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Abstract

The aim of this work is to build up a common framework for a class of discriminative training criteria and op-
timization methods for continuous speech recognition. A unified discriminative criterion based on likelihood ratios of
correct and competing models with optional smoothing is presented. The unified criterion leads to particular criteria
through the choice of competing word sequences and the choice of smoothing. Analytic and experimental comparisons
are presented for both the maximum mutual information (MMI) and the minimum classification error (MCE) criterion
together with the optimization methods gradient descent (GD) and extended Baum (EB) algorithm. A tree search-based
restricted recognition method using word graphs is presented, so as to reduce the computational complexity of large
vocabulary discriminative training. Moreover, for MCE training, a method using word graphs for efficient calculation
of discriminative statistics is introduced. Experiments were performed for continuous speech recognition using the
ARPA wall street journal (WSJ) corpus with a vocabulary of Sk words and for the recognition of continuously spoken
digit strings using both the 77 digit string corpus for American English digits, and the SieTill corpus for telephone line
recorded German digits. For the MMI criterion, neither analytical nor experimental results do indicate significant
differences between EB and GD optimization. For acoustic models of low complexity, MCE training gave significantly
better results than MMI training. The recognition results for large vocabulary MMI training on the WSJ corpus show a
significant dependence on the context length of the language model used for training. Best results were obtained using a
unigram language model for MMI training. No significant correlation has been observed between the language models
chosen for training and recognition. © 2001 Elsevier Science B.V. All rights reserved.

Zusammenfassung

Ziel dieser Arbeit ist die Schaffung eines einheitlichen Rahmens fiir eine Klasse von diskriminativen Training-
skriterien und Optimierungsmethoden fiir die kontinuierliche Spracherkennung. Dazu wird ein einheitliches Kriterium
definiert, das auf Wahrscheinlichkeitsverhaltnissen von korrekten und konkurrierenden Modellen basiert. Spezielle
Kriterien ergeben sich daraus durch die Wahl der konkurrierenden Wortfolgen sowie der Glattung. Fiir die Kriterien
maximum mutual information (MMI) und minimum classification error (MCE), sowie deren Optimierung mittels Gra-
dientenabstieg (GD) und erweitertem Baum (EB) Algorithmus werden analytische und experimentelle Vergleiche
durchgefiihrt. Die Zeitkomplexitat des diskriminativen Trainings bei groBem Vokabular wurde durch eine Methode zur
Einschrankung der Baumsuche reduziert. Fiir MCE-Training wird zudem eine effiziente Methode zur Berechnung
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diskriminativer Statistiken auf Wortgraphen eingefiihrt. Es wurden Experimente fiir kontinuierliche Spracherkennung
unter Verwendung des ARPA Wall Street Journal (WSJ) Korpus (Vokabular: Sk Worter), sowie fiir die kontinuierliche
Ziffernkettenerkennung durchgefiihrt (Korpora: TI digit string, amerikanisches Englisch; SieTill, Deutsch, Tele-
fonsprache). Analytische und experimentelle Ergebnisse gaben keine Hinweise auf signifikante Unterschiede zwischen
EB und GD Optimierung des MMI-Kriteriums. MCE-Training lieferte deutlich bessere Ergebnisse als MMI-Training
fiir suboptimale akustische Modelle. MMI Training bei groBem Vokabular (WSJ Korpus) zeigte eine signifikante
Abhangigkeit von der Kontextlinge des Trainingssprachmodells. Beste Ergebnisse wurden mit einem Unigramm
Sprachmodell im MMI-Training erzielt. Es konnte keine signifikante Korrelation zwischen der Wahl der Sprachmo-
delle fiir Training und Erkennung beobachtet werden. © 2001 Elsevier Science B.V. All rights reserved.

Résumé

Le but de ce travail est de définir un cadre commun incluant un ensemble de critéres d’apprentissage discriminant
et de méthodes d’optimisation pour la reconnaissance de la parole continue. Nous introduisons un critére discriminant
fondé sur le rapport entre la vraissemblance des modeles corrects et concurrents. Ce critere général conduit a définir des
criteres spécifiques par le choix des séquences de mots en concurrence et par celui de la méthode de lissage. Des
comparaisons analytiques et expérimentales sont menées pour les criteres d'information mutuelle maximale (MMI) et
d’erreur de classification minimum (MCE) ainsi que pour leur optimisation par la déscente de gradient (GD) et I’al-
gorithme Baum étendu (EB). Une méthode de reconnaissance restrictive fondée sur une recherche arborescente est
proposée pour réduire la complexité de ’apprentissage discriminant pour les grands vocabulaires. De plus une méthode
efficace a été introduite dans I'apprentissage MCE, utilisant des graphes de mots pour le calcul des statistiques dis-
criminantes. Des expériences de reconnaissance de parole continue ont été menées sur le corpus ARPA Wall Street
Journal (WSJ) (vocabulaire de 5k mots) ainsi que pour la reconnaissance de chiffres connectés sur les corpus 77 digit
string (anglais américain) et Sie Till (allemand par téléphone). Les résultats analytiques et expérimentaux n’ont pas mis
en évidence des différences significatives entre les méthodes d’optimisation EB et GD pour le critere MMI. Pour des
modeles acoustiques de faible complexité, ’apprentissage MCE a fourni des résultats significativement meilleurs que
lapprentissage MMI. Les résultats de reconnaissance pour I'apprentissage MMI avec un grand vocabulaire sur le
corpus WSJ montrent une forte dépendance a la taille du contexte pour le modele de langage utilisé pendant I’ap-
prentissage. Les meilleurs résultats ont été obtenus pour un modele de langage unigramme avec ’apprentissage MMI.
Aucune corrélation significative n’a été observée entre le choix du modele de langage pour ’apprentissage et celui pour
la reconnaissance. © 2001 Elsevier Science B.V. All rights reserved.

Keywords: Discriminative training; Maximum mutual information; Minimum classification error; Corrective training; Speech
recognition

1. Introduction

It has been shown that discriminative training
methods are able to produce consistent, in the case
of small parameter sets even large improvements in
performance in comparison to the conventional
maximum likelihood (ML) training criterion. Most
applications of discriminative training methods for
speech recognition use either the maximum mutual
information (MMI) (Bahl et al.,, 1986; Brown,
1987; Cardin et al., 1993; Chow, 1990; Kapadia
et al., 1993; Normandin, 1996; Normandin et al.,
1994a,b; Normandin and Morgera, 1991; Reichl
and Ruske, 1995; Valtchev et al., 1996, 1997) or
the minimum classification error (MCE) (Chou

et al., 1992, 1993, 1994; Paliwal et al., 1995; Reichl
and Ruske, 1995) criterion. In MCE training, an
approximation to the error rate on the training
data is optimized, whereas MMI training opti-
mizes the a posteriori probability of the training
utterances and hence the class separability.

Since there does not exist any discriminative
training method guaranteed to converge under all
practical conditions, much effort has been made to
develop parameter optimization techniques with
fast and reliable convergence. The commonly used
parameter optimization techniques for discrimi-
native training are the extended Baum (EB) algo-
rithm and the gradient descent (GD) method. EB
is an extension to the standard Baum—Welch
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algorithm designed for optimization of the MMI
criterion. EB was first developed for discriminative
training of discrete probabilities (Cardin et al.,
1993; Gopalakrishnan et al., 1991; Normandin
et al., 1994a; Normandin and Morgera, 1991), but
was later extended to continuous densities (Nor-
mandin, 1991, 1996). Optimization of the MCE
criterion is usually performed in combination with
GD. In (Schliiter et al., 1997), we presented a
special choice of step sizes for GD optimization of
single Gaussian density parameters, showing that
the EB algorithm and GD are in fact very similar
and give similar recognition results in the case of
the MMI criterion.

