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Abstract

The finite alphabet property of digital communication signals,
along with oversampling techniques, enables the blind identifica-
tion and equalization of an unknown FIR channel carrying a su-
perposition of such signals, provided they have the same (known)
period. Applied to multi-user wireless communications, the same
framework allows the blind separation of multiple finite al phabet
signalsreceived at an arbitrary antennaarray through an unknown
multipath propagation environment with finite delay spread. An
algorithm is proposed and tested on simulated data.

1. INTRODUCTION

In the context of blind identification of channels carrying digital
communication signals, a number of algorithms have been pro-
posed to estimate

(A) asingle FIR channel carrying one signal (FIR-SISO).

In one class of algorithms, initiated by Tong, Xu and Kailath [1],
the signal is recovered by oversampling the channel output (viz.
a.0. [2-6]). There are many other blind equalization methods, for
example based on high-order statistics.

In the context of array signa processing, another scenario
which admits blind identification is the case where

(B) M antennas receive a superposition of d < M synchronized
finite-alphabet (FA) input signals viamemoryless channels.

One algorithm to recover the signals was recently proposed by
Talwar, Viberg and Paulrgj [7, 8]. In the present paper, we com-
bine the above two scenarios and derive an algorithm to

(C) blindly identify multiple FIR channels carrying asuperposi-
tion of unsynchronized digital FA input signalsthat havethe
same symbol rate and alphabet (FIR-MI1SO or FIR-MIMO
case). Seefigurel.

In a deterministic setting, the FIR-MIXO case has not yet re-
ceived much attention. Although a few adaptive antenna combin-
ing/equalizing algorithmshave been proposed [9,10], theserequire
long data runs for convergence and are also not satisfying from a
theoretical perspective.

Our agorithmfor (C) consists of two steps. Thefirst stepisan
extension from scalars to vectors of an algorithm for scenario (A)
to handle more than one signal. At thispoint, thelSI caused by the
channel is removed and the input signals are synchronized. How-
ever, the symbol sequences can be determined only up to a fixed
linear combination of them. Thisis precisely scenario (B).
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Figure 1. Channel model.

XMk

ol ._\X

A multiple-sensor version (the FIR-MIMO case) iscovered by
the same a gorithm. The additional sensorsimprove the condition-
ing of the problem, in particular in the case of bandlimited signals
and high noiselevels. Inthe context of array signal processing, the
algorithm can be used to separate anumber of incoming digital sig-
nals, arriving from different or possibly the same directions, and
distorted by multipath with finite delay spread. In theory, i.e., un-
der low noise conditions, the only fundamental restriction is that
the number of antennas times the oversampling factor should be
larger than the number of independent signals. The required sam-
pling period istypically in the order of 50 symbol periods.

2. DATA MODEL

We describe a digital signal s(t) as a sequence of dirac pulses,
S(t) = Y% skO(t — k). For convenience, the symbol rate is nor-

malizedto T = 1. Anarray of M sensors, withoutputsxy (t), - -, Xm(t),

receivesd digital signalss; (t), - - -, s¢(t) throughindependent chan-
nels hyj(t). Each impulse response h;j(t) is a convolution of the
shaping filter of the i-th signal and the actual channel from thei-th
input to x;(t), including propagation delays and delays that allow
to model unsynchronous signals as synchronous. The data model
iswritten compactly as the convolution x(t) = H(t) = s(t) , where

X1(t) hia(t) -+ hyg(t) s1(t)
X(t) = . , H(t) = . . s S(t) = .

