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ABSTRACT 
In this paper', two probabilistic adaptive algorithms for 

jointly detecting active users in a DS-CDMA system are 
compared. The first one, which is based on the theory 
of Hidden Markov Models (HMM) is proposed within the 
CDMA scenario and compared with the previously develo- 
ped Viterbi-based algorithm. Both techniques are comple- 
tely blind in the sense that no knowledge of the signature 
sequences, channel state information or training sequences 
is required for any user. After convergence, an estimate of 
the signature of each user convolved with its physical chan- 
nel impulse response (CIR), and estimated data sequences 
are provided. This CIR estimate can then be used to switch 
to any decision-directed (DD) adaptation scheme. Perfor- 
mance of the algorithms is verified with simulations as well 
as with experimental data from an Underwater Acoustics 
(UWA) environment. In both cases, performance is found 
to be highly satisfactory, showing the near-far resistance of 
the analyzed algorithms. 

1. INTRODUCTION 
Recently, multiuser detection in CDMA systems has recei- 
ved increasing attention [ l ] .  Detectors developed so far 
(conrentional receiver optimum detector, decorrelating and 
the AIMSE detectors [2 ] )  should know (or should be able to 
acquire) one or more of the parameters from the following 
list [3]: 

1. The signature waveforms of the desired user and/or 

2. The timing (bit-epoch and carrier phase) of the desired 

3. The received amplitudes of the interfering users in re- 

The MMSE detector is more suited for adaptive implemen- 
tation on the basis of mean square error (MSE) minimiza- 
tion [ l ] .  In that case, previous knowledge on interferers can 
be circumvented by making use of 4) training sequences, 
not only during the startup period but also after sudden 
changes in the channel impulse response (CIR) or when a 
new active user appears. The need to retransmit training 
sequences may be cumbersome in multiuser communicati- 
ons so that, in recent years, a large effort has been made in 
developing blind algorithms which perform CIR acquisition 
and data detection without such information (i.e. only on 
the basis of the channel output). 

The algorithms presented and compared in this paper, 
are absolutely blind in the sense that no knowledge of 1) 

interfering users. 

user and/or interfering users. 

lation with that of the desired user. 
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to 4) is required for proper operation. They both belong to 
the group of Probabilistic algorithms [4,5] and lead to joint 
channel estimation and data detection. These methods ex- 
hibit higher computational complexity but they outperform 
other blind methods (i.e. Bussgang and Polyspectra-based) 
since they make better use of the known statistical informa- 
tion on the input signal and, in general, require less symbols 
to obtain an accurate CIR estimate. 

2. SIGNAL MODEL 
We consider the general asynchronous multiple-access chan- 
nel model in which the received signal is given by 

K 

n k=l  

where hk(t - nT) is the overall complex channel impulse 
response of user k, given by ,the convolution of its M-chip 
signature sequence, physical channel and receiving filter res- 
ponses. For ease of notation, it incorporates the amplitude 
and the delay for user k and its duration is assumed to be 
no longer than L symbol periods. The total number of ac- 
tive users is K and their transmitted data sequences are 
binary independent symbols bk[n] E -1,l). The symbol 

access channel is sampled at a rate s = 1/Ts = M / T  to 
derive the discrete vector sequence $ 4 :  
rate is 1/T and w ( t )  is normalized A iy GN. The multiple- 

r[n] = [r(nT), . . . ,ri[nT + ( M  - 1)T,)IT (2) 

where denotes transpose operation. The observation ~ [ n ]  
can be modeled as a M-length, vector, probabilistic function 
of the state vector s[n]: 

r[n] = H[n]:i[n] + w[n] . (3) 
Since at any given time a maximum of L symbols: for each 
user affect the observation, there are N = 2KL possible 
state vectors corresponding to all combinations of L binary 
symbols of the K active users. We denote each of the pos- 
sible states as the KGlength vector sj, 

sj E S = { s 1 , s z ,  ..., SN} (4) 

such that, 

( 5 )  
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The actual state at  time instant nT is denoted by s n] E S. 

impulse responses for each us(%, denoted by matrices H k  [n] 
The M x K L  matrix H[n] depends on the overall !i iscrete 

H[n] = [HI [n], - . . , HK[~] ]  . (7) 

http://Zoran.ZvonarQanalog.com


Each of these matrices incorporates a vector response for 
the L symbols that may be present in the observation due 
to the IS1 or to the asynchronous reception, 

HI, [n] = [ h k o  [n] , . . . , h k ( ~ -  I [n]] (8) 

and, finally, the resulting signature for each user k and sym- 
bol I :  

hkl((n + l)T) 

hkl((n + l)T + ( M  - 1)Ts) 
hkl[n] = 

The noise is characterized as the M-length vector w[n]: 

w[n] = cr[w(nT), . . . ,w(nT + ( M  - l)Ts)]T . (10) 

This signal model is common to both the BW-based and 
the Viterbi-based algorithms and will be further refined to 
meet the formal requirements of each algorithm. 

