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ABSTRACT 

This work further develops and analyses the large vocabu- 
lary continuous speech recognition (LVCSR) search strategy 
reported at ICASSP-95 [l]. In particular, the posterior- 
based phone deactivation pruning approach has been ex- 
tended to include phone-dependent thresholds and an im- 
proved estimate of the least upper bound on the utterance 
log-probability has been developed. Analysis of the prun- 
ing procedures and of the search’s interaction with the lan- 
guage model has also been performed. Experiments were 
carried out using the ARPA North American Business News 
task with a 20,000 word vocabulary and a trigram language 
model. As a result of these improvements and analyses, the 
computational cost of the recognition process performed by 
the NOWAY decoder has been substantially reduced. 

1. INTRODUCTION 

At ICASSP-95, we introduced an efficient search proced- 
ure [l] that was implemented as a software decoder known as 
NOWAY and used in the ABBOT hybrid connectionist/ HMM 
LVCSR system [2, 31. Key features of this approach in- 
cluded both likelihood- and posterior-based pruning, a stack 
ordered by hypothesis reference time and log-probability, 
and a tree-structured lexicon. In particular, it was found 
that the posterior-based pruning approach, phone deactiv- 
ation pruning, was extremely effective and offered up to 
an order of magnitude speed improvement with little or no 
search error. 

In this paper, we present further analysis of the search 
algorithm and improved approaches to both likelihood- and 
posterior-based pruning. Results are presented from the 
ABBOT system using a 20,000 word vocabulary, trigram lan- 
guage model and recurrent network acoustic model trained 
using the SI-84 data. Most of the experiments reported used 
the ARPA 1993 spoke 5 development test set (Sennheiser 
microphone). 

This work was performed while Mike Hochberg was at Cam- 
bridge University Engineering Department and was partially sup- 
ported by ESPRIT project 6487, WERNICKE. 
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2. THE NOWAY START-SYNCHRONOUS 
DECODER 

The search strategy adopted in NOWAY may be described 
as start-synchronous stack decoding’. Either the Viterbi 
criterion or the full likelihood (forward probability) criterion 
may be used. All the experiments reported here used the 
Viterbi criterion. 

Stack decoding is a heuristic search technique which 
avoids an exhaustive evaluation of the search space. The 
search algorithm usually operates by removing the highest 
scoring hypothesis from a priority queue of partial and com- 
plete hypotheses and extending it by one word. This re- 
quires the comparison of hypothesis scores at different times, 
which may be achieved by using a heuristic estimate of the 
minimum cost of extending a partial hypothesis to a valid 
complete hypothesis. If the heuristic gives a guaranteed 
overestimate of the score (underestimatie of the cost), then 
the search is admissible2. 

This best-first approach can be problematic as it re- 
quires looking ahead. In common with EIahl and Jelinek [4], 
Paul [5]  and Gopalakrishnan et al. [6 ] ,  the partial hypo- 
theses are ordered by length and the Lhortest is extended 
first. This may be conveniently represented by a set of pri- 
ority queues: one for each time. Rather khan looking ahead, 
an estimate of the least upper bound lubP(th) on the log- 
probability P h  of a hypothesis h with reference time t h  is 
employed as a reference for likelihood-based pruning. 

For computational efficiency, the pronunciation lexicon 
is represented as a tree. For the ABBOT system, cross-word 
modelling is not required and a single tree suffices. Both 
likelihood- and posterior-based approaches to pruning are 
used. The likelihood-based approaches are based on beam 
search and involve the definition of a pruning beamwidth 
and the setting of a maximum number of partial hypotheses 
that may be extended at any time. (Note that limiting the 
maximum number of partial hypotheses that may be exten- 
ded can be regarded as an adaptive reduction of the beam- 
width.) The posterior-based approaches are more specific 
to systems with a posterior probability estimator (e.g., hy- 
brid connectionist/HMM systems such as ABBOT). These 
approaches are described below. 

Bridle (personal communication). 
lThe term “stqrt-synchronous” was suggested to us by John 

2This approach is also known as A’ search. 
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Eva1 1992 

PD‘ 
PI (3e-3) 
PD 

PD‘ 10.1 64 11.9 11.8 11.8 13.3 
PI (5e-4) 10.4 84 11.0 12.4 11.0 13.6 

0.4 79 1.0 13.0 1.0 13.9 
1.1 91 0.4 15.8 0.4 16.1 
1.1 87 0.6 16.7 0.6 15.6 

Table 1: Comparison of phone-dependent (PD) and phone- 
independent (PI) phone deactivation pruning thresholds. 
The terms in brackets indicate the threshold employed for 
the PI case. The phone-dependent thresholds were de- 
veloped on the 1993 spoke 5 devtest set, and recognition 
experiments were carried out both on this data and the 1992 
evaluation set. Decode time is in multiples of realtime on a 
pentium-based PC. 

3. PHONE DEACTIVATION PRUNING 

Posterior-based phone deactivation pruning has proved ex- 
tremely successful in increasing the search efficiency of hy- 
brid connectionist/HMM systems [l, 71. This section presents 
an empirical analysis of the behaviour of this technique and 
extends it to incorporate phone-dependent thresholds. 

