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ABSTRACT 

This paper proposes a new parameter estimation 
algorithm for damped sinusoidal signals. Parame- 
ter estimation for damped sinusoidal signals with 
additive white noise is a problem of significant in- 
terest in many signal processing applications, like 
analysis of NMR data and system identification. 
The new algorithm estimates the signal parame- 
ters using a matrix pencil constructed from the 
measured data. To reduce the noise effect, rank 
deficient Hankel approximation of prediction ma- 
trix is used. The performance of the new algo- 
rithm is significantly improved by structured low 
rank approximation of prediction matrix. Com- 
puter simulations show that the noise threshold 
of the new algorithm is significantly better than 
the existing algorithms. 

1. INTRODUCTION 

High resolution parameter estimation for damped 
sinusoidal signals in the presence of additive white 
noise is a problem of significant interest in many 
signal processing applications, like spectral anal- 
ysis, analysis of NMR data and system identifica- 
tion. Many approaches to high resolution param- 
eter estimation have been proposed for pure si- 
nusoidal signals, including linear prediction (LP) 
techniques [I], signal subspace methods intro- 
duced by Pisarenko, and generalized by Schmidt 
[2] in his MUSIC (multiple signal classification) 
algorithm and ESPRIT [3] which provides high 
resolution parameter estimation by means of sub- 
space rotational invariance techniques with com- 
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plexity much less than MUSIC algorithm. The 
difficulty of parameter estimation for damped 
sinusoidal signals stems from the nonstationar- 
ity of this kind of signals. Kumaresan-Tufts 
(KT) algorithm [4] and Hua-Sarkar’s matrix pen- 
cil method [7] are well known to provide better 
estimations for parameters of damped sinusoidal 
signals. These two methods can attain Cramer- 
Rao bound for a certain noise threshold if the 
damping factors are small. 
A new algorithm is proposed in this paper which 
estimates the signal parameters by using a matrix 
pencil constructed from noise corrupted data. To 
reduce the noise effect, the low rank Hankel ap- 
proximation of the prediction matrix is used [5, 61 
. It can be shown that the performance of param- 
eter estimation algorithm can be improved if the 
structure of the prediction matrix is preserved af- 
ter low rank approximation. This structured low 
rank approximation of prediction matrix [5,6] has 
a great effect on the performance of the new algo- 
rithm. The performance of the new algorithm is 
compared with KT algorithm [4], modified KT al- 
gorithm (MKT) [6] and Hua-Sa,rk”s matrix pen- 
cil method [7] through the computer simulations. 
Computer simulation results show that, this new 
algorithm has lower noise threshold than KT al- 
gorithm [4], MKT [6] and Hua-Sarkar’s matrix 
pencil algorithms [7]. 

2. ALGORITHM DEVISLOPMENT 

Consider a sequence y ( n )  consisted of K damped 
sinusoidal signals and white noise w(n)  as 

K 
y ( n )  = ckeskn + w(n),  n = 0,. - ,  N-I. (I) 

k=l 



where K is the number of damped sinusoids, N 2 
2K,  S I ,  = -QI,+JWI,, WI,  E [-T, T], QI, 2 0, which 
is called the damping factor and w(n)  represents 
the measurement noise. We first form K x K 
matrices as 

1 ,  y(n+K-1)  
Y(n + 1) * y(n + K) 

A n =  . 
y(n + K - 1) * * .  y(n + 2K - 2) 

(2) 

(y”’ 
for n = 0, l , . . .  , N-2K + 1. From (1) it can be 
shown that 

A, = STCCPnS + W,, (3) 

where in the above expression Wn’s are noise 
matrices which have the same structure as data 
matrices A,, + and C are diagonal matrices 
defined as + = diag(esl, e s 2 , . . - ,  eSK), C = 
diag(c1, c2, ... , CK),  S is the signal matrix de- 
fined as S = [r(sl), r(s2), . . . , r ( s ~ ) ] ~ ,  where 
r(sk) = [I, esk,. . . , ,3(K-1)sk]T. 

If there is no measurement noise: 

A;~A,+~ = s-l+s. (4) 

Therefore the eigenvalues of AilAn+l  are 
eS1, esZ,. . . , eSK, so signal parameters can be 
estimated from eigenvalues of A;’A,+l. Due 
to the existence of noise, we can only estimate 
P = S-l@S. To obtain an accurate estimation of 
P, we construct the following statistics 

N-2K 
P = a n ~ ; l ~ , + l ,  (5) 

n=O 

where an’s are the weighting factors. To make the 
estimation unbiased we must ensure C:ztK a, = 
1. By selecting a, properly a good estimation of 

can be obtained, therefore the performance can 
be enhanced under the influence of noise. 

