TERE | ﬁi_ﬁ]ﬁ%ﬁﬁuﬁ-_} TR R U |

Tokyo Tech Research Repository

OO /0000
Article / Book Information
Title An Efficient Search Method for Large-Vocabulary Continuous-Speech
Recognition
Authors Ken Hanazawa, Yasuhiro Minami, Sadaoki Furui
Citation IEEE ICASSP 1997, Vol., No., pp. 1787-1790
Pub. date 1997, 4
Copyright (c) 1997 IEEE. Personal use of this material is permitted. Permission

from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or
promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component
of this work in other works.

URL http://www.ieee.org/index.html
DOI http://dx.doi.org/10.1109/ICASSP.1997.598877
Note This file is author (final) version.

Powered by T2R2 (Tokyo Institute Research Repository)

http://www.ieee.org/index.html
http://dx.doi.org/10.1109/ICASSP.1997.598877
http://t2r2.star.titech.ac.jp/

LICASSP 97. Muneh,

bp- \787~1790 . 297

AN EFFICIENT SEARCH METHOD FOR
LARGE-VOCABULARY CONTINUOUS-SPEECH RECOGNITION

Ken Hanazawa™, Yasuhiro Minami**, and Sadaoki Furui* **

*Tokyo Institute of Technology
Meguro-ku, Tokyo, 152 Japan
**NTT Human Interface Laboratories
Musashino-shi, Tokyo, 180 Japan

ABSTRACT

This paper proposes an efficient method for large-
vocabulary continuous-speech recognition, using a compact
data structure and an efficient search algorithm. We introduce
a very compact data structure DAWG as a lexicon to reduce
the search space. We also propose a search algorithm to
obtain the N-best hypotheses using the DAWG structure.
This search algorithm is composed of two phases: “forward
search” and “traceback”. Forward search, which basically
uses the time-synchronous Viterbi algorithm, merges
candidates and stores the information about them in DAWG
structures to create phoneme graphs. Traceback traces the
phoneme graphs to obtain the N-best hypotheses. An
evaluation of this method’s performance using a speech-
recognition-based telephone-directory-assistance system
having a 4000-word vocabulary confirmed that our strategy
improves speech recognition in terms of time and
recognition rate.

1. INTRODUCTION

Several efficient search algorithms for large-vocabulary
speech-recognition systems have been proposed: A* or
stack decoding [1, 2], using word graphs [3] or word lattices

(4], and recently, combining some search algorithms [S].
However they always use a tree structure for the word lexicon,
so when speech recognition treats a lot of words that have
the same suffix (for example the name of a company and a
person’s name), a tree structure is not so efficient because it
does not merge suffix parts. We introduce a network structure
as the word lexicon, which is more compact than a tree
structure.

“DAWG” (directed acyclic word-graph) data structures [6]
have been used in the natural-language field for checking
spelling and retrieving data from a database efficiently.
Several methods have been proposed for generating DAWG
structures. However, they can only be used to generate
networks all at once. This means that when we want to add or
delete a word, we have to regenerate the DAWG structure. For
these methods to be used for speech recognition, they should
be able to add new words or delete unnecessary words as fast
as possible. The method proposed by Ace [7] to solve this
problem can add or delete a word quickly. We introduce this
method to generate DAWG structure.

2. TELEPHONE-DIRECTORY-ASSISTANCE
TASK

To easily address our method, we explain about our task first.
Our task is a telephone directory assistance task, but we note
that our method is applicable to more than this task; it can
be used for general data retrieval tasks.

Our system recognizes five classes of keywords. These
classes are necessary to retrieve data related to telephone
numbers: Prefecture, City, Town, Block number, and
Subscriber Name. A sentence to be recognized is a
combination of these keywords and non-keywords between
items. Non-keywords are for accepting utterances that have
interjections and requirement expressions, for example,
“Sumimasen etto, Tokyo no Mitaka-shi, etto Minami-san no
denwabangou wo oshietekudasai” (In English: “Excuse me,
uh could you please give me the phone number of uh Mr.
Minami in Mitaka, Tokyo?”).

3. NETWORK STRUCTURE

Qur telephone-directory-assistance task has five keyword
classes for names and addresses. Qur grammar consists of two
paris: a main grammar and several sub-grammars (Fig. 1).
The main grammar controls the relationships between the
sub-grammars according to the “meaning”, where meaning is
defined as a combination of keywords, for example, {city,
name}, {town, block number, name}, and {town, name}. The
main grammar is represented by a kind of tree structure. The
sub-grammars handle the keyword classes and the non-
keyword class. Networks of these sub-grammars are
constructed using DAWG structures.

