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ABSTRACT

This paper explores the effects of coefficient quantization in
applying the matching pursuit algorithm to source coding
of vectors in RY. By considering the issue of consistency,
we find that even though matching pursuit is designed to
produce a linear combination to estimate a given source
vector, optimal reconstruction in the presence of coeflicient
quantization requires a nonlinear algorithm. Such an algo-
rithm was implemented and was experimentally confirmed
to have superior reconstruction properties in comparison
to the standard linear reconstruction. The improvement
depends on the source, dictionary and operating point; in
some cases the MSE was lessened by as much as a factor
of five.

1. MATCHING PURSUIT

Matching pursuit is an algorithm for finding linear combi-
nations that approximate a given signal vector. It was in-
troduced to the signal processing community in the context
of time-frequency analysis by Mallat and Zhang [1]. Mallat
and his students have uncovered many of its properties [2].

Let D = {@x}#L; C RY span RY. Also impose the
additional constraint that ||¢x|| = 1 for all k. We will call D
our dictionary of vectors. Matching pursuit is an algorithm
to represent f € H by a linear combination of elements of
D. Furthermore, matching pursuit is an iterative scheme
that at each step attempts to approximate f as closely as
possible in a greedy manner. If the dictionary is highly
redundant, we expect that after a few iterations we will
have an efficient approximate representation of f.

In the first step of the algorithm, ko is selected such that
[(@kq, )| is maximized. Then f can be written as its pro-
jection onto ¢k, and a residue R f,

f = (Qakov f>‘pkg +R1.f

The algorithm is iterated by treating R;f as the vector to
be best approximated by a multiple of ¢x,. At step p+ 1,
kp is chosen to maximize {{pk,, Rpf)| and

Rps1f = Rpf — <(Jokp$ Rpf)ﬂokp«
Identifying Rof = f, we can write

n—1

f = (¢x: Rif)¢r; + Ruf. €]

=0

Hereafter we will denote (¢;, Rif) by ;.
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The reader is referred to [2] for details on the conver-
gence of matching pursuit and other properties. Note that
the output of a matching pursuit expansion is not only the
coefficients (ao, a1, ...), but also the indices (ko, k1, ...).
For storage and transmission purposes, the indices must be
accounted for.

2. QUANTIZED MATCHING PURSUIT

Although matching pursuit has been applied to low bit rate
compression problems [3, 4, 5], which inherently require
coarse coefficient quantization, little work has been done
to understand the qualitative effects of coefficient quantiza-
tion in matching pursuit. In this section we explore some of
these effects. The issue of consistency in these expansions is
explored in §2.2. In §2.3, a detailed example on the applica-
tion of matching pursuit to quantize an R2-valued source is
presented. This serves to illustrate the concepts from §2.2
and demonstrate the potential for improved reconstruction
using consistency.

2.1. Discussion

Coefficients are quantized in any computer implementation
of matching pursuit. When the quantization is fine, it is
generally safe to neglect it. If the quantization is coarse, as
it must be for moderate to low bit rate compression appli-
cations, the effects of quantization may be significant.

Define quantized matching pursuit to be matching pursuit
with non-negligible quantization of the coefficients. We will
denote the quantized coefficients by &; = g(ai), where g
is a (scalar) quantization function. Note that quantization
destroys the orthogonality of the projection and residual.

We are assuming that the quantization of a; occurs be-
fore the residual R;4i f is calculated, and that the quantized
version is used in determining the residual so that quantiza-
tion errors do not propagate to subsequent iterations. Since
&; must be determined before a;41, it is implicit in this as-
sumption is that the coefficient quantization is scalar.

For any particular application, there are several design
problems: a dictionary must be chosen, scalar quantizers
must be designed, and the number of iterations (or a stop-
ping criterion) must be set. In principle, these could be
Jointly optimized for a given source distribution, distortion
measure, and rate measure. In practice, this is an overly
broad problem.

2.2. Consistency

Let @ : X = Y be a quantization function. We say that
z € X i1s a consistent estimate of x € X, or a consistent
reconstruction, if Q(£) = Q(z) [6]. In words, we would say
that an estimate is consistent if 1t has the same quantized
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version as the original; it is “consistent” with the observa-
tion of Q(z). Consistency depends only on the determinis-
tic properties of (), and not on statistical properties of the
X-valued source.