In discriminative training for speech recogni-
tion, an important point is the choice of competing
word sequences and the accumulation of statistics
for the discriminative model. A number of exper-
iments have been performed using only the best
recognized (for MMI) or the best incorrectly rec-
ognized (for MCE) word sequence for discrimi-
nation. For the MMI criterion this is also known
as corrective training (CT) (Normandin, 1996); for
MCE, we will call this approximation falsifying
training (FT), since it optimizes the spoken word
sequence at the expense of the best competing
word sequence. To reduce complexity, in (Brown,
1987) it is assumed that the training data is seg-
mented according to the spoken word sequence,
and that a unigram language model is used for
MMI training. Thereby, competing word se-
quences could be reduced to independent lists of
competing words for each word position. Beyond
these approximations, N-best lists of competing
word hypotheses could be used, for which experi-
ments have been reported both for MMI (Chow,
1990; Reichl and Ruske, 1995) and MCE training
(Chou et al., 1992, 1993, 1994; Reichl and Ruske,
1995). Especially for large vocabulary applica-
tions, a much more efficient way of collecting
statistics of competing word sequences is the use of
word graphs. This was first presented for the MMI
criterion (Normandin et al., 1994b; Valtchev et al.,
1996, 1997).

Especially for large vocabulary applications, the
determination of the set of competing word se-
quences, i.e. the recognition on the training data,
takes most of the computational load needed for

discriminative training. In (Valtchev et al., 1997),
recognition was done once, i.e. word graphs were
initially obtained for the training data, which were
used for acoustic rescoring within each discrimi-
native training iteration step.

As a further aspect, discriminative training of
large vocabulary speech recognizers introduces
language models to training in several views.
Firstly, the language model for the — at least initial —
recognition of competing word sequences for
training has to be chosen. Secondly, the choice of
language models for discriminative training itself
will have impact on the resulting acoustic models.
Finally, the question arises to what extent recog-
nition results using a particular language model
depend on the language models chosen for training.
In an (MCE) training approach with a vocabulary
of 1000 words, using no language model for training
at all has been reported to give better results than
using a word pair grammar, where in both cases a
word pair grammar was used for evaluation (Chou
et al., 1993). In (Valtchev et al., 1997) a bigram
language model was used for MMI training of a
speech recognizer with 65k vocabulary. Clearly,
improvements in comparison to the baseline ML
results diminished with increasing context length of
the language model for recognition.

The goal of this work is to present a unified
approach for efficient discriminative training of
both small and large vocabulary continuous
speech recognizers, using a class of discriminative
training criteria (Schliiter and Macherey, 1998)
and optimization methods (Schliiter et al., 1997).
The approach is based on a formulation for MMI
training given in (Normandin, 1996) and includes
both the MMI and the MCE criterion and the
corresponding corrective (CT) and falsifying
training (FT) approximations, respectively. We
present experiments comparing these criteria for
varying degrees of model complexity, thus ex-
tending a comparison presented in (Reichl and
Ruske, 1995). The parameter optimization tech-
nique chosen is based on an extension of EB
(Kanevsky, 1995). The approach is formally in-
dependent of the particular criterion in question;
the dependence on particular criteria is solely
contained in the accumulators for discriminative
statistics, which we call discriminative averages.
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The comparison of EB and GD presented in
(Schliiter et al., 1997) was completed to include
mixture densities, again showing strong similarities
between EB and GD optimization. It is shown,
that the EB algorithm could also be interpreted as
a means of finding more optimal step sizes for GD
optimization of discriminative criteria.

The original method to use word graphs for the
accumulation of discriminative statistics so far
only applies to MMI training. Since the compu-
tational efficiency of word-based discriminative
training methods, as they are discussed here,
highly depends on the use of word graphs, we will
extend this method, so as to apply it to criteria like
MCE. For MCE training, the spoken word se-
quence needs to be excluded from the set of com-
peting word sequences. In general, if the spoken
word sequence would be removed from the word
graph itself, other word sequences would be re-
moved at the same time. Here, we propose an al-
gorithm to use word graphs correctly for efficient
MCE training.

For the reduction of the computational re-
quirements of large vocabulary discriminative
training, we present an approach for constrained
recognition using word graphs for the determina-
tion of competing word sequences. The con-
strained recognition approach both preserves the
recognition accuracy and significantly reduces the
training times. In addition, it is shown that dis-
criminative training using constrained recognition
performs better than using word graph rescoring
with fixed word boundary times.

The investigations on discriminative training
are completed by systematic investigations on the
interdependence between language model choice
for large vocabulary MMI training and recogni-
tion. It is shown that the recognition performance
of the MMI trained models significantly depend
on the choice of the language model context length
used for training. Moreover, results are presented
that do not indicate considerable correlation be-
tween the choice of language models for training
and recognition.

The remaining part of the paper is organized as
follows. In Section 2, we present a unifying ap-
proach to discriminative training including a
comparison of EB and GD optimization. Section 3

focuses on efficient ways of accumulation of dis-
criminative statistics. In Section 4, a set of com-
parative experiments for small vocabulary speech
recognition is presented, and in Section 5, experi-
ments using constrained recognition for MMI
training and comparative experiments using lan-
guage models of varying context length for MMI
training of large vocabulary speech recognition
systems are discussed. Conclusions are given in
Section 6.

2. Discriminative criteria

In this section, we will present a unifying ap-
proach for a class of discriminative training crite-
ria, including the MCE, MMI and related criteria
as special cases. Furthermore, a close relation be-
tween the parameter optimization methods GD
and EB will be shown analytically. In addition, the
interdependence of discriminative training and
language models for training will be discussed (see
Table 1).

2.1. Unifying view of discriminative training

The training data shall be given by training
utterances r with » = 1,... R, each consisting of a
sequence X, of acoustic observation vectors
X1y -« Xp, - .., %r. and the corresponding sequence
W.=Wu,...,Wy,...,wuy, of N, spoken words. The
emission probability for an acoustic observation
sequence X, given a word sequence W, shall be
denoted by py(X,|W,). The parameter 0 represents
the set of all parameters of the acoustic model. The
language model probability for a word sequence
W, is defined by p(#,). In the following, the lan-
guage model probabilities are assumed to be given.
We now define the following unified discriminative
training criterion:

2 PGP (0F)
FO) =3 (10% Seu pf’;(XrW)P“(W)>

r=1

Dy (X | W,
=2 | lee gp(<W>| “)1
= D wed, LW} Pi(XAW)

(1)
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F unified discriminative criterion

0 set of all parameters of the acoustic model

r index of a speech utterance

T, number of time frames of utterance r

X, sequence of acoustic observation vectors x,q, .. . S X, of utterance r

N, number of spoken words of utterance r

W, sequence of spoken words w,y, ..., w,, of utterance r

M, set of alternative word sequences of utterance r

po(X W) acoustic emission probability density for utterance r given the spoken word sequence W,

po(W,1X.) a posteriori probability for the spoken word sequence of utterance r

(W) language model probability of the spoken word sequence of utterance r

o weighting exponent

.0 smoothing function, the corresponding derivative, and the value of the derivative for utterance r
respectively

t time frame index

s state of a hidden Markov model (HMM)

! density index of a mixture density component

Cyl mixture weight for density / in state s

Uy mean vector parameter of a single Gaussian density / in state s

X covariance matrix of a single Gaussian density / in state s

7’ variance vector of a single Gaussian density / in state s (diagonal covariance)

