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ABSTRACT 

A Maximum Likelihoocl (ML) method for joint estimation 
of amplitude, phase, time delay, antl da ta  demodulation in 
a single-user direct sequence spread spectrum comniunica- 
tion system is developed. The  likelihood function is an- 
alytically intractable, so a recursive estimation algorithm 
is considered. The  Expectation Maximization (EM) algo- 
rithm has been used in similar problems, however, in this 
case i t  is not computationally efficient. Recently, a variant 
of the EM algorithm, called Space Alternating Generalized 
EM (SAGE), has been derived. In this work we apply the 
SAGE algorithm to the sequence estimation problem in a 
way which results in simple sequential updates of all the es- 
timated parameters. An important feature of the proposed 
algorithm is the use of a discrete wavelet decomposition of 
the received signal as a sufficient statistic. The  consequence 
is that  all the information is still available to the receiver, 
while the complicated estimation problem is considerably 
simplified. Computer simulations of a single user system 
were performed. I t  is shown that the algorithm has fast 
convergence, and essentially achieves optimal performance. 

1. 1NTR.ODUCTION 

The emergence of new t,ccliiiologics of multi-user wireless 
communication systems, reqiiircs advanced signal process- 
ing methods for iinprovetl eficiericy ant1 reliability. 111 or- 
der to optimally decode the desired information the receiver 
should benefit from knowledge of t,lie nuisance pinmneters 
of the received signal which typically consist of the am- 
plitude, phase, and time delay. Usua.lly, these pa.raineters 
are estimated by a combination of several techniques, each 
specialized to a particular parameter. For example, carrier 
phase and time delay est.iination are mostly done with a 
Phase Locked Loop (PLL) antl a Delay Locked Loop (DLL) 
respectively [4]. A considerable research activity has been 
directed at  improving the performance of these basic syn- 
chronization techiiiqiies, e.g. by using decision feedback in 
a Data Aided Loop (DAL) configuration [ 5 ] .  Clearly, an 
optimal receiver is one which jointly estimates the nnisance 
parameters as well as the t i a h  symbols. 

In this work we consider the problem of Maximum Like- 
lihood (ML) estimation of all the parameters given the re- 
ceived signal. This problem is ana.lyt,ically intractable even 
for the simple AWGN channel, hence the need for a recur- 
sive estimation algorithni. The Space Alternating General- 

ized EM (SAGE) algorithm which has recently been devel- 
oped in [3] is a variant of the EM algorithm [ 2 ] ,  both are 
recursive algorithms which generate a sequence of parame- 
ter estimates whose likelihood increases monotonically. The 
SAGE algorithm is more flexible than the EM algorithm, 
because it is possible to update subsets of the parameter, re- 
sulting in simpler updates and faster convergence. We have 
chosen to focus on the single user problem, although the 
same approach can be generalized t o  the multi-user case. 

One of the basic concepts in estimation theory is that  a 
signal can be represented by a sufficient statistic. The  sig- 
nal expansion on an orthonormal wavelet basis is one such 
possible representation. This choice has been motivated by 
the excellent time-frequency localization properties of the 
wavelet bases. The  SAGE algorithm has therefore been 
formulated in terms of the decomposition of the received 
signal in the discrete wavelet transform domain. The re- 
sult is a causal, fully digital receiver which makes a "single 
pass" on the information, without requiring any buffering 
or delayed processing. The  principle of using a sufficient 
statistic in a similar problem has been discussed in [6]. 

This paper is organized as follows. In section 2 we define 
the system model, and briefly review the SAGE algorithm 
and the concept of a hidden da ta  space. In section 3 we 
develop the single user algorithm, and outline a strategy of 
clroosiiig the hidden data spaces. In section 4 we describe a 
Fouricr based method for numerically solving the maximiza- 
tion step of the algorithm. The  recursive implementation of 
tlie algorithm is given in section 5. We conclude with sim- 
ii1;hoii results and a performance comparison with other 
tecltiiiqurs. 

2. SYSTEM MODEL AND SAGE REVIEW 
We consider the following single-user complex baseband 
CDMA model: 

N-1 

y(t) = a b n p ( t  - nTp - d )  + ~ ( t )  - 00 < t < 00 .  

n = O  

The unknown parameters are the complex gain a E CC- {0}, 
the data symbols b ,  E {e'pI,O E [-n,*)},n = 0,. . . , N - 1, 
and the time delay d E [ - T d / Z , T d / 2 ] .  The da ta  symbol 
model corresponds to phase modulation formats such as 
BPSK or QPSK. The signaling waveform p ( t )  is a known 
PN code. For simplicity we assume that the period of the 
PN code is equal to Tp. Notice that we do not assume 
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that p ( t )  has a compact support, so the algorithrn CR.IL be 
used for IS1 channels as well. The noise u ( t )  is a complex 
white Gaussian process with power spectral density N0/2.  
Following is a brief review of tlie SAGE algorithm [3]. 