Reconstructions from a matching pursuit representation
are generally computed by using the quantized coefficients

in (1), giving

pr—1

f= Z &igk;-

=0
The shortcoming of this reconstruction is that it disregards
the effects of quantization; hence it can produce inconsistent
estimates. We will see that a matching pursuit representa-
tion implicitly contains many linear constraints and that
inconsistency is not uncommon.

Suppose p iterations of matching pursuit are performed

with the dictionary D. The output of the (quantized)
matching pursuit algorithm is

{k‘o,@o, ki, a1, ...,kp_l,a/p_1}. (2)
(There is nothing consistent or inconsistent about this set.)
Denote the output of matching pursuit (with the same dic-

tionary and quantizers) applied to f oy

{k(,)v &67 k;a &,11 - '~1k’p—-17 &;—l}“
If
ki =k! and &; = 4! 3)

fori=0,1,...,p—1, wesay that fisa strictly consistent
estimate. If (3) holds except possibly that k; # k! for some
t for which &; = &! = 0, we say that f is a loosely consis-
tent estimate. The second definition is included because a
reasonable coding scheme might discard k; if &; = 0.

The crucial point is that there is more information in (2),
along with D and knowledge of the workings of matching

pursuit, than there is in f. In particular, (2) gives a set of
linear inequality constraints that defines a partition cell in

which f lies. f is an estimate of f that does not necessarily
lie in this cell.

Let us now list the complete set of constraints implied by
(2). For notational convenience, we assume uniform scalar
quantization of the coefficients with stepsize A and mid-
point reconstruction. The selection of ko implies

Kero, HHI = Ko, ), Yo eD. (4)

For each element of D\ {¢x,}, (4) specifies a pair of half-
space constraints with boundary planes passing through the
origin. An example of such a constraint in R* is shown in
Figure 1. If ¢, is the vector with the solid arrowhead
(chosen from all of the marked vectors), the source vector
must like in the hatched area. For N > 2, the intersection
of these constraints is two infinite convex polyhedral cones
situated symmetrically with their apexes at the origin. The
value of &p gives the constraint

(exor f) € [ao - —2—,&0 + %] . (5)
This specifies a pair of planes, perpendicular to ¢x,, be-
tween which f must lie. Constraints (4) and (5) are illus-
trated in Figure 2 for R®. The vector with the solid arrow-
head was chosen among all the marked dictionary vectors
as @k,. Then the quantization of oo implies that the source
vector lies in the volume shown.

Figure 1. [llustration of consistency constraint (4).
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Figure 2. lllustration of consistency constraints (4) & (5).

At the (3 — 1)st step, the selection of k; gives the con-
straints

i1 im1
<¢kn f- Z&l¢k¢> >le f— E&Z‘Pk, ,
£=0 £=0

V ¢ € D. This defines M — 1 pairs of linear half-space con-
straints with boundaries passing through Z’l;; &epr,. As
before, these define two infinite pyramids situated symmet-
rically with their apexes at ZZ;; Gk, . Then &; gives

t—1
N n A A
(Pk,,f"lz_;aﬁPkl € [m—;,aﬁ—é—].

This again specifies a pair of planes, now perpendicular to
©k;, between which f must Le.

By being explicit about the constraints as above, we see
that, except in the case that 0 € [61.- — %, & + %—] for some

i, the partition cell defined by (2) is convex.! Thus by using
an appropriate projection operator, one can find a strictly
consistent estimate from any initial estimate. The partition
cells are intersections of cells of the form shown in Figure 2.

Experiments were performed to assess how the probabil-
ity of an inconsistent estimate depends on D, r, and A. The
loose sense of consistency was used in all the experiments.

The first set of experiments involved quantizing an R
valued source with the A(0, I) distribution. With dictionar-
ies formed by taking linearly independent subsets of 2M-th
roots of unity, M was varied between 2 and 256 while A
was varied between 107! and 10°2®. Figure 3 shows the
probability of inconsistency as a function of M and A. The
probability of inconsistency is significant! The surface is
rather complicated, but we can identify two trends: the
probability of inconsistency goes to zero as M is increased
and as A — 0.

L1 The “hourglass” cell that results from 0 € [cii -4 & + %—]
does not pose a problem in reconstruction.
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Figure 3. Probability of inconsistent reconstruction for an
R2-valued source as a function of M and A.
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Figure 4. Probabilities of inconsistent reconstruction for
an RS-valued source. Dictionaries correspond to oversam-
pled A/D conversion (solid) or mazimally space points on
the unit sphere (dashed).