01 all parameters {cy, tt,;, s} of a single Gaussian probability density

Pl g Zst) single Gaussian emission probability density

Po(x]$) mixture Gaussian emission probability density conditioned by state s

o(i, ) Kronecker delta, equals 1 for i = j, and 0 otherwise

s(X, W) state of the optimal Viterbi alignment path at time ¢ for utterance r given a word sequence W

I(x,s) index of the mixture density component that maximizes the emission probability for state s given the
acoustic observation x

V(83 W) forward-backward (FB) probability to observe state s at time ¢ for utterance r given a word sequence W

Ve (8) generalized FB probability to observe state s at time ¢ for utterance r given all alternative word sequences

g(x) any (usually polynomial) function of the acoustic observations

I'y(g(x)) discriminative averages over function g of the acoustic observations with respect to density / in state s

r Z'fk (g(x)) averages over function g of the acoustic observations with respect to density / in state s for the spoken word
sequences

r{(g(x)) averages over function g of the acoustic observations with respect to density / in state s for all alternative
word sequences

7(0,0) auxiliary function of the extended Baum (EB) algorithm

Apy, step size for gradient descent (GD) optimization of mean parameter pu,;

Ac*t? step size for gradient descent (GD) optimization of variance parameter ¢,

Acy step size for gradient descent (GD) optimization of mixture weight parameter ¢,

Dy iteration constants of the EB algorithm

q(wlty, 1., X,) posterior probability to observe word w with word boundaries #,, z. for utterance r given acoustic
observations X,

0 slope of a sigmoidal smoothing function

Here .#, denotes the set of discriminated or
competing word sequences, over which the sum in
the denominator is evaluated. The choice of the
set of competing word sequences, together with
the optional smoothing function f and the op-
tional weighting exponent o determine the choice
of the particular criterion. In Table 2, examples

for the choice of .#,,f and o are listed for the
MMI and MCE criterion as well as the CT and
the FT criterion. The ML criterion is also con-
tained in the unified approach and therefore is
listed, too. Ideally, the MCE and FT criterion
would represent the sentence error rate on the
training data. Especially for FT, the argument of
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Table 2

Choice of the set of competing words for discrimination, .#,, the smoothing function f;, and the weighting exponent « for several

criteria included in the unified criterion

Criterion Smoothing function f'(z) Word sequences included in .Z, Exponent o
ML Identity - -

MMI Identity All (recognized), including spoken 1

CT Identity Best recognized (c0)

MCE —1/(1 + &%) All (recognized), excluding spoken >1

FT —1/(1 + &%) Best recognized, excluding spoken (c0)

the smoothing function is the score difference of
the spoken word sequence and the best recog-
nized word sequence different from the spoken
word sequence. Therefore, if f were a step func-
tion, the FT criterion would represent the sen-
tence error rate on the training data, since the
score difference is lower than zero for correctly
recognized utterances and greater zero otherwise.
In order to obtain a criterion, which is differen-
tiable with respect to the acoustic parameters 0, a
smoothed version of the step function is chosen
for f instead, i.e. f is usually given by a sigmoid
function. Moreover, for the MCE criterion not
only the best recognized, but all (recognized)
word sequences excluding the spoken word se-
quence are chosen for training, in order to obtain
a further smoothing effect between the competing
word sequences with scores near to the best rec-
ognized word sequence.

As another criterion included in the unified
approach, the MMI criterion is given by the sum
over the a posteriori probabilities of the spoken
word sequences W, on the training data, given the
corresponding acoustic observations X,. No
smoothing function is needed for the MMI crite-
rion, i.e. the smoothing function is given by the
identity function.

For MMI and MCE training, the sets of com-
peting word sequences, .#,, are usually approxi-
mated by those word sequences determined by a
recognition pass on the training data, as indicated
in Table 2. In the cases of the CT and the FT
criterion, either the determination of the set of
competing word sequences, .#,, or the definition
of the weighting exponent o« = co is redundant,
since their choice for both CT and FT is mutually
dependent. Therefore the choice of the weighting
exponent is given in brackets in these cases.

All discriminative training criteria included in
the unified approach represent sums over loga-
rithmic, optionally smoothed, likelihood ratios. In
other words, the objective of all discriminative
training methods discussed here is to optimize the
likelihood of the spoken word sequence at the
expense of some competing model, which here is
defined by sums over competing word sequences.
If the sums over competing word sequences were
extended to include sums over any models, which
are not restricted to represent word sequences,
then even methods like frame discriminative
training (Bahl et al., 1996; Povey and Woodland,
1999) could be represented by the unified approach
discussed here.

Under the supposition that the smoothing
function f'is increasing, the unified discriminative
criterion is to be maximized according to the
acoustic parameters 0. An optimization of the
unified criterion therefore tries to simultaneously
maximize the emission probabilities of the spoken
word sequence and minimize a weighted sum over
the emission probabilities for each competing
word sequence given the acoustic observation se-
quence for each training utterance. The weights in
the sum over the competing word sequences are
given by the language model probabilities relative
to the spoken word sequence. Thus the unified
discriminative criterion optimizes the class sepa-
rability according to the words under consider-
ation of the language model.

2.1.1. Optimization of discriminative criteria

In our experiments, we apply continuous mix-
ture density hidden Markov models (HMM) for
acoustic modelling. The probability density for a
state s is defined by
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xrt|s chl pxit|:usl7 sl)

where in the following state, indices are identified
with their corresponding mixtures indices. Each
index / represents a Gaussian mixture probabili-
ty density p(x.|u,,Xy) with parameters 0y =
{cs, g, Zg1}, 1.€. the mixture weights ¢, the mean
vectors p,, and the pooled, state or density specific
variances X ;. In addition, we define the forward—
backward (FB) probability 7y,(s; W) for being in
mixture s at time ¢, given a word sequence W and
the acoustic observation sequence X, of a training
utterance r. In the Viterbi approximation (Ney,
1990), the FB probability equals one for the states
of the best alignment path s,(X,, W) and zero
otherwise,

yrt(s; W) :p(?(st = S|Xr7 W)

= 8, X,.| W) Viterbi
:va\f’é@ si(X,, W),
Po(X W)

with the Kronecker delta function . Similarly, we
define the FB probability v, (s) for being in mix-
ture s at time #, given the acoustic observation
sequence X, of a training utterance r accumulated
over the set of competing word sequences,

) (s) = Py AW )p*(W)

" S BV (V)

viterbi Py X W )p* (W)
7 2y Dy XAV ) (V)

V(83 W)

(s, 8,(X, W)).

(2)

Formal differentiation of the unified discriminative
criterion with respect to parameters 60, of the
acoustic emission probabilities leads to the fol-
lowing expression:

I (W)
o Z o (”gzwpgmmp“( ))

=1

o

- ,y S W —7 (S)} Cs/p(xrt|:usl7 z:sl)
=1 " " Zk Cskp(xrt|uska ZSk)

0
: @ log cap(Xu| iy, Zot).-

Since expressions like these occur frequently in the
following, we define discriminative averages for

functions g(x) of individual acoustic observations
x, separated by the contributions from the spoken
(spk) and the competing word sequences (gen),

Fa(g(x) = I (gx) — " (g(0)), 3)

with

g ZﬁZvns )

. cslp(xrt “LLS[, Sl)
Zk CskP (xrt|,usk7 Zsk

rE(e()) = S £ 94(6)

Cap(Xr| s, Xt )

) 'g(x"f)7

S cap (ol Z) g(x)
and

=71 Py W) p (W) )

f f ( ogZsz(Xr|W)p“(W)

Clearly, the smoothing function f leads to an ut-
terance-wise weighting given by its derivatives f,.
Using the above definitions, the formal differenti-
ation of the unified discriminative criterion could
be reduced to

0
69,;[ =0o- Fsl<60“ 10g cslp(xrt|:u'vla sl))

A similar expression holds for the case of state
specific parameters 0;. In order to simplify later
expressions, we define state specific discriminative
averages,

D=3 ru(e)

Like the Viterbi approximation for the case of
state time-alignment, we also apply the maximum
approximation to the calculation of mixture den-
sities. The best density index given observation x
and state s shall be denoted by /(x,s). Using the
Viterbi approximation and maximum approxima-
tion at the mixture level, the discriminative aver-
ages can be simplified to
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DDA 1505 ) = 7))
O, 1%y, 5)) - (). 4)

2.1.2. Comparison of different criteria

It should be noted, that characteristics of dif-
ferent training criteria could be discussed com-
pletely on the basis of the discriminative averages,
cf. Eq. (4), since parameter optimization depends
on discriminative averages only. There are three
basic features, which distinguish different criteria
by the discriminative averages:

o the derivative f’ of the smoothing function, in-
cluding its parameters;

o the set .#, of word sequences used for discrimi-
nation, and

o the weighting exponent o.

