OPTIMAL TIME SEGMENTATION FOR SIGNAL MODELING AND COMPRESSION

Paolo Prandons®

Michael Goodwin®

Martin Vetterli's?

! LCAV, Ecole Polytechnique Fédérale de Lausanne, Switzerland
2 EECS, University of California, Berkeley, USA
email: prandoniQde.epfl.ch, michaelgQeecs.berkeley.edu, vetterli@de.epfl.ch

ABSTRACT

The idea of optimal joint time segmentation and re-
source allocation for signal modeling is explored with re-
spect to arbitrary segmentations and arbitrary representa-
tion schemes. When the chosen signal modeling techniques
can be quantified in terms of a cost function which is ad-
ditive over distinct segments, a dynamic programming ap-
proach guarantees the global optimality of the scheme while
keeping the computational requirements of the algorithm
sufficiently low. Two immediate applications of the algo-
rithm to LPC speech coding and to sinusoidal modeling of
musical signals are presented.

1. INTRODUCTION

The topic of adaptive best bases [1, 2] is concerned with
finding the best linear transform, or set of linear transforms,
for a given signal. Various algorithms have been proposed,
and have been applied to time-frequency analysis and signal
compression. The algorithms are based on tree pruning for
dyadic time segmentation {3] or on dynamic programming
for arbitrary time segmentation [4].

In this paper we explore further the possibilities of adap-
tive representations by using more general models, in par-
ticular linear prediction and sinusoidal modeling. The main
goal is to achieve better segmentations of time, and better
Iocal models. The search is done in an operational rate-
distortion (R/D) framework. That is, we find the best pos-
sible joint segmentation and coding given the set of possible
partitions and coding algorithms. A first application is re-
lated to the LPC coding of speech: the algorithm manages
to redistribute the coding resources to yield an overall data
rate reduction at basically no cost in terms of speech quality.
As a further application, we also consider sinusoidal mod-
eling of musical signals with time-varying windows, thus
solving the pre-echo problem.

2. PROBLEM STATEMENT

In compression problems, it is almost always the case that
the data to be processed possesses non-stationary charac-
teristics. In general, the problem of time-varying data is
addressed by means of a uniform “compromise” tiling of
the time axis: an analysis window is designed as a tradeoff
between achieved locality and efficiency of representation,
and the data is segmented accordingly. The window design
problem is usually ad-hoc in the sense that it relies on a
priori information on the physical properties of the signal.
In LPC speech coding, for instance, a frame size of 16-20 ms
is usually recommended [5].

Once the input data is thus suitably segmented, the bit-
allocation problem can be dealt with in several ways; global
optimality cannot however be attained if the segmentation
process is not part of the R/D optimization process.
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In general terms, the global optimization problem can be
stated as such: let X be the data, S the set of all pos-
sible segmentations applicable to the data, and P the set
of all allowed coding templates for all possible data seg-
ments; here, a coding template could be a particular cod-
ing scheme (LPC, transform coding, sinusoidal modeling,
VQ), a particular quantizer choice, or any other choice of
data representation, yielding an arbitrary R/D curve. Each
o € S splits the data into N, segments; let P, be the set
of all possible choices of coding templates for the N, data
segments; clearly, P, C PNv,

Given a total allowed rate of Rmax, we seek to solve

in min {D(, p, X
f,né’s‘,f‘é}{‘,{ (0,0, X)}

subject to
R(vaa X) < Rmax)

where D and R are the overall distortion and rate obtained
by appling o and p to X. If the segments defined by o
are disjoint, and rate and distortion are additive over dis-
joint segments, it is convenient to formulate the above con-
strained problem in its equivalent unconstrained form. De-
fine the minimum Lagrangian cost of coding the i-th seg-
ment in partion o as

J(Aa Xl) = ggg{D(q,Xi) +AR(Q7 Xi)}, (1)

where D{q, X;) is the distortion obtained by coding segment
X; in partition o with coder g, and R(q, X;) is the corre-
sponding rate. It follows that the equivalent unconstrained
problem can be stated as finding the minimum total La-
grangian cost

No
Js(\) = min{} S IO, X}, (2)

where A\” is the (initially unknown) optimal operating slope
on the R/D curve which can be found by iteration. If S
possesses some form of hierarchical structure, the previous
minimization can be carried out very efficiently by means
of dynamic programming.