Let 0 be a parameter taking values in a paraniet,er space 
0, which is a subset of tlie p dimensional Eiic1idea.n spa.ce 
Rp (PI. The goal is t o  find the (penalized) maximiim like- 
lihood estimate of 6' given the observation Y = y. We define 
an index set S to  be a non-empty subset of the set of inte- 
gers I p  = { 1,. . . , p } ,  and we denote its complement by S. 
Corresponding to  these index sets we define 6's and 0s as 
the elements of 6' indexed by S a.nd S respectively. In the 
SAGE algorithm the maximization of the penalized log like- 
lihood function is replaced by a maximization of a sequence 
of other objectives {C$"" (8s;  O ( i - l ) ) } , = ~ , ~ , , . .  . For this pur- 
pose a random variable Xs, called hidden data space, is 
defined such tha t  it satisfies the following atllnissibility con- 
dition 

P(Y, ";0) = P ( Y l 3 : ;  b's)P(x; b') ,  " E XS, Y E 1: (1) 

i.e. the conditional pdf of Y given Ss does not tlepentl on 
Os. This condit,ion includes the EM complete dat.a spa.ce re- 
quirement as a special cn.se. The penitlized SAGE ol)ject,ive 
is given by 

$'(Os; 0') = Qs(8s; 0') - P(8s,  0;) ( 2 )  
QS(8s; 0') s E{log p ( X s ;  Os, 6'i,IY = y; e ' ) }  

where P(8)  is a.n optional pena.lty function. The SAGE 
algorithiii generates a sequence of est.iinates {e ( ' )  : 1 = 
0,1, .  . . } sta.rting from a.n initial pa.ra.nieter guess o('), ~ ) y  
defining a sequence of hidden d a h  spa.ces Xs('), compiit.ing 
dS(')(es; ~ ( ~ - l ) )  using ( 2 1 ,  and riia.ximizing it over 0s. 

3. SINGLE-USER SAGE ALGORITHM 
Let { $ > k ; j ,  k E z} he a real orthonormal wavelet basis de- 
rived from some multiresoliition malysis of L2 (R). This 
orthonormal basis is obtained by scaling and transla.tions 
of a fixed function $ ( t ) ,  i.e. 

$ , k ( t )  = 2-j /2$(2-3t  - k) j, k E z. 
The observation y(t) is decomposed in this h s i s ,  yieltlirrg 
a set of random va.ria.hles: 

1 ; k  = (y, 4 J k )  .i, I; E z, ( 3 )  

where (f, g )  denotes the inner protliict f ( t ) g ' ( t ) d t .  The 
set Y = { l < k ;  j ,  k E Z} ca.n I)e used to  recoristriict tlie 
time signal y(t)  by tlie synthesis formula of the cliscret,e 
wavelet transform, therefore Y is ii sufficient sta.tistic for 
the para.meters. The rariiloiri variatdes { I;k} can a.lso be 
written as: 

N-1 

I ; k  = b n l l J j k ( 1 1 )  + u j k  , 7 ,  k E z, (4) 
n=O 

where 

ii.nt1 U,,, the projections of u ( t )  on $ j k ,  are independent 
zero mean complex Gaussian random variables with vari- 
ance  NO/^. Notice tha t  the parameters W j k ( n )  are impbc- 
itly dependent on d ,  and that the observation model in (4) 
is multi-linear, as opposed to  the original non-linear model 
of y(t). The parameter which needs t o  be estimated is de- 
fined as b' = [ a ,  b, : n E IN, W j k ( n )  : n €  IN,^, k € z] where 
I N  = ( 0 , .  . . , N - 1). 

We now outline the strategy of choosing the hidden da ta  
spaces Xs. Let S c Z2 be a non empty set of indices, 
and let S denote its complement. Define a set of random 
variables X' as follows: 

N-1 

Xs = { a  b n W j k ( n )  Ujk : (j, k) E S}. ( 6 )  
n=O 

I t  is easy to  show tha t  if the parameter 0 is chosen such 
that 7 u J k ( n )  = 0 wlien (j, k) E S, n E IN, then X s  is an ad- 
missible Iiitlden da ta  space. In this application we consider 
it. sequence of hidden da ta  spaces {X"')}, where the index 
sets S(i), d E N satisfy the following conditions: 

( , i ) ,  s(') c + t l ) , i  E pJ ( i i ) .  Us(') = z2. 
1 EN 

Thiis, the algorithm incorporates new information in each 
itera.t.iori, which is used to  update the previous estimates. 
In tliis way the algorithm makes only a "single pass" over 
the set of observations Y .  