Here, we will discuss the MMI criterion, the CT

criterion, which is an approximation to MMI, the

MCE criterion, and the FT approximation to

MCE. These criteria are those applied and re-

ported most frequently in literature. Table 2

summarizes the characteristics of these criteria.

If an acoustic observation gives a significant
emission probability for the state of the best
alignment path of the spoken word sequence only,
then the generalized FB probability for this state
will be near or equal to 1. Since the discriminative
averages are weighted by the difference of the FB
probabilities, the contribution of the correspond-
ing observation to the discriminative averages will
cancel out or be small. This process of cancelling
can be found for all criteria, but it should be re-
membered, that in the case of MCE training, the
spoken word sequence is removed from the set .Z,.
Hence, for MCE training, frame-wise cancelling
could not occur for every state of the spoken word
sequence, since the contributions from the spoken
word sequences will be excluded from the gener-
alized FB probabilities.

In the case of MCE training, an additional
method of weighting is applied at the utterance
level, given by the derivatives of the smoothing
function f. These give high weights only, if the
spoken word sequence could be found near to the
decision boundary. Thus, the contribution of se-

curely recognized utterances cancels for MCE also,
but in contrast to MMI the contribution cancels
simultaneously for all of the corresponding
acoustic observations of an utterance. In the same
way, very badly recognized utterances also do not
contribute to reestimation for MCE.

2.2. Parameter optimization

For the case of Gaussian mixture emission
densities and a given criterion, we show that EB
and GD optimization are nearly equal for a special
choice of step sizes for GD. Explicit reestimation
formulae will be derived for the case of state spe-
cific diagonal covariances. Similar formulae apply
for the case of density specific and pooled diagonal
as well as full covariances.

2.2.1. Extended Baum (EB) algorithm

Discriminative training with the MMI criterion
usually applies an extended version of Baum-
Welch training, the EB algorithm (Gopalakrish-
nan et al., 1991; Normandin, 1991, 1996; Nor-
mandin et al., 1994b). For the case of continuous
emission probabilities, the unified criterion is
maximized via the following auxiliary function
(derived from Normandin, 1991, p. 100):

Py(X, W)
sz (i)
Z Vrt 3 W Vrt(s)] -logp(x,.,|és)

+y° Ds/ dxp(x[0,) - log p(x[0,),

which is to be optimized iteratively. It should be
noted, that this auxiliary function originally was
derived for the MMI criterion, for which conver-
gence has been proved in case of discrete proba-
bility models (Gopalakrishnan et al., 1991). Later,
the approach has even been generalized to cover
objective functions, which are not necessarily ra-
tional with respect to the probability models
(Kanevsky, 1995), like the unified criterion pre-
sented here. Nevertheless, we will discuss discrim-
inative training with respect to continuous
probability models. For the MMI criterion, it has
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been shown how to extend the EB algorithm to the
continuous case (Normandin, 1991), which could
equally well be done for the generalization pre-
sented in (Kanevsky, 1995). However, the corre-
sponding iteration constants D, needed to
guarantee convergence are infinite in the continu-
ous case (Normandin, 1991), which means that
convergence could not be guaranteed under real-
istic conditions. However, we performed this ex-
tension in order to transfer the method for
choosing step sizes from the EB algorithm to
gradient descent.

One motivation for this was the fact that EB
has been reported to perform better than GD
(Kapadia et al., 1993). Another motivation was to
provide a common optimization framework which
could equally well be applied to all criteria in-
cluded in the unified approach. It should be noted
that proportionalities found for the step sizes for
GD optimization by comparison to the EB algo-
rithm are in agreement with the results from in-
dependent theoretical considerations for GD step
sizes for MCE training presented in (Chou et al.,
1992).

Applying the maximum approximation for
mixture density calculation, the differentiation of
the above auxiliary function with respect to the
new iterated parameters 6, leads to the following
expression, from which reestimation formulae can
be derived by setting the corresponding derivatives
equal to zero,

Sl
agsl

(510))

+qu/dwgmﬂﬂ%%§ﬁﬁﬁ
sl

sl

Analogous to the case of reestimating discrete
probabilities (Normandin, 1991), here the integral
term enables convergence, by smoothing the dis-
criminative averages with the corresponding pa-
rameters of the previous iteration. The constants
D, control the convergence rate. For reestimation
of Gaussian mixture densities with state-specific
diagonal variance, the parameter 0,; represents the
initial parameter set of a density consisting of the
mixture weight ¢y, the Gaussian mean vectors u,;

and variance ¢2. Using the EB algorithm, we

obtain the following reestimation equations for the
mean vectors fi; gg of mixture s and density /:

~ Fsl(x) + Dscsl.u 1
— 'S , 5
:u’sIA,EB Fél(l) +DSCS1 ( )

the variance vector 62 p:

&2 Ii(x*) + ((7 + Zz Csl - Hsz)
sjEB (1)
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and the corresponding mixture weight ¢, gp:

. 0F(0)/dcy + D,
CLEB =SS OF(0) ey + D, " )

There also exists a more intuitive explanation for
the EB reestimation formula. The reestimation
equations could equally well be obtained by setting
the derivatives of the unified criterion with respect
to the parameters to zero, while assuming that all
discriminative averages I'y(g(x)) occurring in the
resulting equations are independent of the new
parameters, and assuming that each discriminative
average is smoothed by D, multiplied by the ac-
cording previous parameters, i.e. smoothing I'y;(1)
by ¢y, Ii(x) by pyy, and I'(x?) by o7 + 3=, ey It
should be noted, that the reestimation (Eq. (7)) for
the mixture weights is not used with the exact
derivatives of the criterion F, but with smoothed
versions as proposed by Normandin (1996),

This leads to the following smoothed reestimation
equation:

spk
rm e
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ésl = * Csly
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which also requires new iteration constants Ci,
since the magnitude of the smoothed terms differs
from the corresponding terms for the means and
variances.
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2.2.2. Gradient descent

Performing gradient descent for parameter op-
timization, the following iterative reestimation
equation is applied for parameters 0,

oF(0)

051 - 931 + AH\I 66 ; .

For gradient descent, we obtain the following re-
estimation equations:

. OF (0
o = Mg + Apgy ——— o ( ) ) (8)
. oF (6) L OF(0)
2 2 2 2
0yGD — + Ac 60% =0y — AO’S ao.;2 ) (9)

6‘ _ Cyl + ACX[(aF(H)/aCS])
SR 1 S Acy (OF (0) /dcy)

(10)

As for the case of the EB algorithm, the derivatives
for reestimation of the mixture weights are re-
placed by smoothed versions according to (Nor-
mandin, 1996).

