A SIMPLE AND EFFICIENT BINARY SHAPE CODING TECHNIQUE BASED ON
BITMAP REPRESENTATION

Frank Bossen

Touradjy Ebrahimi

Signal Processing Laboratory
Electrical Engineering Department
EPFL

1015 Lausanne Switzerland

ABSTRACT

This document presents a technique based on the JBIG al-
gorithm for binary shape coding in both lossless and lossy
modes. Because it is applied directly to the bitmap repre-
senting the shape information, it bypasses the overhead in
computation of an intermediate contour representation and
its associated conversions. This leads to a simpler algorithm
which is more suitable for a larger class of shape data. In ad-
dition a mechanism is proposed which allows a rate control
for lossy coding mode.

1. INTRODUCTION

Second generation video coding algorithms are also refer-
red to as object oriented, that is, the scene to be coded is
segmented into several regions, each of them coded separa-
tely. These regions generally identify objects. Each object
is represented by four channels: three color channels and an
alpha channel which defines the shape of the object. This
alpha channel can be either binary or multilevel. The mul-
tilevel case allows for semi-transparent object. However the
scope of this paper is limited to the coding of binary alpha
channels.

This document presents a universal technique for binary
alpha channel coding based on the JBIG algorithm. It can
operate either in a scalable or a non-scalable mode. The
scalability addressed here is spatial. However it can also
be viewed as a quality scalability and lead to a simple rate
versus distortion control scheme.

Because 1t is applied directly to the bitmap representing
the shape information, it bypasses the overhead in com-
putation of an intermediate contour representation and its
associated conversions. This leads to a simpler algorithm
which is more suitable for a larger class of shape data [1].

This document is organized as follows. Section 2 presents
some previous work. A non-scalable algorithm is described
in section 3 and a scalable one in section 4. Results are
shown in section 5 and conclusions drawn in section 6.

2. PREVIOUS WORK

Quadtree, chain coding, and polygonal approximation
techniques are quite popular methods for shape coding. The
latter two require a contour representation of the object
shape. This representation can be defined in several ways,
but it is generally difficult to come up with a representation

which handles small details well. Therefore these methods
are not good candidates for universal shape coders.

Another approach draws its source from text compression
techniques. Langdon and Rissanen [2] proposed an efficient
method based on finite state machines and arithmetic co-
ding. The idea is quite simple: the image is coded pixel by
pixel in a scanline order. For each pixel, the state of the
finite state machine is defined by the values of pixels within
a template. This template typically includes pixels in the
close vicinity of the pixel to be coded. With each state is
associated a probability distribution, which is used to drive
the arithmetic coder. Figure 1 shows the two templates
that were used.

X X
XIX[X|X[X XIXXX|XX
X|X|O X X0

7-pel template 10-pel template

Figure 1. Templates proposed by Langdon and Ris-
sanen. The circle represents the pixel to be coded,
and the crosses the pixels belonging to the template.

This coding paradigm has also been adopted for the
JBIG [3] standard. The JBIG standard uses one of two 10-
pel templates for non-progressive coding. The first template
holds on two lines and the second on three, as shown in fi-
gure 2. JBIG further allows a progressive transmission of
bi-level images. This is achieved by sucessively transmitting
layers of a multiresolution decomposition of the image.

X
X

X
X

Figure 2. The 3-line 1
algorithm

X

XXX
OXX

=
o

el template of the JBIG

3. NON-SCALABLE CODING

Let I be the binary alpha channel to be coded, and w and
h the width and height of I, respectively. For each pixel
(4,9), I(¢,7) is defined to be equal to 1 if (7, 5) belongs to
the object, and 0 if it doesn’t, where ¢ and j represent the
line and column numbers, respectively. The top left corner
pixel of I is defined to be at (0, 0).

To achieve a non-scalable coding algorithm, the same
principle of a finite state machine as in [2] is applied. The

chosen template size is 10 bits, because it offers a good tra-
deoff between perfomance and memory requirements. More
formally, for each pixel (i,) the context (state) is defined
by C(i,j) = ZZ:O cx(i,7)2%. For the 3-line 10-pel JBIG

template the ¢x’s can be defined as:

cold, gj) = I(1,5-1) ci(t,9) = I1(3,5-2)

c2(i,4) = I(i—=1,742) c3(s,5) = I(i—1,541)
ca(i,) = I(i—1,7) es(i,5) = I(i—1,5-1) (1)
cs(i,J) = I(i—=1,5=2) ¢cr(s,5) = 1(:—2,541)
es(i,g) = I(1—2,7) co(i, j) = I(i—=2,5-1)

and for the 10-bit template by Langdon and Rissanen:

cold, gj) = I(1,5-1) (i, gj) = I1(1,5-3)

c2(i,4) = I(i—=1,742) c3(s,5) = I(i—1,541)
ea(ig) = I(i—1,7) (i) = I(i—1,j—1) (2)
cs(i,J) = I(i—=1,5=2) ¢cr(s,5) = I(:—1,7-3)
es(i,J) = I1(1=2,541) co(s,5) = I1(:—2,5—1)

For all pixels (1, y) outside the bounds of I, I(3, 5) is defined
to be zero. The particular order of the cx’s doesn’t influence
the performance of the algorithm, but is here defined for
completeness.