A DAWG structure is more compact than a tree structure. The
“Trie” structure [8], which is a kind of tree structures, is used
for data retrieval in the natural language processing field.
This Trie structure merges the common prefixes of the word
lexicon. A DAWG structure is obtained by merging the
common suffixes of the Trie structure. The DAWG structure
can thus generate a very compact lexicon. Figure 2 shows an
example of the Trie structure for keyword X and the DAWG
structure for the same word. The networks are composed of
nodes and arcs. Phonemes are assigned to the arcs. We can
reduce the search space and memory space significantly by
using a DAWG structure. However, it is difficult to manually
generate this structure for huge amounts of data. We therefore
need a method of generating it automatically. Several
methods have been proposed for generating DAWG
structures, but we use the method proposed by Aoe to
generate the lexicon network because it can generate the
DAWG structure automatically.

MAIN Prefecture

City

Town

Block number

Name

Non-keyword

Figure 1. Main grammar and sub-grammars.

Trie structure

DAWG structure

K={a, ade, adf, bc, bcde, bedf, ghe, ghf}
@ terminal node

Figure 2. Examples of Trie and DAWG structures for keyword
K.

4. SPEECH RECOGNITION SYSTEM

When applying DAWG data structures to a speech
recognition system to produce the N-best hypotheses, a new
search strategy is required because networks are merged at
many nodes, for example, the nodes after arcs “c”, “d”, and
“f" in Fig. 2. Also, to produce the N-best hypotheses, we
have to trace the networks backwards.

QOur search method has two phases: forward search and
traceback. The basic concept of forward search is similar to
that of making a word lattice [4]. However, our forward
search creates phoneme graphs instead of word lattices.
Traceback searches the phoneme graphs to produce the N-
best hypotheses.

Forward search

Our recognition system searches the DAWG networks by
using the time synchronous Viterbi search algorithm. Its
algorithm is as follows.

0 Initialize. Put a candidate into the beginning node of the
main network.
1 For the main network

1.1 For all the candidates on nodes of the main network,
pass them to the beginning nodes of all possible
keyword and non-keyword networks.

1.2 If multiple candidates arrive at the same beginning
node of a keyword or non-keyword network, they
are merged.

2 For keyword and non-keyword networks

2.1 For all the candidates on the nodes of keyword and
non-keyword networks:

2.1.1 Time synchronous Viterbi decoding is
performed for all the candidates.

2.1.2 If a candidate does not have a high enough
score, it is pruned.

2.2 For all the candidates on the nodes of keyword and
non-keyword networks:

2.2.1 If multiple candidates arrive at the same
node, they are merged.

2.2.2 1If a node is one of the terminal nodes of its
network, pass it to the corresponding node
of the main network. Here, merging is also
performed.

3 If it is not the end-time, go back to 1. Otherwise, stop.
Merge: When multiple candidates arrive at the same node at
the same time and only if their meanings are the same, only
the candidate with the best score is retained and the
information that it arrived at the node is stored. For the other
candidates, information about them is just stored.

Merging multiple paths into one path reduces search costs.
Since a candidate does not have a history of its phoneme
sequence, but only has a score of the candidate, the memory
requirements are also reduced during Viterbi decoding. A
sentence is constructed using traceback. The information
stored at each node is the time when the path arrived at the
node, the score of the path, the previous node, and the
meaning of the path. Candidates are sorted in descending
order of their scores.

A merging is also performed in the main grammar: multiple
paths arriving at the same node at the same time are merged.
These paths are merged if they have the same keyword
classes, even if the keywords are different. The information
about the paths is stored at that point.

Traceback

After the forward search, only the maximum score is
obtained. So, to obtain the N-best hypotheses, the phoneme
graphs should be traced, all the phoneme sequences should be
constructed, and their scores should be compared.

All the information we need for traceback on a node is
when, from where, and with which meaning a path came to
the node. Since all of these items were already stored and
sorted on the nodes of phoneme graphs, the main algorithm
for traceback is simple. The traceback process traces these
graphs in the opposite direction (backwards) and generates
all the candidates. Then it outputs the top N candidates of
these as N-best hypotheses. However, it is not efficient to
create all candidates exhaustively. To avoid this problem, we

introduce the following method. First, a buffer of N
hypotheses is prepared. The phoneme graphs are traced from
the end of the sentence, candidates are constructed at every
node, looking at the stored information in descending order.
The generated candidates are added to the buffer so that the
scores of candidates come in a descending order. If the score
of a candidate is smaller than that of the Nth candidate in the
buffer, the candidate is discarded and successive nodes will
not be checked any more, because scores of the candidates
generated from this candidate in the future will not exceed the
score. This operation is done recursively for all nodes.