3. INCREMENTAL ALGORITHM FOR
DYNAMIC SEGMENTATION

Foliowing the lines exposed in [4], we will now briefly re-
view how to efficiently explore the space of possible seg-
mentations/resource allocation. For a data segment X, we
define a minimal analysis block of length L samples, which
we will call a cell, and we assume that X has M cells, or
ML samples. Let S be the set of all possible partitions of
X so that each segment is composed of an arbitrary num-

ber of cells. There are 2(™~1) such partitions, ranging from
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Figure 1. Exploring the segmentation space: incremental
construction of Sy, M = 3.

taking X as a whole to splitting X into M segments, each
one cell long. Call X;, the segment from cell j to cell k.
The set S can be buift incrementally: let So = §; at each
stepn, 1 <n < M, form S, by “extending” all the parti-
tions in Sy by segment Xy, for all k from 0 to n — 1 (see
Figure 1, where the extending segments are drawn in gray);
in the end § = Sy. The dynamic programming algorithm
explores the space defined by S exploiting the fact that, for
each element of S, the total Lagrangian cost is the sum of
the cost of coding the “extension” X plus the cost of cod-
ing an element of the subpartition defined by Sk, for some
k; by the optimality principle, the minimum cost among
all the elements of S which share the same “extension” is
found by taking the minimum over the space defined by Si.
Consequently, we can rewrite (2) as

Js(A) = Osx%isnM{jsk AN + I\, Xem)}- (3)

This defines an incremental algorithm which, for a given
operating point A, yields the optimal segmentation and the
minimum total Lagrangian cost in a number of steps which
is only quadratic in M also, the algorithm is only linear in
M in term of storage reqirements. We start by computing
- Jo(A) =0, J1(A) = J(A, X11) and then, at each step n, we
compute

Ja(N) = Ogign{jk()\) + J(\ Xka)}

until n = M. At each step we need only keep track of the

newly computed values of Ji()) for k from 0 to n and of
the value of j yielding the minimum.

4. APPLICATIONS

4.1. LPC Speech Coding

Linear predictors require stationarity of the input signal;
in speech coding the data is segmented using a fixed-size
analysis window spanning 16-20 ms of the signal, and sta-
tionarity is assumed for the single segments. These values
for the window length provide a good compromise between
locality and efficiency of the coding scheme; the fixed-size
constraint, however, clearly fails to identify and to exploit
the particular characteristics of the signal under analysis.
This problem has been addressed before in conjunction with
speech coding techuiques (see for example [6]); in the case of
LPC coding in particular, the LPC coefficients for a given
segment are obtained from the estimated autocorrelation
function and, since segments are coded independently, the
values for this estimate depend only on the local windowed
data. It is clear that a better accuracy can be achieved
by using windows dynamically adjusted in both length and
positioning; segmentations of the data which extracts seg-
ments sharing the same statistics would then yield the op-
timal autocorrelation estimates. Furthermore, the overall
quality of the global prediction for a given coding rate would
improve if the order of the LPC predictor, the quantizers
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associated with the coefficients, and the coding method for
the residuals were all adapting variables with respect to the
segmentation process. The algorithm described in the pre-
vious sections can be applied to the LPC coding problem
by letting P be a set of meaningful combinations of predic-
tor order, quantizers, and residual coding techniques and
by finding the optimal segmentation with respect to the
distortion measure determined by the elements of P.

In order to test the feasibility of this scheme we consid-
ered the well-known Government Standard Linear Predic-
tive Coder LPC-10 {7]. This coder offers an output bitrate
of 2400 bps and reasonably good subjective quality; speech
is segmented in 22.5 ms frames (180 samples), the vocal
tract characteristics are extracted by a order-10 LPC pre-
dictor, and the residual information is coded on a frame-
by-frame basis by a voiced/unvoiced detector and a pitch
extractor. Some dynamic programming techniques are al-
ready employed in the standard LPC-10 coder to allow for
pitch tracking across frames and to position the analysis
window in a semi-pitch-synchronous way; the span of the
adaptation is however only three frames long. The dynamic
LPC coder described in the reminder of this section utilizes
the LPC-10 algorithm to analyze and encode the speech
residual but replaces the fixed-size windowing by globally
optimal dynamic segmentation and resource allocation.