3.1. Non-adaptive arithmetic coding

Although the use of an adaptive arithmetic coder is com-
mon, the probability distribution p(I(z,5) | C(,7)) is here
defined to be constant. There are several advantages to
this. First, less memory is required since less bookkeeping
information needs to be stored. Then, the probability distri-
bution can be represented with fixed point numbers, which
allows to use an arithmetic coder with no division opera-
tion. Representing all probabilities smaller than 0.5 with a
power of two can even yield a multiplication free arithmetic
coder. However, the latter solution degrades the compres-
sion performance and is thus not retained.

The constant probability distribution p(I(z,5) | C(3, 7))
is defined by the analysis of several typical binary alpha
channels. For each context C, let ny o and ng 1 be the sum
over all the training set of the number of occurences of zeros
and ones, respectively. The probability distribution is then
derived according to:

Nk + b

p(I(3,)= | C(i,5)=Ck) = PR ——TS

3)
where the bias b is usually set equal to 1 to avoid null pro-
babilities.

4. SCALABLE CODING

The above presented technique is now further extended to
scalable (progressive) coding, as in the JBIG standard [3].
The JBIG multiresolution decomposition algorithm is quite
complex since it has to deal with dithered images. For co-
ding object shapes however, a much simpler decompostion
algorithm can be used as described in the next paragraph.

4.1. Multiresolution Decomposition
Let {IO, ey Im} be the multiresolution decomposition of

the binary alpha channel I into m+1 layers. The size of
each layer I' is [27'w] x [27'A]. The largest layer I° is

defined equal to I and the remaining layers are defined as
follows:

I"(a,5) = T424,29) v I'(2i+1,25) (@)
v IN24,2541) v TH(2i41,2541)

where V denotes the boolean or operator.
The layer I™ is referred to as the base layer and
I', ..., 1™ to as the enhancement layers.

4.2. Base layer coding

The base layer I™ can be coded using the non-scalable algo-
rithm described in the previous section. However the base
layer is generally quite small, and it doesn’t hurt very much
on the compression performance side to encode it as raw
data. This latter solution has thus been adopted.

4.3. Enhancement layers coding

The enhacement layers are coded seperately and in descen-
ding order, that is from I™" down to I°. The coding of
each enhancement layer I' is very similar to the non-scalable
case described in the previous section. The difference lies in
the definition of the 10-pel template. In the scalable case,
the template includes pixels from previously coded layers.
The context C(i,5) = ZZ:O cr(i, 5)2% is defined as follows:

co(ij) = I'(i=1,5+1) a(ig) = I'(i-1,j-1)
ex(i,§) = I'(i—1,5) ea(t,g) = I'(6,5-1)

es(i,g) = I (1, j-1) es(i,5) = I*(1,)) (5)
ea(,5) = I (i—1,7-1) cr(i,5) = I (i-1,5)
cs(i,j) = 2i—i co(t,j) = 2j—j

where © = [1/2] and j = [j/2]. As for the non-scalable
case, for all pixels (i, j) outside the boundaries of a layer I,
I'(i,§) is defined to be zero.

This template is different from the one used in JBIG.
Indeed the present template is slightly smaller, and the
alignement between the layers is different. The bits ¢z and
cg correspond to the phases which are defined in the JBIG
algorithm.

4.4. Rate control

Rate versus distortion control is achieved by coding only a
subset of all events. Lossiness is parametrized by a layer
number z and a threshold 7 ranging from 0 to % Given z
and 7, all layers k such that k& > z are coded as described
above, and all layers k such that k& < z are not coded at
all. At layer z only the events with a probability between
7 and 1 — 7 are coded. The other events are considered to
have the most probable outcome. At the decoding stage, if
z > 0, I° is obtained by upsampling 7.

The lossless mode is thus defined by z = 0 and 7 = 0,
and the most lossy mode, in which only the base layer is

coded, by z = m and 7 = 0.
5. RESULTS

The above described techniques have been implemented
using the arithmetic coder described in [4]. The probability
values used to drive the arithmetic coder are quantized to
16 bit fixed point numbers.

The test data on which results are presented is the lady
objet of the weather sequence (see figure 3). The frame size

is QCIF (176 by 144 pixels) and the number of frames is 100
(sampled at 10 Hz). The training data is the speakers object
of the news sequence and the kids object of the children
sequence. Both are QCIF-sized and 100 frames long. A
frame of each sequence is shown is figure 4.

Figure 3. Seventy-first frame of the lady object in
the weather sequence

r 1 F.-'

."i. LJ-"' W

speakers in news sequence

® '

kids in children sequence

Figure 4. Seventy-first frame of the training sequ-
ences

Technique Bit count Compression ratio
non-progressive 866.72 29.24
progressive 1625.84 15.59

Table 1. JBIG compression results: average bit co-
unt per frame

The reference for compression performance evaluation of
the proposed techniques is the JBIG algorithm. Its per-
formance in both progressive and non-progressive modes is
reported in table 1, where the bit counts are averages over
the 100 frames. The slice height was set to the height of

the frame, and the number of layers in the progressive mode
was set to 4. It appears that the non-progressive mode per-
forms much better than the progressive one. The probable
reason for this is probably the slower learning rate of the
progressive mode, which uses a 12-bit context, whereas the
non-progressive uses a 10-bit one.