When multiple candidates that have the same keywords are
generated by a small difference in the paths, only the
candidate that has the maximum score is added to the buffer.

Traceback can evaluate all meanings and all information
stored during the forward search.

5. EXPERIMENT

The vocabulary contains more than 4000 words in the
keyword classes. Table 1 shows the number of keywords
contained in each keyword class.

Table 1. Number of keywords.

Keywords Numbers
Prefecture 2
City 6
Town 40
Block Number 1,223
Name 3,505

In the main grammar, we only permit occurrences of each
keyword either once or not at all in a sentence. A name has to
appear once in a sentence, because without names, we cannot
get telephone numbers. We consider a sentence which does
not keep the rules of the main grammar as Out-Of-Syntax.

We considered the recognition results to be “correct” if all
the keywords in the sentence were recognized correctly.

5.1. Training and Test Data

The phoneme HMMs that are context dependent have four
states, three loops, and four Gaussian mixtures. The feature
parameters are 16 cepstra, 16 Acepstra, and a Apower.

The phoneme HMMs were trained by embedded training
using 9600 phonetically balanced sentences uttered by 34
male and 30 female speakers.

We have two sets of test data. One (set A) has 362
sentences, and the other (set B) has 1045 sentences
including the previous 362 sentences set. The sentences of
set A were uitered by 12 male and 8 female speakers, and
those of set B were uttered by 33 male and 13 female
speakers. Table 2 shows them. All the speech utterances were
collected by the multi-modal telephone-directory-assistance
system [9]. Each speaker made about twenty attempts to get
telephone numbers using information indicated on
simplified city maps. Subscriber name and address were
indicated on each map.

Table 2. Test data sets.

sentences speakers
set A 362 20
set B 1,045 46

In set A, the utterances sometimes had several non-
keywords that should be accepted by the system:
interjections, verb phrases, particles, etc. However, these
utterances did not contain unknown words, repeats, or
restarts. In set B, the utterances did include several non-
keywords, and sometimes, words that were unknown. And
there were some utterances contain unknown words (Qut-Of-
Vocabulary), Out-Of-Syntax, repeats, restarts, or other
irregular expressions.

5.2. Recognition Results

Our recognition experiments were performed under the
above conditions. After comparing the numbers of nodes in
the Trie and DAWG structures, we show the experimental
results for test set A compared with our previous system [10],
and then we show the results for test set B and further
experiments.

5.2.1. Number of Nodes

Table 3 shows the number of nodes for the Trie and DAWG
structures. Each keyword class is represented by a single
network. On a time synchronous recognizer, the number of
nodes corresponds to the size of the recognizer's search
space. As Table 3 shows, the search space is reduced
significantly by using the DAWG structure.

Table 3. Number of nodes.

Network Trie structure DAWG structure
Prefecture 18 7
City 38 17
Town 665 115
Block number 36,987 602
Name 82,848 7.824
Non-keyword 968,639 169

To create the DAWG in the figure, we made possible
phoneme sequences including allophonic differences from
the CFG that we used in our previous system. That CFG was
made by hand, looking at the simulated dialogs between
operators and customers. During this creation, recursion was
restricted, so we were able to make a finite number of
sentences from the CFG. _

We were surprised that the number of tree structure nodes
exploded in non-keywords, while, the DAWG structure on the
other hand, had only 169 nodes. This reason may be as
follows: the Japanese language allows various expressions
at the end of a sentence, so a tree structure has many branches
there. Although this can be avoided by dividing the tree
structure into several sub structures, doing this requires extra
memory space during Viterbi process to store the history of
the paths.

It was impossible to try to compare speech recognition
using the Trie and DAWG structures because of the memory
size of the Trie structure. However in time synchronous
speech recognition, the node size almost represents search
space size.

5.2.2. Comparison with Previous System

In the previous section, we said that we could not run our
system using the Trie structure because of the explosion in
the number of nodes. So we could not construct a time
synchronous recognizer using the Trie structure (or tree
structure). But the DAWG structure not only facilitated the
time synchronous recognition, but because of the reduction
in the number of nodes, it is expected to reduce the

recognition time drastically. Instead of comparing the
systems using Trie and DAWG structures, we compare our
new method with our previous method, which uses the
phoneme synchronous trellis-search algorithm. In this
algorithm, a generalized LR parser is used as a language
model for prediction; this parser can analyze context-free
grammar. It merges multiple candidates if they have the same
grammatical meaning.