2.2.3. Comparison of GD and EB

In (Schliiter et al., 1997), we derived step sizes
for the case of gradient descent leading to reesti-
mation formulae for the parameters of single
densities, which resemble those of the EB algo-
rithm. Here, this comparison is extended to mix-
ture density modelling. The special step sizes we
obtained for GD are

02

A, = W (11)
Acsl (9)/6(63)1/;2 -1 ey, (13)

Using the above step sizes for gradient descent, we
obtain the following relations between the reesti-
mated parameters of GD and EB, provided the
initial parameters are equal:

K51 6D = Ms1EB>

&2ep = B+Z

csl,GD = Csl,EB- (14)

-|— D CS[ " 2
( sl T ﬂsz,EB) )

Clearly, the means and mixture weights are equally
reestimated by GD and EB, whereas the variances
differ only in the sum over the weighted squared
step sizes of the corresponding means. Since the
only dependence on the particular criterion ap-
plied is contained in the discriminative averages,
the above resemblance of GD and EB holds for all
criteria contained in the unified approach dis-
cussed here.

Looking at the reestimation formula for the
mean vectors, we find the step sizes for GD being
proportional to the corresponding variance. This
result is inherited in the EB algorithm and by the
above comparison it is transferred to GD without
additional assumptions. The variance factor in the
step sizes for GD reestimation of Gaussian mean
vectors, cf. Eq. (14) was introduced independently
in (Chou et al., 1992) with theoretical arguments.

2.3. Iteration control

Proofs of convergence do exist for both GD
(Chou et al., 1992) and (in case of discrete prob-
abilities) for EB (Baum and Eagon, 1967; Gopal-
akrishnan et al., 1991). In the case of EB
reestimation of continuous emission probabilities,
convergence is only proven for infinitesimal step
sizes (Normandin, 1991). In practice, reasonable
fast convergence is achieved in the EB case, if the
iteration constants D, are chosen in such a way
that the variances remain positive (Normandin,
1996). In addition, we ensure that all denomi-
nators in the reestimation equations remain non-
singular. For density specific variances, the
condition of positive variances leads to inequalities
which are quadratic in the iteration constants and
could be solved explicitly to give the lowest itera-
tion constant ensuring positive variance (Valtchev
et al., 1997). On the other hand, it is not possible
to find an explicit formula for the lowest iteration
constant ensuring the condition of positive
variances for the case of pooled or state specific



R. Schiuter et al. | Speech Communication 34 (2001) 287-310 297

variances. This is due to the second term in Eq. (6),
which prevents an explicit solution, since, through
ﬂf,, D, occurs in the denominator within the
summation over the densities. In order to find the
smallest iteration constants ensuring positive
variances in the case of state specific or pooled
variances we require

O-f,EB Z Omin, (15)

1
ﬁS ’
with positive constants o, > 0. The value of o,
provides a lower limit for the variances and
therefore depends on the magnitude of the
acoustic features. We have found a value of 1 to be
appropriate, which has been approximately 10*
times lower than the usual magnitude of the vari-
ances observed in our experiments. The value of
the lower limit to the denominators, f,, is deter-
mined according to the magnitude of the counts
'™(1) and I'$™(1) and the corresponding differ-
ence I'y(1) =TT (1) —TI="(1), of. Eq. (3). In
preliminary experiments we developed the follow-
ing heuristic formula to calculate f; to obtain
optimal training convergence:

FS/(1)+CS1DS> (16)

1 [Ty, (1)]
FS =1 + (|FS175(1)| 1) I—v?);iix ) (17)
with

n, = argmax|I'y(1)],
!

max __ spk en
ros = max {F35(1), 1E2(1) }.
The idea behind this formula is to choose 1/f,
according to the magnitude of I', (1), as far as the
ratio |I'y, (1)|/T5"™ is not too low. Otherwise, if the
ratio is low, the contributions of I Spk(1) and

I'$"(1) nearly cancel, which requires th1at B, ap-
proaches a fixed limit. Otherwise the iteration
constants would become very large, which leads to
low convergence rates, as follows from Eq. (18).
Using the reestimation (Eq. (6)) for the variances
in the EB case, we calculated the following esti-

mation of the minimal iteration constant Dj iy

fulfilling the constraint of positive variances for
each acoustic feature component:

Ds‘min == {ﬁ Z AI 1):“:1]

- amm

- Fs(xz) + O-minrs(l)

+ Z [zrsl(x) _FSI(I)HSI]H:I}' (18)
7
Finally, for reestimation we choose

D, = h - max {Ds,min,m?x i [ﬁl — Fs(l)] } (19)

Csl s

The terms in the maximization make sure that
both the constraint on the denominators and on
the variances are fulfilled, cf. Egs. (15) and (16),
respectively. The global factor 2 > 1 controls the
convergence of the iteration process, high values
leading to low step sizes. Substituting the above
choice of the iteration constant D, into Eq. (11),
we realized that the constraint on the denomina-
tors in the EB case implies an upper bound of

62 /h to the resulting step size of GD. This upper
bound for the step sizes is reached only if the step
size estimated from the constraint of positive
variance becomes too high.

For the iteration constants of the mixture
weights, C;, a similar expression is applied, which
makes sure, that the denominators of the reesti-
mation equations of the mixture weights are pos-
itive, non-singular (case ¢, =0), and their
magnitude is near to the differences of the relative
counts of the corresponding reestimation equa-
tions,

with
Iy rEn)
€ = mlax F;pk(l) - Ffen(l)
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In our experiments we found factors of 2 = 2 for
the T1 digit string corpus and 2 = 1.1 for the Sie-
Till and WSJO corpus to be optimal in terms of
convergence rate and recognition results on the
training corpus.

In general, convergence can only be guaranteed,
if the step sizes used are sufficiently small. There-
fore, in addition to the above estimation of step
sizes, the training procedure was based on the
following method. In each iteration step we
checked, whether the word error rate on the
training data was more than doubled. If this oc-
cured, the corresponding iteration step was re-
moved by a fall-back to the previous reestimation,
for which statistics were temporarily saved, and
the reestimation was repeated with an iteration
constant of 2= 5. For our large vocabulary ap-
plications this special step size control never be-
came active — the error rate on the training data
showed strictly monotonic behaviour using
h = 1.1 throughout all iterations.

2.4. Choice of language models

For discriminative training of large vocabulary
speech recognition systems, language models are
introduced as a new aspect, compared to small
vocabulary applications. From the definition of
the discriminative criteria discussed here, it is not
at all clear, what the best choice of language
models for training would be. Firstly, there are
three levels, at which the choice of language
models might be important:

1. the recognition of competing word sequences;
2. the discriminative criterion itself; and

3. the correlation between training and recogni-

tion.

The first aspect should not have any considerable
effect. In the worst case, a non-matching language
model for the recognition of competing word se-
quences would lead to missing word sequences in
the word graphs, which should not cause any
problem, if the word graph densities are high en-
ough. The second point should be significant, since
the acoustic parameters obtained by MMI training
directly depend on the language model. It is not
clear, what effect different language models will
have on discriminative training; and if there are

any correlations between the language models
used for training and those used for recognition on
unseen test data. For MMI training, it could easily
be shown that the contributions of parts of train-
ing utterances decrease with increasing score dif-
ference to corresponding competing parts. This
applies for whole sentences, as well as words or
even single HMM-states. Therefore, two diamet-
rical hypotheses are conceivable.

Correlation hypothesis. With respect to the rec-
ognition situation, one would expect that only
those acoustic models need optimization, which do
not sufficiently discriminate between correct and
incorrect word sequences. If this argument holds, a
strong correlation between the language models
chosen for training and evaluation has to be con-
cluded.