For each frame of acoustic data, the connectionist model 
produces a complete vector of context-independent posterior 
phone probabilities. These phone posteriors may be re- 
garded as a local estimate of the presence of a phone at 
a particular time (frame). If the posterior probability es- 
timate of a phone given a frame of acoustic data is below a 
threshold, then all words containing that phone at that time 
frame may be pruned (deactivated), i.e., 

if $‘(phoneitdata) < thresholdi 
then P(phone,Idata) := 0. 

This process is referred to as phone deactivation pruning. 
In the zero probability case, converting to log likelihoods 
would involve evaluating log(O), so in practice the (scaled) 
log likelihood is set to a large negative value. 

Results for when the threshold was constant across all 
phones (i.e., threshold; = threshold, V i )  were reported in [l]. 
The posterior probability threshold used to make the prun- 
ing decision may be empirically determined using an operat- 
ing curve derived from a development set. In figure 1, such 
a curve is illustrated by plotting the fraction of “correct” 
phones pruned’ versus the fraction of total phones pruned 
as the threshold is varied over its complete range. This op- 
erating curve demonstrates that phone deactivation prun- 
ing substantially reduces the search space. At the threshold 
value of 7.5e-5, 0.1% of the correct phones have been pruned 
(virtually no search errors are observed) while 70% of the 
phones have been removed from the search. 

3The fraction of correct phones pruned is automatically de- 
termined using a Viterbi alignment procedure. 
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Figure 1: Operating curve for determination of the phone 
deactivation pruning threshold (phone-independent). 

We have recently investigated the use of phone-dependent 
thresholds in phone deactivation pruning. This work was 
motivated primarily by the fact that choosing an operating 
point does not reflect the pruning for any particular phone. 
For example, the threshold of 5e-4 in figure 1 gives an av- 
erage correct phones pruned rate of 0.4% while the actual 
range across phones varies from 0% to 50%. Our initial ap- 
proach to determining the phone-dependent thresholds has 
been to specify a constant phone deactivation error rate, E ,  

on a development test, i.e., 

thresholdi = maxs E (0 , l )  : cp;(z) < E 
where cp i ( z )  is the correct phone i pruned rate given the 
threshold 2. Table 1 shows a comparison between the two 
approaches. These preliminary results are inconclusive, per- 
haps due to the small development set used to estimate 
the phone-dependent thresholds. Further experiments are 
in progress. 

4. LANGUAGE MODEL INTERACTION 

The NOWAY search procedure usually incorporates exact LM 
scores only at the word ends. If LM probabilities are not in- 
corporated within words4 the within-word log-probabilities 
will be larger than the end of word log-probabilities which 
incorporate LM information. Using this information, the 
pruning beamwidth within a word can be set more tightly 
than at a word end, resulting in increased efficiency with 
minimal search errors incurred (table 2). As well as using 
the decode time as a measure of the effective size of the 
search space, three other criteria were also used: the aver- 
age number of nodes activated per start time (i.e., per tree 
traversal); the average number of hypotheses created per 

4An upper bound on the LM probabilities is used for all words 
in a given context. This bound can be precomputed in advance. 
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1993 spoke 5 devtest, 20K trigram 
Parameters I Performance I Search Space 

12.3 
5.0 12.2 

8 2.1 12.2 

350 
516 42 6.0 
349 35 6.0 
219 30 5.9 

Table 2: Effect of varying the within-word beamwidth 
(WW-beam) given a constant word-end beamwidth (WE- 
beam) of 8.0 or 9.0. Decode time is in multiples of realtime 
on a pentium-based PC. 

start time; and the average number of hypotheses extended 
per start time (i.e., the average stack size after pruning). 

Experiments in which exact LM probabilities were in- 
corporated within words have been carried out and the res- 
ults are summarized in table 3. In these experiments, the 
control parameter was a threshold relating to the number of 
pronunciations passing through a node in the tree. When 
the number of pronunciations represented by a node was 
less than a threshold, the exact LM score (or the maximum 
of a set of LM scores) was incorporated into the within- 
word probabilities. In addition, hypothesis pruning was em- 
ployed to prune individual elements from the set of hypo- 
theses being extended in parallel. As shown in the table, 
the narrower beam for within-word pruning causes search 
errors when LM information is incorporated within words. 
To fairly evaluate the effect of incorporating LM informa- 
tion into the within-word probabilities, no within-word in- 
corporation of LM information is compared with reduced 
within-word beam case (WE-beam = 4, WW-beam = 2) 
and varying degrees of LM incorporation with WE-beam = 
WW-beam = 4. The method introduced in section 5 was 
used to compute lUbP(th) in these experiments. 

These results indicate that the extra computation (caused 
by the extra number of LM accesses) is not counter-balanced 
by a significant reduction in the search space. The results in 
the table also indicate that individual pruning of hypotheses 
does not result in a more efficient search-and indeed can 
result in an increase in search errors. 