Xm(t) hma(t) hwa (t) sd(t)
If we assumethat all hjj(t) are FIR filtersof lengthat mostL € N :
hij(t)=0, t¢[oL), @



then at most L consecutive symbolsof each signal play arolein x(t)
at any given moment: fort =n+1,wherene Z and0<1< 1,

L1 L-1
X(n+1) = % Mia(k+Dspnk +-+ > hia(K+T)sgn—k-
' k;J I " k;’ | ”

Further supposethat each x;(t) issampled at arate P € N , where P
isthe oversampling factor. If we start sampling at timet = 0* and
collect samples during N symbol periods, then we can construct a
datamatrix X as

X = [XO - XN— 1]
X0 x(1)
X(H)  x(1+4)

x(N—1)

X(%5t) X(N=1+F52)
The k-th column x of X contains the MP samples taken in the k-

th symbol period. With the model of x;(t), it follows that X has a
factorization

X = HSr
where
r H(0) H(1) H(L-1)
H() : :
H =
L H(5) H(L-1+55%)
H: MPxdL,
So oS-z SNt
S = . . .. $_2
S_L+2 S—L+3
L S—L+1 S-—L42 ooswoL

Sr: dL x N, block-Toeplitz.

The blind identification problem is to estimate H and Sy from X.
Note that for such afactorization to be unique, it is necessary that
H and St havefull column rank and row rank, respectively, which
impliesa.o. MP > dL. If this condition does not hold, we can ex-
tend X to a block-Hankel matrix, by left-shifting and stacking m
times,

Xo X1 XN_m
X X : .
X o= |8 R
- XN=2
Xm—1 " XN-2 XN-1

X mMPx (N—m+1).
The augmented datamatrix X’ has afactorization
X =HS

0 [H]

Sm-1 SN—2 SN—1
. . . S

S_L+2 S-—L43

S_L+1 S-Lt2 .
H : mMP x d(L+m— 1) : block-Hankel,
S :d(L+m—1) x (N—m+ 1) : block-Toeplitz.

SN—L—m+1

*Thisis for notational convenience and without loss of generality.

Now, necessary conditionsfor X" to have aminimal-rank factoriza-
tion ¥ = HS arethat H isa‘tal’ matrix and S isa‘wide' matrix,
whichfor L > 1 leadsto

MP > d

dL—d
m 2 MP—d _ @)
N > di+(d+1)(m-1).

Only MP > d isafundamental restriction.

3. BLIND IDENTIFICATION
Suppose that the conditions (2) are satisfied. Then

‘H full column rank =
S full row rank =

row(X) = row(S)
col(X) = col(H)

Tofactor X into X = HS, the strategy isto find either S: ablock-
Toeplitz matrix with a specified row span, or H: a block-Hankel
matrix with a specified column span. In the scalar case (d = 1
signal), anumber of agorithms have been proposed for doing this
[1-6]. Itis straightforward to extend these algorithms to the vec-
tor case (d > 1). However, for d > 1 subspace information alone
leads to an ambiguity: X' = (XD~ 1)(DS) isa factorization with
the same subspaces, for D = diag[A, - --,A] and A any invertible
d x d matrix. Thisambiguity isresolved in asecond step, by taking
advantage of the finite-alphabet property of the signals.

3.1. Direct estimation of S

A standard procedure to find S as a block-Toeplitz matrix with
row(S) = row(X’) isto rewrite these conditions as
row(.t)

[S_L41 S_L42 SN—L-mt1] €

[Sm-1  sm - sn—1] € row(X).
Hence, S:=[s_|+1 S_L42 - Sn—1] isintheintersection of the
rowspan of X’ and shifts of this row span (suitably embedded with
zeros). Alternatively, we can say that Sisorthogonal to the union of
the complement of these row spans. The latter space might be eas-
ier to construct, except perhaps for large N. Thus let G be amatrix
whose columns constitute abasis for ker(.X'). If H hasfull column
rank, then G hasdimensions(N—m+1) x (N—m+1—d(L+m—
1)) =: mg x Ng. Moreover, ¥G = 0= SG = 0. Using the fact
that S is block-Toeplitz, we obtain

SG=0 & SGT6_)=07
G

G| -
GT(Z) = . €

G

L O
GT(Z) . (N-{—K—l) X Ng([-{—m— l).

Thenumber of block-columnsof Gr,) isequal to£+m— 1, where
£ is a parameter chosen equa to the channel length L (or maybe
smaller, viz. section 3.5).

