Hence, $u_{\tilde{\alpha}}^{A}(t)$ must be TF-localized along a $DC C_{z}^{A}$, where z is related to the eigenfunction index $\tilde{\alpha}$. Two cases will be considered:

Case 1. The eigenfunction can be written as

Ī.

$$u_{\tilde{\alpha}}^{A}(t) = r_{\tilde{\alpha}}^{A}(t) e^{j2\pi \left[b_{A}(\tilde{\alpha}) \phi_{A}(t) + \psi_{A}(t)\right]}, \qquad (15)$$

where $b_A(\tilde{\alpha})$ and $\phi_A(t)$ are one-to-one functions and $r^A_{\tilde{\alpha}}(t) =$ $\sqrt{|b'_A(\tilde{\alpha}) \phi'_A(t)/\tilde{\mu}'_A(\tilde{\alpha})|}$ in order to be consistent with (12), (13). Here, the DC \mathcal{C}_z^A is postulated to coincide with the instantaneous frequency

$$\nu_{\tilde{\alpha}}^{A}(t) = b_{A}(\tilde{\alpha}) \,\phi_{A}'(t) + \psi_{A}'(t) \tag{16}$$

of $u_{\tilde{\alpha}}^{A}(t)$, where z = (t, f) in \mathcal{C}_{z}^{A} is related to $\tilde{\alpha}$ in that z lies on the instantaneous-frequency curve, i.e. $f = \nu_{\tilde{\alpha}}^{A}(t)$.

Case 2. The Fourier transform of $u_{\tilde{\alpha}}^{A}(t)$ can be written as

$$I_{\tilde{\alpha}}^{A}(f) = R_{\tilde{\alpha}}^{A}(f) \ e^{-j2\pi \left[b_{A}(\tilde{\alpha}) \ \Phi_{A}(f) + \Psi_{A}(f)\right]}, \tag{17}$$

where $b_A(\tilde{\alpha})$ and $\Phi_A(f)$ are one-to-one functions and $R^A_{\tilde{\alpha}}(f)$ $=\sqrt{|b'_A(\tilde{\alpha}) \Phi'_A(f)/\tilde{\mu}'_A(\tilde{\alpha})|}$. Here, \mathcal{C}_z^A is postulated to coincide with the group delay

$$r_{\tilde{\alpha}}^{A}(f) = b_{A}(\tilde{\alpha}) \Phi_{A}'(f) + \Psi_{A}'(f)$$
(18)

of $u_{\tilde{\alpha}}^{A}(t)$, where z = (t, f) in C_{z}^{A} is related to $\tilde{\alpha}$ as $t = \tau_{\tilde{\alpha}}^{A}(f)$. Since in both cases the DC C_{z}^{A} is really parameterized by $\tilde{\alpha}$, we shall henceforth write $\mathcal{C}_{\tilde{\alpha}}^A$.

Examples. The DOs $\mathbf{S}_{\tau,\nu}$ and $\mathbf{C}_{a,\tau}$ are both separable. We have $\mathbf{S}_{\tau,\nu} = \mathbf{F}_{\nu}\mathbf{T}_{\tau}$ and $\mathbf{C}_{a,\tau} = \mathbf{T}_{\tau}\mathbf{L}_{a}$ with the time-shift operator \mathbf{T}_{τ} , frequency-shift operator \mathbf{F}_{ν} , and TF-scaling operator \mathbf{L}_{a} defined by $(\mathbf{T}_{\tau} x)(t) = x(t-\tau)$, $(\mathbf{F}_{\nu} x)(t) = x(t-\tau)$ $x(t) e^{j2\pi\nu t}$, and $(\mathbf{L}_a x)(t) = \sqrt{a} x(at) (a > 0)$

 $\mathbf{T}_{\tau} \text{ is a "case-1 PDO" with } (\mathcal{A}, \bullet) = (\tilde{\mathcal{A}}, \tilde{\bullet}) = (\mathbb{R}, +),$ $\mathbf{T}_{\tau,f} = e^{-j2\pi\tau f}, \ u_{f}^{T}(t) = e^{j2\pi f t}, \ \tilde{\tau} = f, \ \mu_{T}(\tau) = -\tau,$ $\tilde{\mu}_{T}(f) = f, \ b_{T}(f) = f, \ \phi_{T}(t) = t, \text{ and } \psi_{T}(t) \equiv 0. \text{ The }$ $\mathbf{DC} \ C_{t,f}^{T}: \ (t', f') = (t + \tau, f) \text{ coincides with the instantaneous}$ frequency $\nu_f^T(t) = f$, and the **T**-FT is the Fourier transform, $X_T(f) = \int_t x(t) e^{-j2\pi f t} dt = X(f).$

⁵Analogous results hold if $\theta_{\beta} \circ \theta_{\alpha} = \theta$.