4. NUMERICAL SOLUTION OF THE 

We now describe a. method by which the maximization steps 
of the SAGE algorithm can be done numerically by solving 
a polyitouiial equation. This method is particularly useful 
in the case of time delay estimation, where one usually re- 
sorts to  a high resolution line search. The  same type of 
soliition can be used for the da ta  symbol estimate. The 
method is based on Fourier series expansion of the corre- 
lation parameters W ~ k ( 7 1 )  (see ( 5 ) ) ,  whose dependence on 
d is explicitly denoted by W j k ( n ; d ) .  The Fourier series of 
7 ~ ~ k ( 7 r ; d )  on a.n interval [-T0/2,T0/2] can be written in the 
following z notation as 

MAXIMIZATION STEP 

with z = a n d  cJk,, , , (n) given by 

I t  follows that the non penalized part of the objective 
can be written as a conjugate symmetric power series in 
z .  Atlditionally, it may be necessary t o  include a penalty 
function, e.g. to  account for the apriori density of z. This 
can be accomplished by choosing a complex function II(z) 
of the  form:  

G ( ~ ) G * ( ~ " - ~ )  - 
rI(2) = H (  z ) H ' (  P - 1 )  ' 
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where G ( z )  and H ( z )  are polynomials over C such tha t  
II(z) does not have poles on the unit circle. T h e  penalized 
objective can then be put in the form 

d(%) = F ( z )  + F * ( z * - l )  +log rqz), (9) 

where F ( z )  is a polynornial over C. Notice that 4 ( z )  i n  (9) 
is a real, differentiable function on the unit circle z = e l w .  

I t  follows that the maximization step can be realized by 
differentiation of (9) with respect to z ,  numerically finding 
the roots which lie on the unit circle, arid selecting the one 
which maximizes the penalized objective (9) to be the next 
parameter estimate. 

6. RECURSIVE IMPLEMENTATION 
In this section an efficient reciirsive implementation of the 
single-user SAGE algorithm is given. T h e  basic assumption 
is tha t  both p ( t )  and + ( t )  have compact support. We define 
the following variables: 

,&,)(n) = Y . ? k C J k , m ( n )  m E Z,n  E IN 
. ? k € S ( ' )  

vk)(ni,nz) = djk,m(nlrn2)  m E ~ , 7 ~ 1 , 7 1 2  E I N ,  
j k E S ( * )  (10) 

where djk,m(nl, n2) = c, e C J k , i  (nI)C;k, l -m(n2).  w e  also 
define the following symhof index sets: 

S ( ' )  $9 = {n : #- ' )  - U ,  < n < 71 

U(') = { n  : m 

+ B q }  
s(i-1) - 13, < P I  5 Ins(;) - B,} , (11) 

where ns ( m S )  denotes the siiinllest (largest) symbol index 
localized outside (inside) tlie index set S.  Bq is a constant 
which depends on To, tlie supports of p ( t )  and $ ( t ) ,  and 
on q which is the largest scale used in the wavelet decorn- 
position. T h e  algorithm is st.ated below, assuming that the 
wavelet coefficients parameters { w j k ( n ) }  are iipda.ted first, 
then the da ta  symbols {/),L} in increasing order, and finally 
the gain a. 
Case A :  Update the objective of { ~ i ~ j k ( n , ) } .  Compute reciir- 
sively the following: 

= &) + b c ~ b ~ ~ * $ , ) ( n 1 ,  n2) 

&+I" '=  PA) ( 3- bp*,Q(n), 

( n l  ,nz)EV(') 
In l - -nz l<ZBq 

(12) 
T I E U ( i )  

where V(') = U ( ' )  x T( ' )  U T( ' )  x U(i) .  Next the objective 
is adjusted by including atltlitional terms: 

+;+1) = lJ')l2 [&+I) + / , g / , : ; * V p ) ( 7 t 3 ,  I b Z ) ]  

6 c t 1 )  = a(i)* [P:+l' + 0 : ; ) * , p ) ( n ) ] .  (13)  

n l , n 2 E T ( ' + ' )  
In1 --nZ1<2By 

nET( '+ ' )  