If Gy isawide matrix (this gives additional conditions on
mand N), then ker(GﬁL) ) determines S, but only up to aleft in-
vertibled x d matrix A, becauseY = ASalso satisfiesYGr ) =0.



Given Gr), we takeY to beamatrix whose rowsform abasisfor
ker(G7 ). Toidentify S, we havetofind thefactorizationY = AS,
which, in the case of finite alphabet signals, can be done using the
the ILSP algorithm.
3.2. ThelLSP algorithm
For agiven Y, the ILSP agorithm [7, 8] solves the factorization
(Y=AS: A sfull rank,[Slij € FA), where A is a pre-specified
finite alphabet. In its simplest formulation, the algorithm consists
of alternating projections: starting, e.g., with S% =Y,

o Project S¥ onto row(Y): SV’ := sKyty,

e Project each [S“‘)’ Jij onto the closest member of the alpha-

bet, resulting in S*+1),

Theiteration generally convergesvery rapidly. Notethat if wetook
Y to be an orthonormal basis, then YT = v*.
3.3. Computation of H first

Instead of estimating S directly, we can aso first estimate H and
invert the resulting channel to estimate S. Thisispotentially more
interesting, since dimensions do not grow with N.

The approach we take here is basically that of [5]. Let G’ be
abasis of the left kernel of X'. Assuming S to be of full rank, we
haveG'X =0 = G'H =0. Write

H = [HO H|__:|_]7 Hi ‘Pxd
G = [G'l an], Gi' ‘Mg x P
H = L .
ThenGH=0 &
Gh 07
: Ho
G Gh : =0.
) . Ho_1
0 la

ThisspecifiesH, up to aright block-diagonal factor diag[A, - - - , Al.
SisfoundasS = H1.x, and isblock-Toeplitzin the no-noise case.
With noise, we can average along the diagonals of S to obtain a
Toeplitz structure. At this point, the ILSP agorithm is employed
to remove the ambiguity that A represents.

For the estimation of H, itisonly requiredthat S be of full row
rank, whichisamild condition. Inparticular, itisnot necessary that
all channelshave equal length. In general, estimating H is compu-
tationally easier (for large N), but our experience with simulations
isthat estimating S directly might be more accurate.

3.4. Detection of dand L

If H and S havefull column rank and row rank, respectively, then
therank of X isdy := d(L+ m—1). In principle, the number of
signals d can be estimated by increasing the blocking factor m of
X by one, and looking at the increase in rank of X’. This prop-
erty provides a useful detection mechanism even if the noise level
isquitehigh sinceit isindependent of the actual (observable) chan-
nel length L. Furthermore, it still holdsif all channels do not have
equal lengths (see section 3.5 below). |f they do, then L can be esti-
mated from the estimated rank of X', dy, and the estimated number
of signals,d,by L=dy/d—m+1.
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3.5. Unequal channel lengths

If the channels do not have equal length, but lengths L;j, say, then
‘H is not full rank and a modification of the algorithm for esti-
mating S is necessary. Define Lj = max; Ljj, the maximum num-
ber of symbols of signal j that play arolein asingle sample vec-
tor x(t). Furthermore, define the overall channel length as L =
max; Lj, which is the same as before in (1). Then H has only
Z?: 1 Lj columnsthat are not identical to zero. TheremainingdL —
¥ Lj zero columns show up in the right block columns of H, so
that, generically, rank(H) isalso reducedto (3 L) +d(m— 1).
Hence, therank of X" isrank(X') = (¥ Lj) +d(m— 1). (Note that
it is still possible to detect d by increasing m by one.) Since cer-
tain columns of H are zero, the corresponding rows of S arenot in
row(X’), and the corresponding signals do not satisfy sGT(L) =0.
Hence dimker(Gf‘r(L)) =#L;j=L) isequa to the number of sig-
nalsforwhichLj = L, and only these signal sare obtained after pro-
cessing the basis of the kernel by IL SP. We can, however, underes-
timateL by L, say, and thus take |ess row span intersections, or less
shiftsin Gr;). Then

d:=dimker(Grq)) =#(Lj > 0)+#(L; > L+ 1)+ +#(L; > L).