 \mathbf{F}_{ν} is a "case-2 PDO" with $(\mathcal{A}, \bullet) = (\tilde{\mathcal{A}}, \tilde{\bullet}) = (\mathbb{R}, +), \lambda_{\nu,t}^{F}$ = $e^{j2\pi\nu t}, U_{t}^{F}(f) = e^{-j2\pi tf}, \tilde{\nu} = t, \mu_{F}(\nu) = \nu, \tilde{\mu}_{F}(t) = t, b_{F}(t) = t, \Phi_{F}(f) = f, \text{ and } \Psi_{F}(f) \equiv 0.$ The DC $\mathcal{C}_{t,f}^{F}$: $(t', f') = (t, f + \nu)$ coincides with the group delay $\tau_{t}^{F}(f) = t$, and the F-FT is the identity transform, $X_{F}(t) = x(t)$.

L_a (defined for analytic signals) is a "case-2 PDO" with $(\mathcal{A}, \bullet) = (\mathbb{R}_+, \cdot), (\tilde{\mathcal{A}}, \tilde{\bullet}) = (\mathbb{R}, +), \lambda_{a,c}^L = e^{j2\pi c \ln a}, U_c^L(f) = e^{-j2\pi c \ln(f/f_r)}/\sqrt{f}$ for f > 0 (with fixed $f_r > 0$), $\tilde{a} = c$, $\mu_L(a) = \ln a, \tilde{\mu}_L(c) = c, b_L(c) = c, \Phi_L(f) = \ln(f/f_r)$, and $\Psi_L(f) \equiv 0$. The DC $C_{t,f}^L$: (t', f') = (at, f/a) coincides with the group delay $\tau_c^L(f) = c/f$, and the L-FT is the Mellin transform [6, 14, 11] $X_L(c) = \int_0^\infty X(f) e^{j2\pi c \ln(f/f_r)} df/\sqrt{f}$.

Furthermore, also the DOs underlying the hyperbolic and power classes [6]-[9] are separable.

4 MARGINAL PROPERTIES

We now consider a separable DO $\mathbf{D}_{\theta} = e^{-j\sigma(\theta_{\alpha},\theta_{\beta})} \mathbf{B}_{\beta} \mathbf{A}_{\alpha}$ where \mathbf{A}_{α} is a case-1 PDO and \mathbf{B}_{β} is a case-2 PDO (analogous results hold if \mathbf{A}_{α} is case 2 and \mathbf{B}_{β} is case 1).

Marginal Properties and Kernel Constraints. The marginal property associated to the PDO \mathbf{A}_{α} states that integration of a QTFR $T_x(t, f)$ over the DC $\mathcal{C}^A_{\tilde{\alpha}}$ (the TF locus of $u^A_{\tilde{\alpha}}(t)$) yields the energy density $|X_A(\tilde{\alpha})|^2 = |\langle x, u^A_{\tilde{\alpha}} \rangle|^2$:

$$\int_{t} T_{x}\left(t,\nu_{\tilde{\alpha}}^{A}(t)\right) \left[r_{\tilde{\alpha}}^{A}(t)\right]^{2} dt = \left|X_{A}(\tilde{\alpha})\right|^{2}.$$
 (19)

Similarly, the marginal property associated to $\mathbf{B}_{\boldsymbol{\beta}}$ reads

$$\int_{f} T_x\left(\tau^B_{\tilde{\beta}}(f), f\right) \left[R^B_{\tilde{\beta}}(f)\right]^2 df = |X_B(\tilde{\beta})|^2.$$
(20)