Finally the objective for z is given by: 

Cuse B: LJpdate the objective of {a, : n E fii+')}. Com- 
pute recursively the following for n E fi'+') : 

n l  <n nl >n 

Notice that da ta  symbols with index smaller than n have 
already assumed the updated value. Finally the objective 
for bn is given by: 

Case C: Update the ohjective of a.  Compute: 

rnEZ 

b p ) b ( l + 1 ) *  V, ('+I) ( n i , n z ) ) ~ ( ' + ' ) ~ .  (18) 

nl,n2ET('+') 
In1 -nal<2Bq 

The objective for n is given by: 

(19) = + ,c(t+1)* - 1,]2+1+1). 

6. SIMULATIONS 
The SAGE algorithm has been evaluated by means of a 
simulation program written in MATLAB. T h e  results sum- 
marized below were obtained from 100 Monte-Carlo simula- 
tions at each SNR value. In each run the signal parameters 
were chosen ranclornly and independently of each other. The 
da ta  bits { b n }  were selected as either +1 or -1. T h e  gain Q 

was of a fixed amplitude and random phase uniformly dis- 
trihiitetl in [-r, T ] ,  and the time delay d was uniformly dis- 
tribiitecl i n  [-T,,/2, Tp/2].  In each run a 7 chip PN code was 
pliase iiiotliilntetl by a 63  bit long sequence. T h e  transmit- 
ted signal was then passed through a band limited AWGN 
channel, I f 1  5 1/2Tc, where T, is the chip time. The  da ta  
tits were tlifferentially decoded, due to  phase ambiguity. 
The algorithin wIas allowed to  synchronize during the first 
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31 bits. The  Daubechies wavelets [l] of length 4 have been 
used in the wavelet decomposition of the received signa.1. 

Figure 1 shows the bit error probability. We observe that 
the simulation results closely match the theoretical boiiiid 

for a DPSK decoder. T h e  performance of a phase coherent 
DLL with comparable response time is also shown. The pa- 
rameter 6 = ~ / W L T  is the norinalized response time of t,he 
DLL, where WL is the two-sided loop bandwidth, and ?' is 
the signaling period, so a valiie of 6 = 31 was used. The 
loop damping of the equivalertt PLL was taken as C = 0.707, 
and zero detuning was assumed. Tlie DLL error probahil- 
ity was found by numerical integration [4]. We observe that 
the DLL performance has degraded by more than IdB wit.h 
respect to the ideal PSK error boiind, while the SAGE per- 
formance is essentially optimal. Figiire 2 shows the synchro- 
nization performance of the SAGE algorithm. The  SAGE 
algorithm achieves a very sniall synchronization error a t  
low SNR which explains its nearly optimal detection per- 
formance. The  synchronizat,ion error of the DLL is seen to  
he much larger. The  Cramer-Rn.0 (CR) hound on time tle- 
lay estimation is also shown for reference. Finally, Figure 3 
compares the phase error variance of the SAGE algorithm 
with tha t  of a Data  Aided Loop (DAL). T h e  CR bound on 
phase error variance is shown for reference. The  DAL per- 
formance was calculated with tlie same value of 6 as above, 
for the case of a suppressed ca.rrier (7n = 0, see [SI). The two 
systems have a similar perhiua.nce,  hut it should be itotetl 
that  the DAI, relies on a perfectly synchronized reference. 

7. CONCLUSIONS 
In this paper we have int~rotlncetl a new method for joint 
timing and phase synchroniza.tion and optimal ML tletec- 
tion of transmitted symbols. This iiiethod was derived by 
applying the principles of the SAGE algorithm. Tlie use of 
the discrete wavelet and Fourier transforms and a choice of 
parameter update strn.tegy is t~he key to its simple reciiwive 
form. The  flexibility in choosing several system parameters 
such as the wavelet basis, tlie st,ep size of the algoritlrin, 
and the penalty functions, makes it a useful solution for a 
variety of applications. 
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Figure 1. Bit error probability vs. SNR, stars: sim- 
ulation results; solid: DLL performance; dashed: 
DPSK error bound; dotted: PSK error bound. 

10.' 

............... ................ i... ............ i ................ .............. ............... 1 

Figure 2. Synchronization mean squared error vs. 
SNR, stars: simulation results; solid: DLL perfor- 
mance; dashed: CR bound. 
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Figure 3. Phase mean squered error, stars: simula- 
tion results; solid: DAL performance; dashed: CR 
bound. 
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