Covering hypothesis. With respect to the quality
of the acoustic model, the language model usually
largely improves the recognition accuracy and
might cover or lead away from deficiencies of the
acoustic models. Such an effect would call for
suboptimal language models for training. More-
over, the choice of language models for training
should not considerably correlate with those cho-
sen for evaluation.

3. Estimation of discriminative statistics

In this section, an algorithm using word graphs
for MCE training and an efficient constrained
recognition approach using word graphs for the
determination of competing word sequences are
presented.

3.1. Discriminative training using word graphs

One possibility to include more than the best
recognized word sequence into the set of compet-
ing word sequences is the application of N-best
lists (Chow, 1990; Chou et al., 1993). Using N-best
lists, time alignment and reestimation have to be
done for every word sequence contained in the
N-best list. Since different word sequences of an N-
best list usually only differ in few words or even
states, much of the calculations done using N-best
lists are redundant. This redundancy could be
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prevented by using word graphs for discriminative
training as introduced in (Valtchev et al., 1996,
1997).

A word graph shall be given by a set of word
hypotheses w with boundary times #, and ¢, for the
beginning and end of a word, respectively, which
also defines the set of predecessor and successor
word hypotheses. Now, using the Viterbi approx-
imation, and taking into account that the bound-
ary times of each word in the word graph are
known, the Viterbi alignment of a word sequence
used in Eq. (2) could be divided into the Viterbi
alignments of each individual word of the se-
quence

$( X W) = 5,(X, W, by, te),

where word w is part of the word sequence W and
spans time ¢, i.e. t, <t<t. Thus the Viterbi
alignment could be done for each word of the
word graph independently and separates from the
sum over all competing word sequences. We now
define the reweighted ' posterior probability
q(w|ty, t., X,) for hypothesizing the word w with
word boundary times #,, . given the complete set
of acoustic observations X, of an utterance,

o (X, W
Oy et C)
{(We.,| ZVEA,%/,.pH(XV’ V)

(Wlty te) €W}

(I(W|fb7 teaXr) =

Here, the sum in the numerator runs over all word
sequences W covered by the word graph, which
contain word w with boundary times #,,%. The
method to calculate word posterior probabilities,
as presented in (Valtchev et al., 1996, 1997) is
similar to the calculation of forward-backward
probabilities for HMM states, where the graph of
state transitions is replaced by word transitions on
a word graph. A detailed description of the algo-
rithm including the use of N-gram language
models is given in (Wessel et al., 1998). Depending
on the pruning characteristics chosen while pro-
ducing the word graphs, the spoken word sequence
might not be included into the word graph. Hence,

! The term ‘reweighted’ refers to the exponent «. For o = 1,
q(wlty, e, X,) represents a true posterior probability, if all
significant word sequences are included into the set .Z,.

for discriminative training, the Viterbi alignment
of the spoken word sequence is forced into the
word graph before constrained recognition. Even
if the spoken word sequence is pruned, its time
alignment will be included, before FB-word-
probabilities are calculated. Both in small and
large vocabulary applications, word graphs were
produced using the word pair approximation
(Schwartz and Austin, 1991; Ortmanns et al.,
1997).

Using word probabilities and Viterbi alignment,
the generalized FB probability simplifies to the
following expression:

Viterbi
1) 3" (w1, X,)
{wedl,|
fy <t<te}

08, 8:(X, W, ty, 1)) (21)

The sum runs over all words contained in the set
M, of competing word sequences represented by
the word graph, which pass through time 7. Using
word probabilities from word graphs, the com-
plexity of the calculation of generalized FB prob-
abilities becomes linear to the number of words
processed in the word graph while covering every
possible word sequence resulting from the word
graph.

It should be noted that, beyond discriminative
training, the same type of word posterior proba-
bilities has been applied successfully to improve
confidence measures for several large vocabulary
speech recognition tasks and corresponding lan-
guages (Wessel et al., 1998).

3.2. MCE Training using word graphs

Performing MCE training, the spoken word
sequence W, of an utterance r has to be excluded
from the calculation of the reweighted word
probabilities in Eq. (20). In order to be still able to
perform this calculation efficiently using word
graphs, the spoken word sequence would have to
be excluded from the word graph. In general it is
not possible to exclude the spoken word sequence
from the word graph without excluding other
word sequences at the same time, since particular
word hypotheses of the spoken word sequence
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might be part of other sequences. Therefore the
sum over all word sequences in the word graph
(represented by .#,) including the spoken word
sequence is performed first, which afterwards is
subtracted by the probability of the spoken word
sequences if necessary,

gMCE (W|tb7 te7Xr)

v Bi(Xe, W)

AWty te)EW

a Z{V&//,\V#W,}pz(X” )

Z {we.uy pg (Xr, W) — Z(We,//,.\uum pg (X,, W)
_ (Wl te)eW} A(wlty, te)eW} (22)

a ZVG,///, P, V) — Z{Ve.,//,.\V:W,}pZ X, V)

q(w|tb, te,Xr) — Z(WE W W=W pZ(Xr, W)

AWty te)EW'}

; Do 2 qWIt T, X)) — Z{Vg,,fi,\V:m.}PZ(/Yrv V)’

where the g(wlt,, t., X,) (cf. Eq. (20)) are calculated
using word graphs as discussed in Section 3.1.
Note that a word graph could contain multiple
copies of the spoken word sequence having dif-
ferent word boundary times. This is reflected in the
sums subtracted from numerator and denominator
of Eq. (22).

3.3. Constrained recognition using word graphs

For our small vocabulary applications of dis-
criminative training, we performed unconstrained
recognition every iteration step. For large vocab-
ulary applications, unconstrained recognition for
whole training corpora in every iteration of dis-
criminative training would clearly be unrealistic in
terms of computation time.

In (Valtchev et al., 1997), discriminative
training using the WSJ SI-284 training corpus is
reported, where unconstrained recognition was
performed only once in order to produce an ini-
tial word lattice, which was then used for con-
strained recognition in each iteration step of
discriminative training. Preliminary experiments
for discriminative training applying acoustic and
language model rescoring on word graphs with
fixed boundary times showed little effect or even
degradations in performance. As a consequence
we developed a method of constrained recogni-
tion, where the boundary times are relaxed to

intervals around the boundary times given by the
word graph. At each time frame 7, where new
word hypotheses are to be started, not only the
word hypotheses starting at exactly this time
frame in the word graph are allowed in this ap-
proach, but also those words starting at time
frames in the vicinity of time frame t defined by
the interval [t — At, 7+ At], as shown by a sec-
tion of a word graph in Fig. 1. The successor
word candidates thus obtained from the word
graph are then used to reduce the possible search
space by constraining the lexical tree, as illus-
trated in Fig. 2. This method of extended con-
strained recognition even enables to recognize
new word sequences not originally represented by
the word graph, which would not be produced by
simple acoustic or language model rescoring on
the word graph, because boundary times of sub-
sequent word hypotheses might not match. In
addition the approach still makes use of the ad-
vantage of a tree lexicon. In our experiments a
time interval of 11 frames was used, i.e. At = 5.
In order to reduce computation time, the Viterbi
state alignment paths from constrained recogni-
tion were saved on disk, such that they need not
be estimated again word-wise for accumulation of
statistics.

|
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Fig. 1. Section of a word graph showing word hypotheses
having beginning times in the time interval [t — At, 7 + At]. In
an approach for constrained recognition, these word hypothe-
ses serve as successor word candidates of word hypotheses
ending at time frame 7 — 1.
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Fig. 2. Schematic view of a lexical tree for constraining the
recognition to those successor word candidates determined by
the word graph shown in Fig. 1. Words allowed to be hy-
pothesized are represented by closed squares and deactivated
arcs of the lexical tree are indicated by dithered lines.