With respect to the notation introduced in the previous
sections, in this case the cell size is 90 sample long, half the
size of the LPC-10 frame length, and P is defined as the set
of LPC predictors of order 6 to 10; quantization of the LPC
coefficients takes place according to the LPC-10 specifica-
tions, namely 5 bits for the first four coefficients, 4 bits for
the next four, 3 and 2 bits for the remaining two. Figure 2
shows the R/D curve obtained from sweeping A from zero
to some maximum positive value for the minimization prob-
lem described by (3); in this case R is the number of bits
used to code the predictor’s taps, and D the correspond-
ing MSE for the linear prediction solution. The values for
D are efficiently obtained as a by-product of Levinson’s re-
cursion while solving the linear prediction problem for all
possible orders for a given segment; while not a measure
of the “true” distortion introduced by the LPC coder, they
can be seen as an overall goodness-of-fit index for the linear
model. The operating points on the optimal R/D curve can
be compared to the operating point of the standard LPC-10
coder, represented by the star in Figure 2.

Figure 3 shows the segmentations and model order selec-
tion relative to points A and B on the R/D curve. The plots
show how the minimal data cells (the ticks on the x-axis)
are joined together into segments, and which LPC order
is selected for each segment. Point A illustrates how the
algorithm can redistribute the same resources used by the
fixed LPC to obtain a 0.3 dB decrease in the LPC MSE;
acoustically, however, this is hardly a noticeable difference,
given the already synthetic sound of LPC coded speech.
More interestingly, point B shows how the data rate can be
more than halved while keeping the same “distortion” for
the LPC modelization.

The computational load of the global optimization algo-
rithm increases quadratically with the length of the speech
segment, as shown previously. Practically, however, long-
range dependencies in typical speech signals span only a
reasonably limited time interval; in terms of dynamic seg-
mentation this means that, as the analysis progresses, the
segmentation already delineated for the earlier part of the
input signal is not likely to change anymore. The start-
ing point for the optimization can therefore be advanced
as soon as the backtracking algorithm detects that a suf-
ficiently stable initial segmentation has been determined.
This is exemplified in Figure 4; the plot shows how the seg-
mentation evolves in time, with the fist-iteration segmenta-
tion at the bottom and the current segmentation at the top.
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Figure 2. R/D curve for a simple segmentation example.
The star represents the sub-optimal performance of a fixed-
window LPC scheme.
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Figure 3. Speech signal (top box) and two segmenta-

tion/resource allocation results corresponding to operating
points A (center box) and B (lower box) in the R/D curve
of Figure 2.

The vertical axis corresponds to the iteration number for
the algorithm: it is clear that as the algorithm progresses,
the earlier segments are not modified further. Stable points
for restart can be heuristically identified with the straight
vertical lines which appear in the plot.

5. SINUSOIDAL MODELING

The proposed dynamic segmentation algorithm can be used
in conjunction with any signal model where an additive cost
such as a reconstruction error can be associated with ap-
plication of the model to segments of the signal. A variety
of signal representations are viable in this framework. We
now consider the sinusoidal model, for which dynamic time
segmentation offers immediate advantages over the static
approach.

In sinusoidal modeling, the signal is modeled as a sum of
nonstationary sinusoids or partials:

Q
z(t) = Z Aq(t)cosOq(t)

g=1

2031

iteration #

60 70 80 80 100

4] 10 20 30 40

50
Cell #

Figure 4. Evolution of the segmentation over time; the first
segmentation (one cell only) is at the bottom, the current
segmentation at the top.