Using test set A, the sentence-correct rates were 86.2% for
the top choice and 96.7% for the top five choices. The word-
correct rate was 94.4% for the top choice. Here, we only
consider keywords for the word-correct rate. The average run
time was about 56 seconds per sentence (HP9000J210). The
run time for merging and sorting the candidates was about 1%
of the CPU time.

With our previous system, its sentence-correct rates were
83.2% for the top choice and 91.5% for the top five choices.
The word-correct rate was 92.8% for the top choice. The
average run time was about 334 seconds per sentence. Thus,
the new system has a higher sentence-correct rate than with
the previous system, and it is about six times faster than the
previous system using the same CPU.

5.2.3. Extended Experiments

We want our system to be robust for more natural speech.
Therefore, we performed some extra experiments on test set
B. Since set B includes some utterances which contain
unknown words, repeats, restarts, etc., recognition
performances for set B will be worse. We have to solve these
problems of natural speech.

First, the main grammar was extended to reduce Out-Of-
Syntax errors. We permit any sequences of keywords in a
sentence even if they do not have a name. The number of Qut-
Of-Syntax sentences is reduced from 32 to | after this
extension.

Second, the networks of keywords were extended to reduce
Out-Of-Vocabulary errors. In the Japanese language, Kanji
characters have several different pronunciations. Many
errors result from this problem, so we added some
supplementary ways to pronounce the keywords. And we also
added some non-keywords that occurred in set B. Using Aoe’s
DAWG method, the cost of extending networks was very
small when we added new words or new ways to pronounce
keywords. The number of sentences including Out-Of-
Vocabulary was reduced from 50 to 14 after this extension.

Table 4 shows results of sentence recognition experiments
using test set B, They are: without extension, with extended
main grammar, and with extended main grammar and
networks.

Table 4. Recognition performances on set B.

sentence-coiT. word-corr.
extension top choice top5 choices
none 74.2 84.6 89.8
grammar 75.7 86.2 89.4
grammar/ 77.3 89.2 90.1
network

As Table 4 shows, the recognition performance improved
when we extended the grammar and networks. The costs for
extending the grammar and networks were very low. Even
when the grammar and networks were extended, the average
run times per sentence were almost the same (Table 5).

Table 5. Average run time per sentence.

extension av. time [sec]

none 56
grammar 61
grammar/network : 61

Note that although we extended the grammar and networks,
and the number of errors resulting from Out-Of-Vocabulary
and Out-Of-Syntax was reduced, there were still some. This
will be the subject of our next work.

6. CONCLUSION

We have introduced an efficient data structure for telephone-
directory-assistance tasks. Our proposed search algorithm
for this structure outputs the N-best results. Experimental
results confirmed that our new system is superior to our
previous system in terms of processing time and recognition
rate.

We also examined our new system on more natural speech
data. To enhance the performance, we extended the main
grammar and networks. We could get better performance with
little extra cost.

This method is expected to be applicable to general tasks in
large-vocabulary speech-recognition systems.

REFERENCES

[1] P. Kenny, et al, “A*- admissible heuristics for rapid
lexical access”, Proc. ICASSP’91, May 1991, pp. 689-
692.

[2] D. B. Paul, “Algorithms for an optimal A* search and
linearizing the search in the stack decoder”, Proc.
ICASSP’91, May 1991, pp. 693-696.

[3]1 X. Aubert, and H. Ney, “Large vocabulary continuous
speech recognition using word graphs”, Proc.
ICASSP'95, Vol. 1, May 1995, pp. 49-52.

[41 C. H. Lee, et al, “Automatic speech and speaker
recognition”, pp.429-456.

[5] P. S. Gopalakrisnan, L. R. Bahl, and R. L. Mercer, “A
tree search strategy for large vocabulary continuous
speech recognition”, Proc. ICASSP’95, Vol. 1, May
1995, pp. 572-575.

[6] E. Fredkin, “Tric memory”, Commun. ACM, 3, 9, Sept.
1960, pp. 490-550.

[71J. Ace, K. Morimoto, and M. Hase, “An algorithm of
compressing common suffixes for trie structures”, Trans.
IEICE Vol. J75-D-II No. 4, April 1992, pp. 770-799.

[8]1 A. W. Appel, and G. J. Jacobson, “The world’'s fastest
scrabble program”, Commun. ACM, 31, 5, May 1988, pp.
572-578.

[9] O. Yoshioka, Y. Minami, and K. Shikano, “A multi-
modal dialogue system for telephone directory
assistance”, Proc. ICSLP’'94, Sept. 1994, pp. 887-890.

[10] Y. Minami, et al, “Large-vocabulary continuous speech
recognition algorithm applied to a multi-modal
telephone directory assistance system”, Trans. Speech
Communication 15, 1995, pp. 301-310.