4. Experiments for small vocabulary

Experiments for the comparison of discrimina-
tive training methods and optimization criteria
were carried out both for the 71 digit string
(Leonard, 1984) corpus for American English digit
strings and the SieTill (Eisele et al., 1996) corpus
for telephone line recorded German digit strings.
In Table 3 some information on corpus statistics is
summarized. The recognition systems for both
digit string corpora are based on whole word
HMMs using continuous emission distributions.
They are characterized as follows:

SieTill recognition system:
e 11 German digits including ‘zwo’;
e gender-dependent whole word and silence

HMMs with 214 states plus one state for silence

per gender;

e mixture Gaussian densities with global pooled

but . . .
bit or state specific diagonal covariances;

e 12 cepstral features with first derivatives and the
bid second derivative of the energy, 10 ms frame
book shift.

) T1 digit string recognition system:
Its e 11 English digits including ‘oh’;
e gender-dependent whole word and silence
HMDMs with 357 states plus one state for silence
per gender;

¢ single Gaussian densities with state specific diag-
that onal covariances;

e 16 cepstral features with first and second deriv-
this atives, 10 ms frame shift.

Both baseline recognizers for digit-string recogni-
tion apply ML training using the Viterbi approx-
imation (Ney, 1990) and their results serve as
starting points for additional discriminative
training. A detailed description of the baseline
system for small vocabulary speech recognition
could be found in (Welling et al., 1995).

4.1. Training procedure and complexity

All discriminative trainings for small vocabu-
lary were initialized with a standard ML training.
A standard ML training consists of a number of
up to ten expectation-maximization (EM) itera-
tions in Viterbi approximation followed by one
mixture density splitting step. This procedure has
been found to give optimal results for ML train-
ing. For the highest number of 64 densities per
mixture presented here, one iteration of Viterbi
training took about 2.5 h for each gender, resulting
in a real time factor (RTF) of about 0.4 on an
ALPHA 5000 PC.

The training procedures following ML training
were as follows. In order to speed up training

Table 3
Corpus statistics for the SieTill and the TI digit string corpus
Corpus Recording/language Test/train Female Male Total
Sent. Digits Sent. Digits Sent. Digits
SieTill Telephone/German Test 6176 20205 6938 22881 13114 43086
Train 6150 20226 6886 22631 13036 42857
TI Microphone/English Test 4389 14424 4311 14159 8700 28 583

Train 4388 14414 4235 13915 8623 28329
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times, several of the experiments were performed
in an additive fashion, this is CT followed by
MMI, MCE or further CT, as indicated in detail
below. For single densities, each discriminative
training was initialized with 20 iterations of CT,
which served as common starting point for MMI
and MCE training as well as further CT with 10
iterations each. For FT training of single density
models, 30 iterations were performed following
ML training. For mixture Gaussian densities with
32 densities per state, each discriminative training
was initialized with 10 iterations of CT, which
served as common starting point for MMI and
MCE training, respectively, as well as further CT
with 10 iterations each. For FT training of models
with 32 densities per mixture 10 iterations were
performed following ML training. For MMI and
MCE training of models with 64 densities per
mixture 15 iterations were performed following the
initialization with ML training.

The acoustic models used for discriminative
training were exactly the same as those used for
ML training, i.e., for a given number of densities
per mixture, the number of trained parameters are
all the same for each training method considered.
In terms of computational complexity, the dis-
criminative training methods discussed here are
dominated by the recognition on the training data.
Therefore the training times for MMI, CT, MCE
and FT show only minor variations. One iteration
of discriminative training took slightly more than
9 h resulting in an RTF of about 1.5 on an AL-
PHA 5000 PC, which is about 3-4 times the time
needed for one ML iteration.

4.2. Convergence

Since no proof of convergence exists for EB
training of the parameters of continuous density
HMMs for non-infinitesimal step sizes, we first
investigated the convergence behaviour of the
discriminative criteria applied in this work.

In our first experiments, we applied CT for both
the EB and GD optimization methods. Using it-
eration factors &2 = 1.1 for pooled variances (Sie-
Till) and /& = 2 for state-specific variances (77 digit
string, cf. Figs. 3 and 5), we found relatively steady
convergence for both GD and EB. Similar results

could be observed for the word error rates on test
and training data, as shown in Fig. 4 for the male
portion of the 77 digit string corpus. Clearly,
convergence on test and training data is compa-
rable, the same also holds for the female portion of
the T1 digit string corpus. Thus the convergence of
the error rate on the training data was used as
criterion to stop an iteration. Although overall
convergence could be observed, the CT criterion
(Fig. 5) and the word error rates (Fig. 6) on the
SieTill training corpus show jumps in the course of

o FT T T I E— T T ——

female

o
W

CT criterion F (0)

TI digitstring: EB ——
GD

—
[

_2 1 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14
iteration index

Fig. 3. CT criterion as a function of the iteration index for
single Gaussian densities (TI digit string training corpus).
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1k TI digitstring: male, EB —— _|
GD

word error rate [%)]
o o °
B (=)} o]

o
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Fig. 4. Word error rate as a function of the iteration index for
CT using single Gaussian densities (male portion of the TI digit
string corpus).
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the training iterations for both single and mixture
Gaussian densities. Preliminary experiments with
varying iteration factors showed that despite the
jumps the choice of # = 1.1 was optimal according
to the convergence rate. The same was observed
when using the MMI, the MCE and the FT cri-
terion. As shown in Figs. 5 and 6, the discrimi-
native training shows non-monotonic behaviour of
the criteria and error rates on the training data,
which is due to the fact that convergence could not

CT criterion F ()

SieTill: female ——
male ----

ol 1 1 1 1 1 1
0 10 20 30 40 50 60

iteration index

Fig. 5. CT criterion as a function of the iteration index for
single and mixture Gaussian acoustic models (SieTill training
corpus).

35 |_\ T T T T T
N SieTill, female ——
N\ male ——-

word error rate [%)]

20 30 40 50 60
iteration index

Fig. 6. Word error rates on the training corpus as a function of
the iteration index for corrective training (CT) using single and
mixture Gaussian acoustic models (SieTill training corpus).

be guaranteed. Therefore, the parameter sets from
discriminative training to be used for digit string
recognition were chosen according to the best
recognition results on the training corpus.

4.3. Recognition results

Especially for single densities on the SieTill
corpus relative improvements in word error rate of
up to 1/3 compared to ML training were obtained.
It should be noted that the baseline system using
ML training needed about 4-8 times more pa-
rameters in order to equal the results from dis-
criminative training using single densities. In our
experiments for the SieTill corpus using mixture
densities, ML training always needed more than
twice the number of parameters to equal the cor-
responding discriminative results. The results ob-
tained for the SieTill corpus using mixture
densities are the best known to the authors.

In the case of the T7 digit string corpus, an in-
teresting fact is the reduction to no errors on the
training data (Table 4 and Fig. 6). On the one
hand this shows the strong homogeneity of the TI
digit string corpus and that single densities should
at least have the ability to model such a corpus
completely without significant numbers of errors.
On the other hand it clearly brings up the limita-
tion of corrective training, since having no or very
few errors on the training data prevents any pro-
gress in the iteration process. In the case of the
SieTill corpus, a word error rate of nearly zero
errors during discriminative training occurs only
for a high number of 32 densities per state (cf.
Table 6), indicating that in contrast to the TI digit
string corpus much more detailed acoustic mod-
elling is needed to describe the SieTill corpus

properly.