It can be shown that a QTFR $T_x(t, f)$ covariant to the DO \mathbf{D}_{θ} satisfies the marginal property (19) if and only if its kernel $h(t_1, t_2)$ (cf. (4)) satisfies the constraint

$$\int_{t} \left(\mathbf{D}_{p(z(t),z_{0})}^{\otimes} h \right)(t_{1},t_{2}) \left[r_{\tilde{\alpha}}^{A}(t) \right]^{2} dt = u_{\tilde{\alpha}}^{A}(t_{1}) u_{\tilde{\alpha}}^{A*}(t_{2}) \quad (21)$$

with $z(t) = (t, \nu_{\bar{\alpha}}^{A}(t))$. Similarly, (20) holds if and only if

$$\int_{f} \left(\hat{\mathbf{D}}_{p(z(f),z_{0})}^{\otimes} H \right) (f_{1},f_{2}) \left[R_{\bar{\beta}}^{B}(f) \right]^{2} df = U_{\bar{\beta}}^{B}(f_{1}) U_{\bar{\beta}}^{B*}(f_{2}) \quad (22)$$

with $z(f) = (\tau_{\tilde{\beta}}^B(f), f)$, where $H(f_1, f_2)$ is the kernel in (5).

Examples. From (19), (20), the marginal properties associated to \mathbf{T}_{τ} , \mathbf{F}_{ν} , and \mathbf{L}_{a} follow as $\int_{t} T_{x}(t, f) dt = |X(f)|^{2}$, $\int_{f} T_{x}(t, f) df = |x(t)|^{2}$, and $\int_{f} T_{x}(c/f, f) df/f = |X_{L}(c)|^{2}$, respectively. For Cohen's class (7), the constraints for the \mathbf{T}_{τ} and \mathbf{F}_{ν} marginal properties follow from (21), (22), after simplification, as $\int_{t} h(t_{1} - t, t_{2} - t) dt = 1 \quad \forall t_{1}, t_{2}$ and $\int_{f} H(f_{1} - f, f_{2} - f) df = 1 \quad \forall f_{1}, f_{2}$, respectively. For the affine class (8), the constraints for the \mathbf{L}_{a} and \mathbf{T}_{τ} marginal properties follow as $f_{0} \int_{0}^{\infty} H(f_{0}f_{1}/f, f_{0}f_{2}/f) e^{-j2\pi(f_{1} - f_{2})c/f} df/f^{2} = e^{-j2\pi c \ln(f_{1}/f_{2})} / \sqrt{f_{1}f_{2}}$ and $(f/f_{0}) \int_{t} h(f(t_{1} - t)/f_{0}, f(t_{2} - t)/f_{0}) dt = e^{j2\pi f(t_{1} - t_{2})}$, respectively.

Localization Function. We now assume that the DCs $C^A_{\tilde{\alpha}}$, $C^B_{\tilde{\beta}}$ corresponding to a dual parameter pair $\tilde{\theta} = (\tilde{\alpha}, \tilde{\beta})$ intersect in a unique TF point

$$l = l(\tilde{\theta}),$$

which is short for $t = l_1(\tilde{\alpha}, \tilde{\beta}), f = l_2(\tilde{\alpha}, \tilde{\beta})$. We shall call

 $l(\theta)$ the localization function (LF) of the separable DO D_{θ}. The LF is constructed by solving the system of equations $\nu_{\tilde{\alpha}}^{A}(t) = f$, $\tau_{\tilde{\beta}}^{B}(f) = t$ for (t, f) = z [12]. We assume that to any $z \in \mathcal{Z}$, there exists a unique $\tilde{\theta} = (\tilde{\alpha}, \tilde{\beta})$ such that $z = l(\tilde{\theta})$. Hence, $\tilde{\theta} = l^{-1}(z)$ with the inverse LF $l^{-1}(z)$. The marginal properties (19), (20) can now be written as

$$\int_{\tilde{B}} T_x(l(\tilde{\theta})) n_1(\tilde{\theta}) d\tilde{\beta} = |X_A(\tilde{\alpha})|^2$$

$$\int_{\tilde{A}} T_x(l(\tilde{\theta})) n_2(\tilde{\theta}) d\tilde{\alpha} = |X_B(\tilde{\beta})|^2$$
(23)
(24)