3. BLIND IDENTIFICATION AND 

We propose two algorithms on the basis of the 
Baum&Welch (BW) reestimation procedure and the Vi- 
terbi algorithm. To achieve channel identification, both 
algorithms operate on a trellis-like structure. 

DETECTION ALGORITHMS 

3.1. Multiuser Adaptive Baum&Welch algorithm 
(MABW) 

The BW algorithm, which relies on the theory of Hidden 
Markov Models (HMM), is essentially identical to the EM 
method and it is known to lead, at least, to a local maxi- 
mum of the likelihood function [6]. When dealing with time- 
varying channels, an adaptive version called ABW (Adap- 
tive Baum&Welch) can be considered [7]. The probability, 
7j[n], of being in state j : 1.N = 2KL in the trellis at time 
instant n given the sequence and the HMM is computed by 
means of the Forward-Backward algorithm [8]. The estima- 
ted multiuser CIR is updated at the symbol rate considering 
the steepest-descent adaptation scheme: 

H[n] = H[n - 11 + p h ~ [ e [ n ] s [ n ] ~ ] ,  

e[n] = r[n] - m[n] = r[n] - H[n]s[n] 

(11) 

(12) 
where 

and ph is the adaptation constant. In our blind environ- 
ment, the expectation in the gradient term will be compu- 
ted on the basis of the received sequence up to instant n+ A 
(where the lag A is a design parameter taking typical values 
of 4-8 symbols), and the model at instant n - 1: 

j=l 

and 

ej[n] = r[n] - mj[n] = r[n] - H[n - l]sj j = l..N. (15) 

Data detection is performed following an individually most- 
likely state criterion [8]. 

3.2. Multiuser Adaptive Viterbi algorithm (MAV) 
This blind estimation algorithm [5] is initialized with an ar- 
bitrary CIR estimate for each state in the model. Note that, 
now, such CIR matrix contains as many matrices defined in 
Eq.(7) as the number of states. Namely, the M x KLN 
matrix: 

iij[n] = H[n] [ s t a t e  j (16) 

ii[n] = [iil[n], ..., i iN[n]] .  (17) 

Each estimate is updated following a stochastic-gradient 
(LMS) scheme that only takes into account the most likely 
preceding state among the 2K predecessors: 

iij[n] = - 11 + pheij[n]sy, (18) 

where the state si is the ML predecessor to state sj, and 
the error vector eij[n] is defined as: 

e i j~n]  = r[n] - - I I S ~  j = I..N. (19) 

In this second case, data is recovered following a most-likely 
state-sequence (MLSE) criterion. 

3.3. Considerations 
These two blind algorithms are well-suited for the startup 
period of a centralized receiver; after convergence, we can 
switch to a DD mode of operation (for example, a linear 
equalizer U dated with a MMSE strategy [2]) .  Simulation 
results in 61, show that the CIR estimate obtained with 
the blind algorithm is good enough to make such change 
feasible. 

As for computational com lexity, the most-contributing 
section is computation of yi[ny in the case of the MABW al- 
gorithm, whose counterpart for MAV is the computation of 
the metrics. Both contribute similarly to the total amount 
of operations ( O ( N 2 ) )  up to a multiplicative factor (Ae,,+l) 
in the case of the MABW algorithm. This factor shows up 
as a consequence of the need of recursively (re)compute the 
backward wan'able [8] in the process of obtaining 7i[n]. For 
example, if the backward variable is computed at  each ite- 
ration step then Aeq = A. However, it is not an important 
drawback since this factor cart be significantly reduced with 
the use of the sawtooth-lag scheme [lo] where Aeg, the equi- 
valent lag factor, can be forced to be approximately equal 
to 1. Regarding the rest of sections, they all contribute on 
the order of O ( N )  or less, and equally for both algorithms. 
As a final conclusion, the computational complexity of both 
strategies is approximately the same for a moderate num- 
ber of users and low delay-spread, and on the same order 
of magnitude in any other case. 

Whereas the MABW algorithm is (slightly) more costly 
in terms of number of operations per symbol, MAV demands 
more memory resources. This is a direct consequence of 
keeping track of CIRs separately (i.e. one estimate for each 
state) which increases memory requirement exponentially 
in the number of users and the duration of the CIR. 

Finally, noting that when the multiuser signal is aEec- 
ted by the near-far effect, both algorithms tend to con- 
verge towards local maxima [5]. To overcome this problem, 
we adopted the strategy suggested in [5] called coherence 
checking. 

4. COMPARATIVE P E R F O R M A N C E  STUDY 
4.1. Simulation Analysis 
The system under study operates at  the symbol rate em- 
ploying a BPSK modulation scheme. In all cases, K = 4 
users contributed to the CDMA signal. Gold sequences with 
M = 7 chips were used as spreading sequences; coherence 
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Figure 1. Learning curves. MABW (solid) and 
MAV (dash-dot). Amplitudes:3,2,l,l. SNR=12 dB. 

checking were performed every S = 50 symbols. A statio- 
nary and single-path model was considered for the channel. 
For all simulations, the incoming signal was sampled at the 
chip rate. Simulation results are averaged over 50-run tests. 