Inthiscase, signalsforwhich L; > L arerepresentedin ker(Grp)),

aswell astheir shiftsover upto (L; — L) positions. If we take L =
minL;, then al signal's are represented at least once in the kernel.

As before, the d basis vectors in the kernel of Gyp) ae pro-
cessed by ILSP to remove the ambiguity in the choice of the ba-
sis. At thispoint, it is straightforward to detect whether asignal is
ashifted version of another signal in the collection, in which case
one of them has to be discarded. For L = minL, the signals that
remain are the d independent signals.

3.6. Remarks

The above approach of underestimating L and overestimating d ap-
pearsto make the overall algorithm more robust in the presence of
noiseaswell, dsointhecasethat all signalsdo havethe samechan-
nel length. The reason is that ILSP gets a larger responsibility in
separating the signals and their echos, which is favorable because
the finite al phabet property is quite powerful.

Singular value decompositions are used to estimate subspaces
in the presence of noise. Fast subspace techniques which estimate
only afew singular vectors are clearly a method of choice in the
estimation of dimker(Gf‘r(r_)).

4. SSIMULATION RESULTS

To demonstrate the viability of theidentification scheme by an ex-
ample, we consider the following multiray scenario. In the simu-
lation, d = 2 BPSK signals are broadcast from certain locations,
each modulated by a raised cosine waveform W(t) = sin(t)/t -
cos(ft)/(1— 2pt), truncated at alength of 6 baud periods, and with
modulation parameter f = 0.35. Thesignalsarereceivedby M = 2
identical omnidirectional antennas, spaced by half a wavelength.
Thesimulated channel consistsof four paths per signal, where each
path is specified by an angle-of-arrival a, delay T, and complex

tHere, ‘generically’ means provided the overall channel is otherwise
identifiable, i.e., unless the channels have ‘ common zeros' in the sense of
[3]. Preciseidentifiability conditions are beyond the scope of the paper.



Table 1. Bit error rates, standard deviations, and number of timesasignal is not detected (over 50 runs).

m=3 L=2 L=3 L=4
dy d| BERs(%) STDs ND BERs (%) STDs ND BERs (%) STDs ND
11 2886 1527|053 0492 13|/ 858 2473|052 0562 17| 1394 20.06|057 0.68|7 9
41437 522|039 038|1 2|39% 673({042 043|0 2| 862 1209058 063|1 1
6247 125|030 026(0 0| 338 519|039 042|0 0| 740 951|056 058|0 O
12 2]/831 1351052 048|2 9827 2569|051 0583 19| 1204 1466|055 063|6 3
41341 524|039 038|0 1|331 404(038 0401 1 700 845052 057|1 O
6224 220|029 027({0 0308 292|033 035|0 O} 458 698|046 052|1 O
13 2|/ 855 1265|053 0482 9842 2565|051 058|2 19| 921 1394|056 0622 3
4137 337|040 037|1 0327 346|038 0421 O] 589 796|049 054|0 O
6227 08[030 025(0 0|23 273|032 034|0 0| 475 653|046 049|0 O
14 2831 1394053 047|2 11888 26.27|052 0583 20|l 1275 1374|056 061|6 2
41320 394|040 0371 1231 262|038 040(0 O 655 796|053 053|1 O
6216 129|030 024(0 0| 250 223|034 033|0 0| 423 58|045 046|0 O
102 deed equal to d = 2, for L = 3, we also obtain shifted copies of the
two signals. Table 1 gives the bit-error rates and symbol standard
deviations (before classification as +1 or —1), for various choices
10! 4 of L, dy and d, and averaged over 50independent runs. Wealsolist
how oftenasignal was not inthe kernel (ND). It is seen that choos-
ing L smaller than estimated, in combination with overestimating d
10° 4 so that more singular vectors are processed by the L SP a gorithm,
leads to an important decrease in bit errors and parameter standard
deviations. The choice of dy appearsto benot critical.
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