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ABSTRACT

Perfect reconstruction FIR filter banks are equivalent to
a particular class of frames in £2(Z). These frames are the
subject of this paper. Necessary and sufficient conditions on
a filter bank to implement a frame or a tight frame decom-
position are given, as well as the necessary and sufficient
condition for the perfect reconstruction using FIR filters.
Complete parameterizations of FIR filter banks satisfying
these conditions are also given. Further, we study the con-
dition under which the frame dual to the frame associated
to an FIR filter bank is also FIR, and give a parameteriza-
tion of a class of filter banks having this property.

1. INTRODUCTION

The idea of time-frequency localized representations goes
back to the 1940’s and the work of Gabor [3] who proposed
signal decompositions in terms of modulated Gaussians. It
was aimed at overcoming the major drawback of the two
traditional signal descriptions, one in time and the other in
frequency, which both achieve infinitely fine resolutions in
their respective domains but no resolution in the comple-
mentary domains. On the other hand, expansions based on
modulated Gaussians, which achieve the lower bound on the
uncertainty in the joint time-frequency domain, should fa-
cilitate descriptions with good resolution in both time and
frequency. Expansions with respect to different kinds of
time-frequency localized waveforms have been subsequently
used in physics, geophysics and signal processing. However,
not before the 1980’s have they received a thorough and rig-
orous treatment.

The theory of expansions into time-frequency localized
atoms in L?(R) has been developed beyond the orthogo-
nal or biorthogonal case, focusing on redundant represen-
tations based on Weyl-Heisenberg and wavelet frames [4].
One of the primary reasons for studying overcomplete ex-
pansions is that the requirement for orthogonality or hinear
independence imposes considerable constraints which can
sometimes be in conflict with other design specifications.
Ironically enough, perhaps the most striking example is the
fact that Gabor analysis with orthonormal bases with good
resolution in both time and frequency is not possible.

In parallel, these expansions were studied in the discrete-
time domain, ¢2(2Z), in the framework of filter banks and
subband coding schemes. However, this research has been
confined mainly to orthonormal and biorthonormal bases
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which are equivalent to critically sampled filter banks [1, 2].
This paper studies expansions in £2(Z) which are equivalent
to oversampled FIR filter banks. The issues investigated
here are 1) necessary and sufficient conditions on a filter
bank to implement a frame or a tight frame decomposition,
2) the feasibility of perfect reconstruction using FIR filters
after an FIR analysis, and 3) parameterizations of interest-
ing classes of perfect reconstruction FIR oversampled filter
banks.

Notation For a sequence ¢, ¢ will denote the complex
conjugate of the time-reversed version of ¢. When used with
a matrix whose entries are rational functions of the complex
variable z, H(z) will denote the matrix obtained from H(z)
by transposing it, changing all coefficients of the rational
functions by their complex conjugates, and substituting 2z
by 27!, If H(z) = H(z) we say that H(z) is parahermitian.
A polynomial matrix H(z), such that detH(z) is a nonzero
constant, is called unimodular matrix. In this paper we
shall use the term polynomial for Laurent polynomials in
general. Complex conjugate transpose of a vector v will be
denoted as v*.

2. OVERSAMPLED FILTER BANKS AND
FRAME EXPANSIONS

The theory of filter banks {1, 2] provides a convenient frame-
work for both the study and the implementation of an im-
portant class of signal decompositions in Zz(Z), i.e. those
which underlie signal analysis through a sliding window' us-
ing a selected set of prototype waveforms. In general, they
have the form ’

K~1 oo
al] =3 Y ciivislnl ()

where vectors ¢; ;j[n] denote translated versions of K pro-
totype waveforms, ¢; j[n] = wi[n — 7N]. Expansions of the :
type given in (1) can provide a stable representation of any
signal in £2(Z) if and only if the family ®,

® = {pij : @ijln} = @i[n ~ J‘N]}.‘=o,1,.A.,K-1,jeZ (2)

constitutes a frame, i.e. if for any z € £*(Z)

K—-1 oo
Al <D0 S I<w00i > 1P < Blal’,  (3)
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for some constants 0 < A < B < oo, which are called frame
bounds. If @ is a frame, then there exists an analysis frame

¥ = {¢i,; : ¢i,j[n] = ¢hi[n — ]'N]},'=o,1,,_,,}(_1,_,’e z (4

such that the coefficients of the expansion in (1) can be
calculated as inner products with its vectors, that is

z[n] = Z Z < &, %5 > ¢iiln] (8)

For a given frame ®, corresponding analysis frame ¥ in
(5) is not unique. One particular solution is the frame dual
to @ [6]). If the frame bounds are equal, A = B, we say
that the frame is tight. It can be shown that, under this
condition, the frame ® is up to a multiplicative factor equal
to its dual [5] so that the expansion formula (1) gets the
form reminiscent of orthonormal expansions,

K-1 oo
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Figure 1. Oversampled filter bank, N < K. a) Anal-
ysis filter bank. b) Synthesis filter bank.