The estimation noise -learning curves- for all users and 
both algorithms are plotted in Fig.1. Such parameter is 
the euclidean distance between CIR and the corresponding 
estimate. A slower convergence for the MABW algorithm 
is observed. This fact is a direct consequence of the way 
in the CIR estimates are obtained: an average over all the 
possible present states (MABW) or, otherwise, an update 
of the CIR estimate corresponding to each state considering 
only the preceding state (MAV). Within first iteration steps, 
when there is not a predominant path in the trellis, all 
states contribute to update the CIR estimate; this extent 
guarantees convergence of MABW at least towards a local 
minimum but, of course, brings down convergence speed. 

We also note that, despite of the joint detection strategy, 
users are extracted sequentially according to their power 
level. 

Regarding to estimation noise in the final steady state, si- 
milar levels for both algorithms are observed. In fact, when 
convergence has been achieved, it is absolutely equivalent 
to have a single averaged CIR estimate with no contribu- 
tion from states different from the most likely (MABW), or 
to have a very predominant state whose CIR estimate will 
be chosen as the most likely at each instant (MAV). 

In Fig.2, we plot the response of both systems in an en- 
vironment with very low SNR (6dB, for the weakest user). 
Users separation is also achieved at the expense of a slightly 
slower convergence rate for the weakest users in the MABW 
algorithm. Behaviour when facing strong near-far effect 
(approx. 30 dB) is depicted in Fig.3. Convergence is faster 
now since, as long as special measures were adopted to over- 
come near-far effect (coherence checks), the difference in 
the received amplitudes helps the algorithm to distinguish 
between signals coming from different users. To conclude 
this section, the a1 orithms were tested considering asynch- 
ronous reception tFig.4). Delays considered (wrt the first 
user) were 1, 2 and 3 chips. We do not observe significant 
changes in the behaviour with respect to the synchronous 
case. Note, however, that the number of states is four times 
higher since double the number of taps are required for the 
CIR estimate. 
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Figure 2. Learning curves in  a very low l3NR en- 
vironment: M A B W  (solid) and MAV (dash-dot). 
Amplitudes: 3,2,1,1. SNIR=6 dB. 

4.2. Evaluation with Experimental Data 
Further validation of the a1g:orithms has also been carried 
out by considering experimental data obtained in a Un- 
derwater Acoustic (UWA) environment from a vertical link 
established between acoustic: modems. Two users contri- 
buted to the CDMA si al i(signatures:[l,l,l] and [l,-l,l]; 
gaussian shaping pulses? Thte SNR was on the o:rder of 20 
dB and the difference in received power between users 10 
dB (approx.). IS1 was negligible (see [ll] for details). 

We chose the span of the estimated CIR to be equal to 
L = 2 symbols and an oversampling factor of 4 (4 sam- 
ples/chip). The rest of parameters were assigned the same 
values as those mentioned before. Results for thle MABW 
algorithm are plot in Fig.5. First, we observe that the es- 
timates for signatures and amplitudes (time n=:550) cor- 
responding to both users ma.tch the ones described above. 
Convergence is achieved within the fist  150 symbols after 
one coherence compensation at n = 50. Only 2 and 21 er- 
rors were observed respectively in the whole packet. Similar 
results were obtained with the MAV algorithm. 

5. CONCLUSIONS 
In this paper, two probabilistic algorithms for JD of DS- 
CDMA signals and channel estimation have been presen- 
ted and compared. The MABW algorithm is based on the 
theory of Hidden Markov Models, whereas the MAV is a 
blind version of the well-known Viterbi algorithm. Both 
algorithms are adaptive and the estimate of the convolu- 
tion of each user’s signature with the physical channel is 
recursively updated using gradient schemes. Nevertheless, 
since the receiver operates bllindly, training sequences are 
replaced by estimates of the transmitted data based on the 
received signal and the present estimate of the parameter 
set. 

As a consequence of algorithmic differences, thle MABW 
algorithm is slightly more computationally intensive but, 
in contrast, memory requirements are less strict than those 
of MAV. Simulation study indicates that both algorithms 
exhibit a very similar behaviour. They only differ in conver- 
gence time which is higher in the case of MABW. In turn, 
this assures the convergence of this algorithm, at least, to a 
local maximum of the likelihood function. Performance of 
the MABW algorithm has ala0 been verified on experimen- 
tal data obtained in an UWA. environment. 
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Figure 3. Learning curves with near-far effect (30 
dB): M A B W  (solid) and MAV (dash-dot). Ampli- 
tudes: 30,7,5,1. SNR=12 dB. 

Both algorithms are well-suited for the startup period of a 
centralized multiuser receiver; after convergence, switching 
to a less computationally-intensive DD adaptation method 
would be advisable. 

Undergoing research focuses on algorithm extension to 
include array observation. Further analysis is, mainly, ap- 
plication specific, including tests with synthetic signals ge- 
nerated by standard test channels (such as those proposed 
in the GSM recommendations) and exhaustive tests with 
experimental data both in radio and UWA environments. 
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