Table 4 gives further details on the statistics of LM ac- 
cess and indicates that LM incorporation within words leads 
to an increased amount of back-off computation. 

5. LEAST UPPER BOUND ESTIMATION 

The approximated A* heuristic used in the search algorithm 
relies on an accurate estimate of hbP(th). This bound 
needs to be initialized and updated as new hypotheses are 
extended. An accurate estimate of lubP(th) allows a nar- 
rower beam width to be employed without increasing search 
errors. Note that when using a long-span (e.g., trigram) 
language model, the probability backtrace of the most prob- 
able complete hypothesis will not necessarily coincide with 
lubP(th) when th < T. 

1993 spoke 5 devtest, 20K: trigram 
Parameters Performance Search Space 

OIT 412 
OjT 4j4 I 6.0 12.2 0.81 707 f5-5 i3: 
1/F 412 I 2.2 12.9 6.3 253 
1/F 414 
1/T 412 
1/T 4/4 
10/F 412 
10/F 414 
10/T 412 
10/T 414 

2500/F 412 
2500/F 414 
2500/T 412 
2500/T 414 

5.0 19.4 56.2 

Table 3: Effect of within-word incorporation of exact lan- 
guage model probabilities. If the number of words whose 
pronunciations pass through a node is equal to or less than 
“Thresh” the exact LM probability is used. If the “HP?” 
predicate is true, individual hypotheses are pruned at indi- 
vidual nodes as they are extended in parallel through the 
tree. All experiments were carried out on a pentium-based 
PC and time is in multiples of realtime. The maximum num- 
ber of pronunciations passing through any node was 2061. 

Previously, a fairly crude estimate for lubP(th) was used. 
A simple “garbage model” was used to generate the initial 
estimates. This approach averaged the likelihoods of the N 
most probable phones (ranked by posterior probability and 
excluding the most probable) and combined the result with 
a nominal Markov process score. The estimate of lubP(th) 
was then updated whenever a frame of a proposed partial 
extension to a hypothesis exceeded tbe  current least upper 
bound. 

Although this method of updating lubP(th) requires no 
additional computation, it is suboptimal. In particular, the 
constraints of the pronunciation dictionary and language 
model are not used to provide a better estimate. To incor- 
porate this information into the search, a technique similar 
to that used in the envelope search of Gopalakrishnan et 
al. [6] was developed. The key idea is that lubP(th) is only 
updated using paths obtained from backtraces of complete 
word extensions. This involves more computational effort 
than the previous method and requires more memory since 
backtrace information must be stored. However, a much 
tighter estimate of the least upper bound is obtained using 
this approach. The resultant estimate (of lubP(th) for a typ- 
ical sentence is shown in figure 2 with the log-probability 
trace of the most likely complete hypothesis. The initializ- 
ation procedure based on the garbage model was retained. 

We have experimented with this method of least up- 
per bound estimation and compared it with the previous 
approaches. Results (using the same measures of search 

151 



Trigrams 
Bigram backoffs 

Unigram backoffs 
Cache accesses 

Decode Time 
Word Error % 

Figure 2: Least upper bound estimate. The upper, solid line 
is the estimate of lubP(th) using the backtrace method; the 
dashed line is the probability of the most probable complete 
hypothesis. 

NoLM/2 NoLM/4 LM/4 
168 180 180 
31 75 117 

93.6 256 456 
1912 6361 7631 
2.3 6.3 5.8 
12.1 12.2 12.3 

space size as above) are summarized in table 5. Additional 
experiments in which phone deactivation pruning was not 
applied gave even larger performance improvements-using 
the spoke 5 data the decoding time in this case was reduced 
from 50x realtime using the old lub estimation to less than 
l o x  realtime using the new lub estimation. These results 
indicate that this method of lub estimation produces a sig- 
nificant reduction in the size of the search space without 
adversely affecting the word error rate. This general trend 
has been observed in further experiments using different 
datasets [8]. 

6. CONCLUSION 

We have analysed and developed the search strategy intro- 
duced in [l]. The behaviour of phone deactivation prun- 
ing was empirically investigated and a version using phone- 
dependent thresholds was introduced. An improved method 
of estimating lubP(t) resulted in a substantial reduction in 
the volume of the search space evaluated to achieve similar 
word error rates. The effect of the language model on the 
search was analysed and the results used to derive more 
efficient pruning thresholds. 

8.1 
6.0 

6 
lub: Backtrace estimate 

1.5 
1 

9.9 12.1 
6.8 12.1 
4.6 12.1 
3.5 12.2 
4.1 12.1 
2.4 12.1 
3.7 12.4 
2.0 12.4 
1.6 12.8 
1.0 13.3 

297 3.7 
172 3.6 

124 2.0 
84 24 1.9 

Table 5: Comparison of the new (backtrace) approach to 
least upper bound estimation with the previous (greedy) 
approach. Lines in bold indicate the optimal settings of the 
beamwidths for efficient recognition with minimal search 
error based on these and other experiments [8]. 
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