Vector families of this type are equivalent to filter banks.
A K channel analysis filter bank with subsampling by fac-
tor /N in the channels, shown in Figure la, computes in-
ner products < x,;; > if the impulse responses of the
analysis filters Ho(2), H1(z), ... , Hx—1(z) are selected as
hiln] = ¢i[n}, i=0,1,..., K —1. If the vector family & as-
sociated with an analysis filter bank in this way is a frame,
we say that the filter bank implements a frame decomposi-
tion and refer to ® as its associated frame, or a filter bank
frame. On the other hand, a synthesis filter bank as the
one in Figure 1b, implements the reconstruction formula

K—-1 oo

Hal=3 D wlileiln] 7)

provided that the impulse responses of the filters Go(z2),
.. , Gr_1(%) are equal to the waveforms i, that is
gi[n] = @i[n]. In the following we consider filter bank frames
that consist of finite-length vectors, with K > N, that is
oversampled FIR filter banks. Note that a filter bank can
implement a frame decomposition only if X’ > N.

@ @ o ],

3. FRAME CONDITIONS

Frame conditions on an oversampled filter bank will be ex-
pressed in terms of properties of its polyphase analysis ma-
trix. In the case of a K channel filter bank with subsam-
pling by factor N, the polyphase analysis matrix Hp(2) is
defined as

[Hp(z)]w_ =Hij(z), 1=0,..,K -1, §=0,..,N ~1,

(8)
where +oo
Hij(z)= ) haN -]z, ©)

represents the j-th polyphase component of Hi(z).

The necessary and sufficient conditions on a filter bank
to implement a frame or a tight frame decomposition are
given by the following theorems. '

Theorem 1 [11] An FIR filter bank implements a frame
decomposition in £2(Z) if and only if its polyphase analysis
matriz is of full rank on the unit circle.
Theorem 2 [11] A filter bank implements a tight frame
decomposition in £>(Z) if and only if its polyphase analysis
matriz is paraunitary, Hp(z)Hp(z) = I

Equivalently, a filter bank implements a frame decompo-
sition if and only if there exists a matrix Gp(z) of stable,
rational, not necessarily causal functions such that

Gp(Z)Hp(z) = cl. (10)
The matrix Gp(z) is called the polyphase synthesis ma-
triz and its entries, [Gp(z)]‘, = Gj(z), are the polyphase
components of the synthesis filter bank (see Figure 1b),
N-1
Gi(z) = Z 277Gi;(V), (11)
i=0
which can be used for perfect reconstruction from the de-
composition obtained from the analysis filter bank. Solu-
tion for Gp(2) of the polyphase equation {10), and hence
the synthesis filter bank is not unique if X' > N. One so-
lution for Gp(z) is the pseudoinverse of Hp(z), which is
given by

H*(2) = (Ap(2)Hp(2)) " Hp(2). (12)

The frame associated with Gp(z) = H¥(z) is the frame
dual to the frame associated with the analysis filter bank [5].
This further means that reconstruction from noisy subband
components using this filter bank projects to zero the noise
component which is orthogonal to the range of the frame
expansion of the analysis filter bank. Hence it is important
to investigate when both a filter bank frame and its dual
consist of finite-length vectors.

Theorem 3 [11] For a frame associated with an FIR fil-
ter bank, with the polyphase analysis matriz Hp(z), its
dual frame consists of finite-length vectors if and only if
Hp(z)Hp(z) is unimodular.

Note that Theorem 3 does not preclude the existence of

an FIR perfect reconstruction synthesis filter bank even if
Hp(z)Hp(z) is not unimodular.
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4. PARAMETERIZATIONS OF FIR FILTER
BANK FRAMES

The parameterization of filter bank frames which is given
here is based on the Smith form [7] of corresponding
polyphase analysis matrices.  Any polynomial matrix
Hp(z), of dimension K x N (K > N), can be decomposed
as the product

Hp(z) = R(z)D(2)C(2), (13)

where R(z) and C(z) are unimodular matrices of dimen-
sions K x K and N x N, respectively, while D(z) is a diag-
onal K x N polynomial matrix

d1(z) 0 0
0 daz) ... O
DF=| 0 0 ... du(z) (14)
0 0 0
0 o ... o

The unimodular matrices can be chosen so that the polyno-
mials di(z) are monic and that di(z) is a factor of diy1(2).
The matrix D(z) is called the Smith form of Hp(z). The
unimodular matrices R(z) and C(z) are products of finitely
many elementary matrices

R(z) = Ri(2)R2(2) - - Rm(2)
C(z) = C1(2)Ca(2) -+ - Cu(z).

Elementary matrices Ri(z), C;(2) correspond to elemen-

tary row (column) operations, and have one of the following
forms:

e a permutation matrix, i.e. the identity matrix with two
rows permuted;

o a diagonal matrix with elements on the diagonal equal
to unity, except for one which is equal to a nonzero
scalar;

e a matrix with ones on the main diagonal and a single
non-zero entry off the diagonal, which is a polynomial
a(z).

An example of the three types of elementary 4 x 4 matrices
is given below.

1 0 00 1 00 O 1 000
0 0 0 1 01 00 0 1 0 0O
0 01 0 0.0 c¢c O alz) 0 1 0
0o 1 0 0 00 0 1 0 0 0 1

A complete parameterization of FIR filter bank frames fol-
lows directly from the Smith form, and is stated by the
following proposition.