with $n_1(\tilde{\theta}) = \left[r_{\tilde{\alpha}}^A \left(l_1(\tilde{\theta})\right)\right]^2 \left|\frac{\partial}{\partial \tilde{\beta}} l_1(\tilde{\theta})\right|, n_2(\tilde{\theta}) = \left[R_{\tilde{\beta}}^B \left(l_2(\tilde{\theta})\right)\right]^2 \left|\frac{\partial}{\partial \tilde{\alpha}} l_2(\tilde{\theta})\right|.$ With (15)-(18), it can be shown that

$$n_1(\tilde{\theta}) = \left| J(\tilde{\theta}) / \tilde{\mu}'_A(\tilde{\alpha}) \right|, \qquad n_2(\tilde{\theta}) = \left| J(\tilde{\theta}) / \tilde{\mu}'_B(\tilde{\beta}) \right| \quad (25)$$

where $J(\tilde{\theta}) = \frac{\partial l_1}{\partial \tilde{\alpha}} \frac{\partial l_2}{\partial \tilde{\beta}} - \frac{\partial l_2}{\partial \tilde{\alpha}} \frac{\partial l_1}{\partial \tilde{\beta}}$ is the Jacobian of $l(\tilde{\theta})$.

Characteristic Function Method. Following [10, 11], a class of QTFRs can be constructed as

$$\bar{T}_{x}(z) = \int_{\mathcal{D}} g(\theta) \left\langle x, \mathbf{D}_{\theta} x \right\rangle \Lambda \left(l^{-1}(z), \theta \right) d\theta \qquad (26)$$

with

$$\Lambda(\tilde{\theta}, \theta) = \lambda^{A}_{\alpha, \tilde{\alpha}} \lambda^{B}_{\beta, \tilde{\beta}} |\mu'_{A}(\alpha) \mu'_{B}(\beta)|, \qquad (27)$$

where $g(\theta) = g(\alpha, \beta)$ is a kernel independent of x(t) and $\langle x, \mathbf{D}_{\theta} x \rangle$ is the "characteristic function." If

$$g(\theta_{\alpha}) = g(\alpha, \beta_0) = 1$$
 and $g(\theta_{\beta}) = g(\alpha_0, \beta) = 1$, (28)

then $T_x(z)$ can be shown [10] to satisfy the marginal properties (generally different from (23), (24))

$$\int_{\tilde{\mathcal{B}}} \bar{T}_x \left(l(\tilde{\theta}) \right) \left| \tilde{\mu}'_B(\tilde{\beta}) \right| d\tilde{\beta} = \left| X_A(\tilde{\alpha}) \right|^2 \tag{29}$$

$$\int_{\tilde{\mathcal{A}}} \bar{T}_x \left(l(\tilde{\theta}) \right) \left| \tilde{\mu}'_A(\tilde{\alpha}) \right| d\tilde{\alpha} = \left| X_B(\tilde{\beta}) \right|^2.$$
(30)

5 THE CONJUGATE CASE

Two PDOs \mathbf{A}_{α} and \mathbf{B}_{β} with composition laws $\mathbf{A}_{\alpha_2}\mathbf{A}_{\alpha_1} = \mathbf{A}_{\alpha_1 \cdot \alpha_2}$ and $\mathbf{B}_{\beta_2}\mathbf{B}_{\beta_1} = \mathbf{B}_{\beta_1 \cdot \beta_2}$ are called *conjugate* [15] if⁶

$$\left(\mathbf{B}_{\beta} u_{\hat{\alpha}}^{A}\right)(t) = u_{\hat{\alpha} \bullet \beta}^{A}(t), \qquad \left(\mathbf{A}_{\alpha} u_{\hat{\beta}}^{B}\right)(t) = u_{\hat{\beta} \bullet \alpha}^{B}(t). \quad (31)$$

This implies $(\mathcal{F}_A \mathbf{B}_\beta x)(\tilde{\alpha}) = (\mathcal{F}_A x)(\tilde{\alpha} \bullet \beta^{-1})$ and $(\mathcal{F}_B \mathbf{A}_\alpha x)(\tilde{\beta}) = (\mathcal{F}_B x)(\tilde{\beta} \bullet \alpha^{-1})$. Furthermore, using (14) we can show

Theorem 2. Conjugate PDOs \mathbf{A}_{α} and \mathbf{B}_{β} commute up to a phase factor,

$$\mathbf{A}_{\alpha}\mathbf{B}_{\beta} = \lambda_{\alpha,\beta}^{A} \,\mathbf{B}_{\beta}\mathbf{A}_{\alpha} \,, \tag{32}$$

and their eigenvalues and eigenfunctions are related as $\lambda^A_{\alpha,\beta} = \lambda^{B*}_{\beta,\alpha}$ and $\left\langle u^A_{\hat{\alpha}}, u^B_{\hat{\beta}} \right\rangle = \lambda^B_{\hat{\alpha},\hat{\beta}}$.