3. HANKEL APPROXIMATION 

In the presence of measurement noise, we have to 
reduce the noise effect before we can apply the 
above algorithm. In other words, we have to first 
approximate noisy sequence y (n) with sequence 
Q(n) which is less noisy, and then apply the new 

matrix pencil algorithm to the $(n). For this pur- 
pose we first construct a prediction matrix from 
the measured data as 

(6) 

Y(1) ”. Y(L - 1) 
Y(2) ... Y(L) . .  . .  . .  A y =  * i y(L- ? 1) y(L) ... y(2L - 2) 

where L = [N/21 in order to have the best per- 
formance. Rank deficient Hankel approximation 
of the A, given in [5, 61 is used to find the se- 
quence $(n) as follows: 
Initialization: ffE1 = A, and T = 0 (r is the 
iteration index) 
1) Compute SVD(X;] )  = UDVH 
2) Obtain A, = [Gi,j]$.& = E,“==, okukvk H . 
3) Find a Hankel matrix S[l to 

- A, [ I F ,  (the best least square 

where 

c 
n+m=i+j, O<n,m<L-l 

minimize 1 1  
fit to Ay) 

(7) 

Gn,m. (8) 

in which r is the number of the elements in ma- 
trix &, satisfying n + m = i + j in (8). 
4) Repeat steps 1, 2 and 3 till the rank of 
-&[I = K (where K is the number of signals). 

In [5] it is formally proved that this process con- 
verges to a rank deficient Hankel matrix. The 
sequence $(n) resulted from the above rank defi- 
cient Hankel approximation algorithm is used in 
the new algorithm instead of y(n) to estimate the 
signal parameters effectively. 

Using the above Hankel approximation method 
for noise reduction in our new matrix pencil al- 
gorithm we have shown that the best weighting 
factors a, in (5) are as follows 
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4. SIMULATION EXAMPLES 

In this section, we will demonstrate the perfor- 
mance of the new matrix pencil algorithm by two 
examples drawn from [4]. 

Example 1: 
The simulated data are generated by 

y(n) = esln + eszn +w(n) ,  for n = 0 ,1 , .  - - ,24. 

where SI = -0.1 + j2n(0.52), s2 = -0.2 + 
j2n(0.42), w ( n )  is complex white Gaussian noise 
with zero-mean and variance a2, related to S N R  
by SNR = lolog(&). The MSE’s of w1,  CY^, w2 

and a2 for KT [4] algorithm, MKT [6], Hua- 
Sarkar’s matrix pencil method [7] and the new 
algorithm, using the average of 500 trails, are 
shown in Figure 1. From Figure 1 (a), the noise 
threshold for estimated frequency associated with 
smaller damping factor has lower noise thresh- 
old than the estimated frequency associated with 
larger damping factor, Figure 1 (c). For w1 with 
damping factor a1 = 0.1, from Figure 1 (a), the 
noise threshold of the new matrix pencil algo- 
rithm is about 12 dB lower than KT algorithm 
and about 8 dB is lower than MKT and Hua- 
Sarkar’s matrix pencil algorithms. For w2 with 
damping factor a1 = 0.2, from Figure 1 (c), the 
noise threshold of the new matrix pencil algo- 
rithm is about 10 dB lower than K T  algorithm 
and about 5 dB is lower than MKT and Hua- 
Sarkar’s matrix pencil algorithms. 
Example 2: 
We are going to estimate the poles and zeros of 
a linear system from its noise corrupted samples 
of the impulse response. The transfer function of 
the linear system is 

(10) 

where poles of the transfer function are shown in 
Table 1. The magnitude of H(eJ”)  is shown in 
Figure 2 (a), which has two nulls at w = f r / 4  
respectively. 
The first forty real valued samples of noise cor- 
rupted impulse response are observed. The noise 

is real white Gaussian with zero-mean and vari- 
ance a2 determined by SNR, d.efined as 

KT algorithm, MKT algorithm and the new al- 
gorithm are applied to estimate the poles of the 
system, consequently, the denominator of &z). 
Once &z) is obtained, B(z )  can be estimated us- 
ing Shanks’ method [8], which first generates a 
sequence fn by 

1 .  f (n )  = ,2-l{r-}, 
4.4 

and then estimate bk for IC = 0, 1 ,  2 by minimiz- 
ing the error 

39 2 

n=O k=O 

Figure 2 (b), (c) and (d) show 10 trails of mag- 
nitudes of estimated transfer function using KT, 
MKT and the new matrix pencil algorithms re- 
spectively. Also Table 1 illustrates the mean and 
variance of the estimahed poles of transfer func- 
tion using KT, MKT and the new matrix pencil 
algorithms. From Figure 2 and Table 1, it is clear 
that the new matrix pencil algorithm gives more 
accurate estimate of tiransfer function H ( z )  than 
KT and MKT algorithms. 

5. CONCLUS1:ON 

In this paper a novel parameter estimation algo- 
rithm for exponentially damped sinusoidal signals 
is proposed. Signal parameters are estimated by 
a matrix pencil constructed fromi the given data. 
The noise effect is reduced significantly by using 
low rank Hankel approximation of prediction ma- 
trix. Computer simulations demonstrate that the 
new algorithm can estimate the parameters of ex- 
ponentially damped sinusoids effectively. 
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Figure 1. The MSE of (a) wi, (b)  0 1 ,  (c) w2 (d) 02  for KT.  
MKT, Hua-Sarkar’s matrix pencil and the new matrix pencil 
algorithms when s1 = -0.1+~2~0.52, s2 = - 0 . 2 + ~ 2 ~ 0 . 4 2  
and N = 25. 

Table 1. The true and estimated poles of the transfer function 
H ( z )  

Figure 2. (a) Magnitude of H ( z ) ,  (b )  estimated magnitud-e of 
&(z)  using KT algorithm, (c) estimated magnitude of H ( z )  
using MKT algorithm, (d) estimated magnitude of k ( z )  using 
the new algorithm, SNR=30dB. 
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