Proposition 1 [11] An oversampled FIR filter bank imple-
ments a frame decomposition in £2(Z) if and only if the poly-
nomials on the diagonal of the Smith form of its polyphase
analysis matriz have no zeros on the unit circle.

A parameterization of FIR filter bank frames having dual
frames which are also FIR is given by the following propo-
sition which is a corollary of Theorem 3.

Proposition 2 [11] Consider an oversampled FIR fil-
ter bank with the polyphase analysis matric Hp(z).
JI:Ip(z)Hp(z) is unimodular if Hp(z) has the following
orm:

Hp(z) = HoR(#)D(2)C(2), (15)

where Hy is a K x N (K > N} matriz of scalars, such that
HoHo = cI, R(z) and C(z) are products of finitely many
elementary matrices, and D(z) is a N x N diagonal matriz
of polynomials, with nonzero monomials on the diagonal.

On the other hand, any unimodular parahermitian matriz
of polynomials, P(z), which is positive definite on the unit
circle, can be factored as

P(z) = Hp(z)Hp(2),
where Hp(2) is of the form given in (15).

A necessary and sufficient condition for an FIR synthesis
is given by the following proposition, which also implicitly
gives a complete parameterization of FIR oversampled filter
banks in this class.

Proposition 3 [11] Perfect reconstruction with FIR filters
after analysis by an oversampled FIR filter bank is possible
if and only if polynomials on the diagonal of the Smith form
of the polyphase analysis matriz are monomzials.

As it was established in the previous section, tight filter
bank frames are equivalent to paraunitary polynomial ma-
trices. A K x N paraunitary matrix (K > N) can always
be embedded into a K x K paraunitary matrix [8]. The
parameterization of the rectangular paraunitary polyphase
matrices, that is filter bank tight frames in ¢2(Z), which we
give in the following proposition, follows directly from one
of the factorizations of square paraunitary matrices studied
by Vaidyanathan [1].

Proposition 4 [11] A K x N (K > N) polynomial matriz
Hp(z) is paraunitary if and only if it has the decomposition

Hp(z) = Vu(2)Vau-i(z) - Vi(z)Ho. - (16)
The building blocks, Vi(z), have the following form, k
V,(z) =I-v;v] + z_lv,'v;‘, (17)

where v; denotes a unit norm vector, while Hg is a K x N
matriz of scalars such that HoHo = cI.

5. CONCLUSION

In this paper properties of oversampled FIR filter banks
are studied. Necessary and sufficient conditions on a filter
bank to implement a frame or a tight frame decomposition
in £%(Z) were given in terms of properties of the correspond-
ing polyphase analysis matrix. Complete parameterizations
of filter bank frames and tight frames were also given. A
necessary and sufficient condition for the feasibility of per-
fect reconstruction with FIR filters was also established, as
well as a necessary and sufficient condition for an FIR filter
bank frame to have an FIR dual. Filter banks in these two
classes were also parameterized.

1532



ACKNOWLEDGMENT

The authors are grateful to Dr. Ton Kalker and Dr. Alan
Park for the valuable and insightful discussions on this sub-
ject.

REFERENCES

[1] P. P. Vaidyanathan, Multirate Systems and Filter
Banks, Prentice-Hall, Englewood Cliffs, New Jersey,
1993.

[2] M. Vetterli and J. Kovagevié, Wavelets and Subband
Coding, Prentice-Hall, Englewood Cliffs, New Jersey,
1995

[3] D. Gabor, Theory of Communications, J. IEE, Vol.93
(I11), 1946, pp.429-457.

[4] I. Daubechies, The Wavelet Transform, Time-Frequency
Localization and Signal Analysis, IEEE Trans. on Infor-
mation Theory, Vol.36, No.5, September 1990, pp.961-
1005.

[5] I. Daubechies, Ten Lectures on Wavelets, CBMS-NSF
Series in Appl. Math, SIAM, 1992.

[6] R. J. Duffin and A. C. Schaeffer, A Class of Nonhar-
monic Fourier Series, Trans. Amer. Math. Soc, Vol.72,
March 1952, pp.341-366.

[7] H. J. S. Smith, On Systems of Linear Indeterminate
Equations and Congruences, Philos. Trans. Royal Soc.
London, Vol.151, 1861, pp.293-326.

[8] H. Park, A Computational Theory of Laurent Polyno-
mial Rings and Multidimensional FIR Systems, Ph. D.
Dissertation, University of California at Berkeley, May
1995.

[9] R. Balian, Un principe d’incertitude fort en théorie du
signal on mécanique quantique, C. R. Acad. Sc. Paris,
vol.292, série 2, 1981.

[10] F. Low, Complete Sets of Wave Packets,in A Passion
for Physics - Essays in Honor of Geoffrey Chew, pp.17-
22, Singapore: World Scientific, 1985.

[11] Z. Cvetkovi¢ and M. Vetterli, Oversampled Filter
Banks, submitted to IEEE Trans. Signal Processing, De-
cember 1994.

1533