Estimation of the model parameters is typically carried out
using the short-time Fourier transform (STFT) with a fixed
analysis frame size and a fixed stride between frames; a typ-
ical stride is half the frame size. The sinusoids are extracted
by peak-picking in the STFT magnitude spectrum [8]. Such
an analysis yields a frame-rate representation of the ampli-
tude A,(t) and total phase ©,(t) of the constituent partials;
in synthesis, these parameters are used to drive a bank of os-
cillators whose outputs are accumulated in accordance with
the signal model. Because of its simplicity and flexibility,
this representation in terms of sinusoidal parameters has
proven effective for applications in speech coding and au-
dio analysis-transformation-synthesis [8, 9]. The method,
however, does have significant drawbacks for representing
transient signals such as the attack of a musical note; this
is explained by the following consideration of the sinusoidal
synthesis algorithm.

As mentioned, sinusoidal synthesis is carried out using
a bank of oscillators driven by amplitude and total phase
control functions. Two difficulties arise in deriving these
functions: line tracking and parameter interpolation; both
arise because of the time-variation of the partials and the
resultant frame-to-frame differences in the sinusoidal pa-
rameters. Since the analysis does not track the partials,
but instead merely derives sets of parameters for the par-
tials that it finds in the signal frames, the synthesis must
establish continuity by relating the parameter sets in adja-
cent frames to form partials that endure in time. This line
tracking is generally done by associating the g-th partial in
frame i to the partial in frame ¢ + 1 with frequency closest
t0 wq,;; this procedure is carried out until all of the partials
in adjacent frames are either coupled or accounted for as
a birth or a death, i.e. a partial that is newly entering or
leaving the signal. After partial continuity is established by
line tracking, it is necessary to interpolate the frame-rate
sinusoidal parameters to derive the sample-rate oscillator
control functions. This interpolation is typically done using
low-order polynomial models such as linear amplitude and
cubic total phase; these models are constrained to meet
amplitude, frequency, and phase-matching criteria at the
synthesis frame boundaries {8}, which are separated in time
by the analysis stride.

Fundamentally, the fixed-stride STFT analysis results in
a delocalization of transient events such as attacks. This
delocalization can also be interpreted in terms of the syn-
thesis: the signal is reconstructed in each synthesis frame
as a sum of linear-amplitude, cubic-phase sinusoids. Each
of these sinusoids has the same time support, namely the
synthesis frame size; this results in a smearing of signal fea-
tures across the frame. In addition to this delocalization
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Figure 5. (a) A saxophone attack, (b) its delocalized re-
construction using a fixed frame size (512), and (c) a more
accurate reconstruction using dynamic segmentation with
the set of sizes {128,256, 384, 512}; the algorithm chooses
sizes 256 and 384 for the first two frames, and 512 for the
rest.

within each frame, features are spread across neighboring
frames by the line tracking and parameter interpolation op-
erations. One consequence of this is a distortion of signal
attacks, an example of which is shown in figure 5(b).

The distortion of transients can be reduced by using
the proposed dynamic segmentation algorithm. In this ap-
proach, a set of synthesis frame sizes are allowed; given this
set, the optimal segmentation, or time-varying frame size,
is determined. In the optimization, the cost function for
a segment is the mean-squared reconstruction error in the
segment. Note that for a given segmentation, the analy-
sis, as in the static case, is carried out using windows twice
as wide as the synthesis segments; these analysis windows
are centered at the synthesis segment boundaries. Because
each segmentation requires a different set of analysis win-
dows to cover the signal, each segmentation has its own set
of sinusoidal analysis results. These various analyses are ef-
ficiently managed in the dynamic algorithm. Note however
that because the sinusoidal parameters for a given synthe-
sis segment are derived using analysis windows that extend
outside the segment, the reconstruction error measure is
not strictly independent from segment to segment. This
dependence implies that the dynamic algorithm may not
always find the optimal segmentation; however, simulations
suggest that the dependence does not significantly interfere
with the performance of the algorithm.

Fundamentally, the advantage of dynamic segmentation
in the sinusoidal model is that the time support of the con-
stituent linear-amplitude cubic-phase sinusoidal functions
is adapted such that time-localized signal features are ac-
curately represented. An example of the the distortion im-
provement is given in figure 5(c); the dynamic algorithm
chooses shorter frame sizes near the attack to reduce de-
localization. Another advantage is that the algorithm is
able to choose long segments for regions where the signal
does not exhibit transient behavior, thus improving the fre-
quency resolution and the coding efficiency over the static
case.
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