Template Bit count Compression ratio
JBIG 463.73 54.65
JBIG (inbreeding) 447.82 56.59
LR 460.95 54.98
LR (inbreeding) 445.23 56.92

Table 2. Performance comparison between the 3-
line JBIG and the 10-pel Langdon & Rissanen (LR)
templates for non-scalable coding

To evaluate which template yields the best compression
results for the proposed non-scalable algorithm, tests have
been run with the 3-line JBIG template and the 10-pel LR
(for Langdon and Rissanen) one. Results are reported in
table 2. For each template two bit counts are given: the first
one based on the probability distribution p(I(z,5) | C(3, 7))
drawn from the training sequences, and the second drawn
from the test sequence itself (inbreeding). The differences
between inbreeding or not are small, and the assumption
that there is a probability distribution which works well for
a large class of sequences is thus verified.

The table also shows that the original LR template per-
forms marginaly better than the JBIG one. When compa-
ring with the JBIG results of table 1, it appears that the
non-adaptive solution performs much better. Indeed the
compression ratio is almost twice as high. The main reason
is the small size of the masks to be coded, which doesn’t
leave time for the algorithm to adapt. Also the initial as-
sumptions of the JBIG algorithm are not adapted to the
test data.

Mode Bit count Compression ratio
scalable 549.03 46.16
scalable (inbreeding) 525.61 48.22
lossy (z =0, 7 = 0.25) 398.81 63.55

Table 3. Performance of scalable and lossy modes

Further results show that there is a price to pay for ad-
ditional functionality such as spatial scalability. Indeed the
compressed stream is about 20 percent longer when using
the scalable scheme (see figure 3). However the probability
distribution p(I(z,5) | C(4,5)) seems to be quite constant
over different sequences. The average bit count is reduced
by less than 5 percent with an inbreeded distribution. In
the scalable case, the performance difference with the JBIG
algorithm is even larger. The performance ratio is around
3. This i1s probably due to the multiresolution decomposi-
tion algorithm of JBIG which is tuned for halftoned images
and text, and thus not suitable for binary masks.

Lossy coding dramatically reduces the bit count without
much degrading the image quality, as shown in figure 5.

6. CONCLUSION

A method based on the JBIG algorithm for coding binary
alpha channels has been presented. The JBIG algorithm

s
P

/{1
ey __,.-"'I = 1‘
Figure 5. Reconstructed seventy-first frame of the

lady object in the weather sequence after lossy shape
coding (z = 0,7 = 0.25)

has been adapted to take into account caracteristics of alpha
channels, such as the small data size (a movie frame has
typically many less pixels than a fax page) and the homo-
geneity of the data (all parts of any alpha channel look
pretty much the same, whereas a fax page can contain data
as diverse as roman text, kanji text, and dithered images).
The adaptive arithmetic coder has been replaced by a non-
adaptive one, since the adaptation time is too short and the
nature of the data well known. Also the multiresolution de-
composition procedure has been changed in consideration
with the nature of shape data. However the proposed so-
lution is not unique, and could easily be changed without
noticeably affecting the performance of the algorithm.

Simulation results have shown that the proposed method
works well (50 to 1 compression ratios) and would be a
good candidate for a univeral binary alpha channel coder.
Still improvements could be brought, including a motion
estimation and compensation scheme. The template could
then be changed to include pixels from the previous, motion
compensated, binary mask.

REFERENCES
[1] F.Bossen and T. Ebrahimi. A simple and efficient bi-

nary shape coding technique based on bitmap repre-
sentation. Technical Report MPEG M0964/Tampere,
ISO/TEC JTC1/SC29/WG11, 1996.

[2] G.G. Langdon Jr. and J. Rissanen. Compression of
black-white images with arithmetic coding. IEEFE
Transactions on Communications, COM-29(6):858-867,
June 1981.

[3] ITU-T. JBIG: progressive bi-level image compression.
Technical Report T.82, International Telecommunica-
tion Union, 3 1993.

[4] A. Moffat, R. Neal, and I. H. Witten. Arithmetic coding
revisited. In Data Compression Conference, pages 202—
211, 1995.

A SIMPLE AND EFFICIENT BINARY SHAPE CODING
TECHNIQUE BASED ON BITMAP REPRESENTATION

Frank Bossen and Touradj Ebrahimi

Signal Processing Laboratory
Electrical Engineering Department
EPFL

1015 Lausanne Switzerland

This document presents a technique based on the JBIG
algorithm for binary shape coding in both lossless and lossy
modes. Because it is applied directly to the bitmap repre-
senting the shape information, it bypasses the overhead in
computation of an intermediate contour representation and
its associated conversions. This leads to a simpler algorithm
which is more suitable for a larger class of shape data. In ad-
dition a mechanism is proposed which allows a rate control
for lossy coding mode.

