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ABSTRACT

Understanding the human ability to reliably process and
decode speech across a wide range of acoustic conditions
and speaker characteristics is a fundamental challenge for
current theories of speech perception. Conventional speech
representations such as the sound spectrogram emphasize
many spectro-temporal details that are not directly ger-
mane to the linguistic information encoded in the speech
signal and which consequently do not display the perceptual
stability characteristic of human listeners. We propose a
new representational format, the modulation spectrogram,
that discards much of the spectro-temporal detail in the
speech signal and instead focuses on the underlying, stable
structure incorporated in the low-frequency portion of the
modulation spectrum distributed across critical-band-like
channels. We describe the representation and illustrate its
stability with color-mapped displays and with results from
automatic speech recognition experiments.

1. INTRODUCTION

Human listeners are able to reliably decode phonetic infor-
mation carried by the speech signal across a wide range
of acoustic conditions and speaker characteristics. This
perceptual stability is not captured by traditional repre-
sentations of speech which tend to emphasize the minute
spectro-temporal details of the speech signal. Speaker vari-
ability and distortions such as spectral shaping, background
noise, and reverberation that typically exert little or no in-
uence on the intelligibility of speech drastically alter such
conventional speech representations as the sound spectro-
gram. This disparity between perceptual stability and rep-
resentational lability constitutes a fundamental challenge
for models of speech perception and recognition. A speech
representation insensitive to speaker variability and acous-
tic distortion would be a powerful tool for the study of hu-
man speech perception and for research in speech coding
and automatic speech recognition.
A key step for representing speech in a stable fashion is to

focus on the elements of the signal encoding phonetic infor-
mation. By suppressing phonetically irrelevant elements of
the signal, the variability of the representation is reduced.
There is signi�cant evidence that much of the phonetic
information is encoded by slow changes in gross spectral
structure that characterize the low-frequency portion of the
modulation spectrum of speech. In the late 1930's the de-
velopers of the vocoder found that it was possible to synthe-
size intelligible, high-quality speech based on a ten-channel
spectral estimate with roughly 300-Hz resolution that was
low-pass �ltered at 25 Hz [1]. More recently, in a study on

the intelligibility of temporally-smeared speech, Drullman
and colleagues have demonstrated that modulations at rates
above 16 Hz are not required for speech intelligibility [2]. A
representation that focuses on slow modulations in speech
also has compelling parallels to the dynamics of speech pro-
duction, in which the articulators move at rates of 2{12 Hz
[3], and to the sensitivity of auditory cortical neurons to
amplitude-modulations at rates below 20 Hz [4].

2. THE MODULATION SPECTROGRAM

We have developed a new representational format for
speech, the modulation spectrogram, that displays and en-
codes the signal in terms of the distribution of slow modula-
tions across time and frequency. Although not intended as
an auditory model, the representation captures many im-
portant properties of the auditory cortical representation
of speech. The modulation spectrogram represents modu-
lation frequencies in the speech signal between 0 and 8 Hz,
with a peak sensitivity at 4 Hz, corresponding closely to the
long-term modulation spectrum of speech. The modulation
spectrogram is computed in critical-band-wide channels [5]
to match the frequency resolution of the auditory system,
incorporates a simple automatic gain control and empha-
sizes spectro-temporal peaks.
Figure 1 illustrates the signal processing procedure used

to produce the modulation spectrogram. Incoming speech,
sampled at 8 kHz, is analyzed into approximately critical-
band-wide channels via an FIR �lter bank. The �lters are
trapezoidal in shape, and there is minimal overlap between
adjacent channels. Within each channel the signal envelope
is derived by half-wave recti�cation and low-pass �ltering
(the half-power cuto� frequency is 28 Hz). Each channel
envelope signal is downsampled to 80 Hz and then normal-
ized by the average envelope level in that channel measured
over the entire utterance. The modulations of the normal-
ized envelope signals are analyzed by computing the FFT
over a 250-ms Hamming window every 12.5 ms in order to
capture the dynamic properties of the signal. Finally, the
squared magnitudes of the 4-Hz coe�cients of the FFTs are
plotted in spectrographic format, with log energy encoded
by color. Note that the display portrays modulation energy
from 0{8 Hz. The e�ective �lter response for the 4 Hz com-
ponent is down by 10 dB at 0 and 8 Hz. A threshold is used
in the energy-to-color mapping: the peak 30 dB of the sig-
nal is mapped to a color axis, while levels more than 30 dB
below the global peak are mapped to the color for -30 dB.
Bilinear smoothing is used to produce the �nal image.

3. REPRESENTATIONAL STABILITY

The modulation spectrographic representation of speech is
more stable than the conventional spectrographic represen-
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These patterns are far more clearly delineated in the original color versions, which are available in the CD-ROM version of
the proceedings and at http://www.icsi.berkeley.edu/~bedk/ICASSP97_fig2_color.gif

Figure 2. A comparison of the modulation spectrogram and narrow-band spectrogram for clean and noisy
speech.



syllable-like units are the basis for lexical access from the
acoustics of the speech signal.
It has been previously suggested that the broad peak at

4 Hz in the modulation spectrum corresponds to the aver-
age syllable rate [8]. Recently, we have found a more speci�c
correlation between the distribution of low-frequency mod-
ulations in speech and the statistical distribution of syl-
lable durations in spoken discourse [9]. It has also been
shown that the concentrations of energy in the modulation
spectrographic display correspond to syllabic nuclei. Thus,
it appears that the modulation spectrogram robustly ex-
tracts information pertaining to the syllabic segmentation
of speech, and that this information is of some utility in
recognizing speech under adverse acoustic conditions [10].
Two common objections to a syllabic representation of

English are the relatively complex and heterogeneous sylla-
ble structure of English and the large number of syllables
required to cover the lexical inventory. However, these the-
oretical concerns are not borne out in practice. In spoken
English, over 80% of the syllables are of the canonical CV,
CVC, VC, and V forms, and many of the remainder reduce
to these formats by processes of assimilation and reduction.
In written English, only 12 syllables comprise over 25% of
all syllable occurrences, and 339 syllables account for 75%
of all syllable occurrences [11]. Spoken English employs a
similarly reduced syllabic inventory [12, 13].
The robust encoding of syllabic structure by low-

frequency modulations in speech, the sensitivity of the hu-
man auditory system to these modulations, and the statis-
tics demonstrating that, in practice, English has a relatively
simple syllabic structure and relies on a small subset of the
possible syllables all support a model of real-time human
speech perception in which auditory mechanisms parse the
speech signal into syllable-like units and a core vocabulary
of a few hundred, highly familiar syllables support e�cient
lexical access. This model is described in more detail in
[14].

6. CONCLUSIONS

We have developed a new representational format for speech
that captures many important properties of the auditory
cortical representation of speech, namely selectivity for the
slow modulations in the signal that encode phonetic in-
formation, critical-band frequency analysis, automatic gain
control, and sensitivity to spectro-temporal peaks in the
signal. These signal processing strategies produce a repre-
sentation with greater stability in low SNR and reverberant
conditions than conventional speech representations. The
enhanced stability of the modulation spectrogram provides
a potentially useful tool for research in human speech per-
ception, speech coding, and automatic speech recognition.
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