With (11), it follows that

$$\lambda^A_{\alpha,\tilde{\alpha}} = e^{\pm j 2\pi \; \mu(\alpha) \; \mu(\tilde{\alpha})} \quad \text{and} \quad \lambda^B_{\beta,\tilde{\beta}} = e^{\mp j 2\pi \; \mu(\beta) \; \mu(\tilde{\beta})} \, .$$

⁶Note that the groups and dual groups underlying \mathbf{A}_{α} , \mathbf{B}_{β} have to be identical: $(\mathcal{A}, \bullet) = (\mathcal{B}, *) = (\tilde{\mathcal{A}}, \tilde{\bullet}) = (\tilde{\mathcal{B}}, \tilde{*})$. Furthermore, the functions $\mu_{\mathcal{A}}(\cdot), \mu_{\mathcal{B}}(\cdot), \tilde{\mu}_{\mathcal{A}}(\cdot)$, and $\tilde{\mu}_{\mathcal{B}}(\cdot)$ are all equal up to sign factors, so that we will simply write $\mu(\cdot)$ in the following.

We now consider the composite operator $D_{\theta} = D_{\alpha,\theta} =$ $\mathbf{B}_{\beta}\mathbf{A}_{\alpha}$. With (32), it is easily shown that \mathbf{D}_{θ} satisfies the central DO composition property (1),

$$\mathbf{D}_{\theta_2} \mathbf{D}_{\theta_1} = \lambda^A_{\alpha_2,\beta_1} \mathbf{D}_{\alpha_1 \bullet \alpha_2,\beta_1 \bullet \beta_2}, \qquad (33)$$

as well as the relation

$$\mathbf{D}_{\theta'}^{-1} \mathbf{D}_{\theta} \mathbf{D}_{\theta'} = \lambda_{\alpha,\beta'}^{A} \lambda_{\beta,\alpha'}^{B} \mathbf{D}_{\theta}.$$
(34)

Eq. (33) implies that the separability condition (9) is met and that the group (\mathcal{D}, \circ) is commutative, $\theta_1 \circ \theta_2 = \theta_2 \circ \theta_1$.

We conjecture that, in the conjugate case, the DF and LF of \mathbf{D}_{θ} are related as $d(l(\tilde{\alpha}, \tilde{\beta}); \alpha, \beta) = l(\tilde{\alpha} \bullet \beta, \tilde{\beta} \bullet \alpha)$ or briefly

$$d(l(\tilde{\theta}), \theta) = l(\tilde{\theta} \circ \theta^T) \quad \text{with} \ \theta^T = (\alpha, \beta)^T \stackrel{\Delta}{=} (\beta, \alpha).$$
(35)

To motivate (35), recall that $z = l(\tilde{\alpha}, \tilde{\beta})$ is the intersection of $\nu_{\tilde{\alpha}}^{A}(t)$ and $\tau_{\tilde{\beta}}^{B}(f)$. With (10) and (31), $\left(\mathbf{D}_{\theta} u_{\tilde{\alpha}}^{A}\right)(t) =$ $\lambda_{\alpha,\check{\alpha}}^{A} u_{\check{\alpha}\circ\beta}^{A}(t)$ and $(\mathbf{D}_{\theta} u_{\check{\beta}}^{B})(t) = \lambda_{\beta,\check{\beta}\circ\alpha}^{B} u_{\check{\beta}\circ\alpha}^{B}(t)$. These signals are located along the curves $\nu_{\check{\alpha}\circ\beta}^{A}(t)$ and $\tau_{\check{\beta}\circ\alpha}^{B}(f)$, respectively, whose intersection is $z' = l(\tilde{\alpha} \bullet \beta, \tilde{\beta} \bullet \alpha)$. On the other hand, since z' has been derived from z through a displacement by θ , there should be $z' = d(z, \theta)$. This finally gives $d(l(\tilde{\alpha}, \tilde{\beta}); \alpha, \beta) = l(\tilde{\alpha} \bullet \beta, \tilde{\beta} \bullet \alpha)$. Note that the covariance (3) can now be rewritten as

$$T_{\mathbf{D}_{\theta} x}\left(l(\tilde{\theta})\right) = T_x\left(l(\tilde{\theta} \circ \theta^{-T})\right) \quad \text{with} \ \theta^{-T} = (\beta^{-1}, \alpha^{-1}).$$