To explore the dependence on D, experiments were per-
formed for quantizing an R>-valued source with the A(0, I)
distribution. The consistency of reconstruction was checked
for two iteration expansions. Dictionary sizes of M = 25,
50, 75, 100, and 125 were used. The results are shown in
Figure 4. The solid curves were generated with dictionar-
ies corresponding to oversampled A/D conversion {7]. The
dashed curves were generated using dictionaries of max-
imally spaced points [8]. For both types of dictionaries,
the probability of inconsistency goes to one for very coarse
quantization and goes to zero as A — 0. The qualitative
difference between the curves indicates that there are com-
plicated geometric factors involved.

2.3. An Example in R?’

Consider quantization of an R?valued source. Assume that
two iterations will be performed with the four element dic-
tionary

(k-1 . (@2k-1r]"|
'Dz{[cos 3 ) sin 3 ] }k—l.

Even if the distribution of the source is known, it is difficult
to find analytical expressions for optimal quantizers. Since

Figure 5. Partitioning of first quadrant of R? by matching
pursuit with four element dictionary.

we wish to use fixed, untrained quantizers, we will use uni-
form quantizers for ap and «;. Since it will generally be
true that @i, L @&, , it makes sense for the quantization
step sizes for ap and a1 to be equal.

The partitions generated by matching pursuit are very
intricate. Figure 5 shows the partitioning of the first quad-
rant when zero is a quantizer reconstruction value, i.e. the
quantizer reconstruction points are {mA},,cz and decision
points are {(m + ;)A},, ez for some quantization stepsize
A.2 The dotted lines show boundaries that are created
by choice of ko (k1) but, depending on the reconstruction
method, might not be important because & =0 (&1 = 0).
In this partition, most of the cells are squares, but there are
also some smaller cells. Unless the source distribution hap-
pens to have high density in the smaller cells, the smaller
cells are inefficient in a rate-distortion sense. The fraction
of cells that are not square — 0 as A — 0.

This quantization of R? gives concrete examples of in-
consistency. The reconstruction points were not marked on
the partition diagram because the correspondence between
cells and reconstruction points would not have been clear.
Figure 6(a) depicts parts of these partitions with linear re-
construction points marked with circles. These show that
linear matching pursuit reconstructions are not always con-
sistent. Figure 6(b) is a copy of Figure 5 with cells that lead
to inconsistent linear reconstructions marked with x’s.

3. IMPROVED RECONSTRUCTION USING
CONSISTENCY

In this section we present experimental evidence of the rate-
distortion improvement obtained by using a consistent re-
construction algorithm. The consistent reconstruction al-

orithm is based on the method of alternating projections
{10] and the following facts:

2The partition is somewhat different when the quantizer has
different decision points, ¢.g. {(m + 3)A},,¢z [9]- The ensuing
conclusions are qualitatively unchanged.
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(a) (b)

Figure 6. (a) Partition of Figure 5 with linear reconstruc-
tion points marked. (b) Partition of Figure 5 with regions
leading to inconsistent reconstructions marked.

1. Given f and ¢ such that |{e, f)l > (0o, )] let

Bko =. Sgn((‘P"mf))’kao and ¢ = sgu{{y, f))e.
Then f — (Fr, — @, F)(Pro — @) is the orthogonal
projection onto the set described by (4).

2. Given f such that (<pk0,f) > &g + % >0, f-
(ko> f) —é&o— %)qoku is the orthogonal projection
onto the set described by (5). Similar expressions
hold for other cases.

The experiments involved quantization of a zero mean
iid. Gaussian source. Dictionaries were formed from [8].
Source vectors were generated by forming blocks of N sam-
ples. Rate was measured by summing the (scalar) sample
entropies of ko, k1, ..., kp—1 and &o, &1, ..., &p_1, where
p is the number of iterations of the algorithm. Figure 7(a)
gives simulation results obtained with N = 3 and M = 7.
The x’s, which are connected by dashed lines, are D(R)
points resulting from using linear reconstruction. The o’s,
connected by solid lines, are D(R) points obtained with
consistent reconstruction. Traversing each curve from left
to right corresponds to varying A from 107°2% to 1071,
Since consistency is not an issue for a single-iteration expan-
sion, the curves coincide for p = 1. The peak improvement
due to consistent reconstruction is a reduction in MSE by
more than a factor of five. Figure 7(b) shows similar results
for N=4 and M = 11.
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