Choosing, for simplicity, the reference TF point z_0 in (4)-(6) as $z_0 = l(\tilde{\theta}_0)$, (35) implies

$$l(\tilde{\theta}) = d(z_0, \tilde{\theta}^T) \text{ and } p(l(\tilde{\theta}), z_0) = \tilde{\theta}^T.$$
 (36)

Theorem 3. If $D_{\theta} = B_{\beta} A_{\alpha}$ is a separable DO with conjugate PDOs A_{α} and B_{β} , and if (36) holds, then the D_{θ} covariant QTFR class (6) equals the QTFR class (26). The kernels $h(t_1, t_2)$ in (6) and $g(\theta)$ in (26) are related as

$$h(t_1, t_2) = \int_{\mathcal{D}} g^*(\theta) \ D_{\theta}(t_1, t_2) \ |\mu'(\alpha) \ \mu'(\beta)| \ d\theta \,, \qquad (37)$$

where $D_{\theta}(t_1, t_2)$ is the kernel of the DO \mathbf{D}_{θ} .

Proof. The QTFR $\overline{T}_x(z)$ in (26) can be written as $\overline{T}_x(z) =$ $\langle x, \bar{\mathbf{H}}_z^D x \rangle$ with $\bar{\mathbf{H}}_z^D = \int_{\mathcal{D}} g^*(\theta) \Lambda^*(l^{-1}(z), \theta) \mathbf{D}_{\theta} d\theta$. Comparing with (6), it remains to show that

$$\mathbf{D}_{p(z,z_0)}\mathbf{H}\,\mathbf{D}_{p(z,z_0)}^{-1} = \int_{\mathcal{D}} g^*(\theta)\,\Lambda^*(l^{-1}(z),\theta)\,\mathbf{D}_{\theta}\,d\theta$$

for all z. Setting $z = l(\bar{\theta})$, using (36), and multiplying by $\mathbf{D}_{\tilde{a}T}^{-1}$ and $\mathbf{D}_{\tilde{\theta}T}$ from left and right, respectively, this becomes

$$\mathbf{H} = \int_{\mathcal{D}} g^{*}(\theta) \Lambda^{*}(\tilde{\theta}, \theta) \mathbf{D}_{\tilde{\theta}^{T}}^{-1} \mathbf{D}_{\theta} \mathbf{D}_{\tilde{\theta}^{T}} d\theta$$

$$= \int_{\mathcal{D}} g^{*}(\theta) |\lambda_{\alpha, \tilde{\alpha}}^{A}|^{2} |\lambda_{\beta, \tilde{\beta}}^{B}|^{2} |\mu'(\alpha) \mu'(\beta)| \mathbf{D}_{\theta} d\theta$$

where (27) and (34) have been used. With $|\lambda_{\alpha,\tilde{\alpha}}^{A}|^{2} =$ $|\lambda^B_{\beta,\tilde{\beta}}|^2 = 1$, we obtain $\mathbf{H} = \int_{\mathcal{D}} g^*(\theta) |\mu'(\alpha) \mu'(\beta)| \mathbf{D}_{\theta} d\theta$, which is (37), and relates the kernels $h(t_1, t_2)$ and $g(\alpha, \beta)$ independently of the external parameter $\tilde{\theta}$.

Theorem 3 states that the covariance approach and the characteristic function method are equivalent in the conjugate case. Two important conclusions can now be drawn

- The D_{θ} -covariant QTFR class in (4)-(6) satisfies the marginal properties⁷ (29), (30) if the simple kernel constraint (28) is met.
- The QTFR class (26) obtained with the characteristic function method satisfies the D_{θ} -covariance (3).

Examples. The PDOs \mathbf{T}_{τ} and \mathbf{F}_{ν} underlying Cohen's class (7) are conjugate. Hence, Cohen's class can be constructed using either the covariance method or the characteristic function method. It is $S_{\tau,\nu}$ -covariant and (assuming that (28) is met) it satisfies also the marginal properties. An analogous result holds for the hyperbolic class [6].

The PDOs L_a and T_{τ} underlying the affine class (8) are not conjugate. Hence, the characteristic function method yields a class [11] that is different from the affine class and that is not $C_{a,\tau}$ -covariant. Similarly, the power classes [7, 8] are also based on non-conjugate operators.

Acknowledgment

We thank H.G. Feichtinger, A. Papandreou, and R. Baraniuk for interesting discussions.

References

- P. Flandrin, Temps-fréquence. Paris: Hermès, 1993.
- 2
- [3]
- [4]
- [5]
- [6]
- P. Flandrin, Temps-fréquence. Paris: Hermès, 1993.
 F. Hlawatsch and G.F. Boudreaux-Bartels, "Linear and quadratic time-frequency signal representations," IEEE Signal Proc. Mag., vol. 9, no. 2, pp. 21-67, April 1992.
 L. Cohen, "Generalized phase-space distribution functions," J. Math. Phys., vol. 7, pp. 781-786, 1966.
 J. Bertrand and P. Bertrand, "Affine time-frequency distributions," Chapter 5 in Time-Frequency Signal Analysis—Methods and Applications, ed. B. Boashash, Longman-Cheshire, Melbourne, Australia, 1992, pp. 118-140.
 O. Rioul and P. Flandrin, "Time-scale energy distributions: A general class extending wavelet transforms," IEEE Trans. Sig. Proc., vol. 40, no. 7, pp. 1746-1757, July 1992.
 A. Papandreou, F. Hlawatsch, and G.F. Boudreaux-Bartels, "The hyperbolic class of quadratic time-frequency representations, Part 1," IEEE Trans. Signal Processing, vol. 41, no. 12, pp. 3425-3444, Dec. 1993.
 F. Hlawatsch, A. Papandreou, and G.F. Boudreaux-Bartels, "The power classes of quadratic time-frequency representations: A generalization of the affine and hyperbolic classes," Proc. 27th Asilomar Conf., Pacific Grove, CA, pp. 1265-1270, Nov. 1993. [7] Nov. 1993.
- A. Papandreou, F. Hlawatsch, and G.F. Boudreaux-Bartels, "A unified framework for the scale covariant affine, hyper-"A unified framework for the scale covariant affine, hyperbolic, and power class quadratic time-frequency representations using generalized time shifts," Proc. IEEE ICASSP-95, Detroit, MI, May 1995.
 [9] F. Hlawatsch and H. Bölcskei, "Unified theory of displacement-covariant time-frequency analysis," Proc. IEEE-SP Int. Sympos. Time-Frequency Time-Scale Analysis, Philadelphia, PA, Oct. 1994, pp. 524-527.
 [10] R.G. Baraniuk, "Beyond time-frequency analysis: Energy densities in one and many dimensions," Proc. IEEE ICASSP-94, Adelaide, Australia, Apr. 1994, vol. 3, pp. 357-360.
 [11] L. Cohen, "The scale representation," IEEE Trans. Signal Processing, vol. 41, no. 12, pp. 3275-3292, Dec. 1993.
 [12] R.G. Baraniuk and D.L. Jones, "Unitary equivalence: A new twist on signal processing," to appear in IEEE Trans. Signal Processing.

- Processing. W. Rudin, Fourier Analysis on Groups. Wiley, 1967
- J.P. Ovarlez, "La transformation de Mellin: un outil pour l'analyse des signaux à large bande," Thèse Univ. Paris 6, [14] 1992
- [15] F. Hlawatsch and H. Bölcskei, "Quadratic time-frequency dis-tributions based on conjugate operators," in preparation.

⁷Due to (25), the marginal properties (29), (30) will be identical to the marginal properties (23), (24) and, in turn, (19), (20) if and only if the LF's Jacobian is $J(\tilde{\theta}) = \pm \tilde{\mu}'_A(\tilde{\alpha}) \tilde{\mu}'_B(\tilde{\beta})$. We conjecture that, in the conjugate case, this relation is always satisfied and the two sets of marginal properties are thus equivalent.