4.3.1. Comparison of parameter optimization

In Tables 4 and 5, results for discriminative
training comparing EB and GD optimization are
given. As was expected analytically, no consistent
differences between results using GD and EB re-
estimation could be observed for either the TI digit
string or the SieTill corpus employing several
kinds of acoustic modelling. Note that these
comparative results on the SieTill corpus are not
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Table 4

Recognition results for the TI digit string corpus. Word (WER) and sentence error rates (SER) for maximum likelihood (ML) and
corrective training (CT) using extended Baum (EB) and gradient descent (GD) optimization. Single Gaussian densities with state

specific diagonal covariance

Corpus Criterion Method Del/ins (%) WER (%) SER (%)
Train ML 0.28/0.04 0.56 1.69
CT EB 0.00/0.00 0.00 0.00
GD 0.01/0.01 0.02 0.06
Test ML 0.20/0.11 0.72 2.00
CT EB 0.12/0.08 0.50 1.38
GD 0.13/0.08 0.47 1.32

Table 5

Recognition results for the SieTill corpus. Word error rates (WER) for maximum likelihood (ML) and corrective training (CT) using
extended Baum (EB) and gradient descent (GD) optimization. Gaussian mixture densities with four densities per state, one pooled

diagonal covariance and LDA

Corpus Criterion Method Del/ins (%) WER (%)
Train ML - 0.22/0.67 2.29
CT EB 0.21/0.16 0.67
GD 0.21/0.15 0.69
Test ML - 0.35/1.04 3.05
CT EB 0.62/0.52 2.59
GD 0.63/0.48 2.53

the best reported in this paper, since they were
produced while still optimizing the baseline rec-
ognition system. In (Kapadia et al., 1993) it has
been reported that EB optimization performed
better than several variants of GD optimization.
Our results show that, compared to EB, the per-
formance of GD is a matter of appropriate step
sizes, cf. Egs. (11)—(13).

As a consequence of the comparison of EB and
GD optimization, we arbitrarily chose the GD al-
gorithm for all following experiments. For MCE
training we also applied GD for parameter opti-
mization, and used the formalism for finding op-
timal step sizes as obtained from the comparison of
GD and EB in the case of the CT and MMI criteria.

4.3.2. Comparison of discriminative criteria

Table 6 shows recognition results for the SieTill
corpus obtained for ML, CT, MMI, FT and MCE
training. For single densities the best result of 2.6%
word error rate was obtained using MCE training,
whereas MMI training as well as CT and FT only
gave word error rates around 2.8%. One reason for
the good performance of MCE training for low

model complexity is that outliers are ignored, since
these do not have good chances to be modelled by
coarse models. In contrast to this, MMI and more
so CT do try to correct outliers. Furthermore, by
using more than a single competing word sequence,
MCE —in contrast to FT —introduces a smoothing,
which facilitates the process of finding and opti-
mizing most of those parts of a coarse model,
which are possible to lead to improvements.

For mixture densities the MCE, MMI and FT
criteria give consistently better results than the CT
criterion. Using corrective training for mixture
densities the error rate on the training corpus rap-
idly reduces the number of word errors on the
training corpus nearly to zero. Since for corrective
training only misrecognized word sequences con-
tribute to reestimation, no further improvement
could be obtained. The same was observed on the T1
digit string corpus for single densities, where no
recognition errors occurred on the training data.
For 32 densities per mixture, no significant differ-
ence between MCE and MMI could be detected.
For 64 densities MCE further improves, whereas
MMI does not. Considering the best results,
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Recognition results for the SieTill corpus. Word error rates (WER) for minimum classification error (MCE), maximum mutual in-
formation (MMI) and corrective training (CT) using GD optimization and for maximum likelihood (ML) training. Gaussian mixture
densities with one pooled diagonal covariance and LDA

Densities per mixture

Training criterion Error rates (%)

Training Test
Del-ins WER Del-ins WER
1 ML 0.55-0.38 3.04 0.71-0.63 3.78
CT 0.42-0.17 1.26 0.76-0.47 2.85
MMI 0.45-0.16 1.28 0.81-0.41 2.81
FT 0.54-0.19 1.48 0.65-0.64 2.80
MCE 0.56-0.13 1.32 0.730-0.41 2.60
32 ML 0.25-0.28 0.90 0.46-0.47 1.97
CT 0.03-0.02 0.06 0.52-0.30 1.82
MMI 0.03-0.02 0.05 0.42-0.37 1.74
FT 0.17-0.10 0.39 0.41-0.37 1.67
MCE 0.04-0.04 0.11 0.41-0.37 1.75
64 ML 0.13-0.28 0.58 0.46-0.38 1.81
MMI 0.02-0.01 0.02 0.44-0.44 1.79
MCE 0.09-0.04 0.12 0.42-0.34 1.69

independent of the number of densities per mixture,
the error rate-based discriminative training meth-
ods, MCE and FT, give better results than MMI
and CT. Only marginally better than MCE, FT
produces the best word error rate of 1.67% on the
SieTill corpus, which means a relative improvement
of nearly 8% in comparison to the best ML result.
For higher numbers of densities per mixture, all
methods deteriorated on the SieTill data. Overall,
the MCE criterion the comparative experiments
suggest, that the MCE criterion is the best choice for
training of models with arbitrary complexity.

5. Experiments for large vocabulary

Experiments for large vocabulary continuous
speech recognition were performed both in order
to evaluate the constrained recognition approach
presented and to investigate the interdependence
between MMI training and the choice of language
models for training. The experiments were carried
out using the ARPA wall street journal (WSJ)
corpus. Table 7 gives some information on corpus
statistics. The recognition system used for the
WSJO corpus is characterized as follows:

e recognition lexicon containing 4986 words plus

668 pronounciation variants;

e 2000 decision tree-based triphone states plus one
state for silence;

e 96150 gender independent Gaussian densities
with global pooled diagonal covariance;

e 16 cepstral features with first derivatives and the
second derivative of the energy, 10 ms frame shift;

e bigram and trigram language model.

As for the small vocabulary applications, the

baseline recognizer applies ML training using the

Viterbi approximation (Ney, 1990) and its results

serve as starting point for additional discrimina-

tive training. A further description of the RWTH

large vocabulary continuous speech recognition

system is presented in (Ney et al., 1998).

The number of different words observed in the
training corpus is more than twice the number of
words contained in the recognition lexicon.
Therefore these words had to be added to the
recognition lexicon for discriminative training,

Table 7
Corpus statistics for the ARPA WSJO Nov. 92 development
and evaluation test and training set

Corpus Speakers Sent. Words
wSJo

Nov. 92 eval 8 330 5353
Nov. 92 dev 10 410 6779
Train 84 7240 131395




306 R. Schiuter et al. | Speech Communication 34 (2001) 287-310

which contains 10 108 words plus 668 pronounci-
ation variants. This presented an additional
problem: about half of the words of the training
recognition lexicon are unknown to the language
models for recognition. Preliminary tests with
special language models for discriminative training
did not produce improvements using the original
language models on the test corpora. Therefore, all
words, which were unknown to the language
model for recognition, were mapped to the un-
known word class, which was renormalized ac-
cording to the number of words included into it.
As a consequence, the language model perplexities
on the training corpus were significantly higher
than those on the test corpora. The perplexities of
all language models used for the corresponding
corpora are summarized in Table 8.

5.1. Training procedure, constrained recognition and
complexity

Discriminative training for large vocabulary
was initialized with a standard ML training, which
consists of a number of six EM iterations in Vi-
terbi approximation followed by one mixture
density splitting step. This procedure has been
found to give optimal results for ML training. For
the optimal number of 96k mixture densities pre-

sented here, one iteration of Viterbi training took
about 3.5 h on the WSJO training corpus, resulting
in a RTF of about 0.2 on an ALPHA 5000 PC.
Discriminative training used exactly the same
acoustic models as ML training with the same
number of 96k mixture densities, resulting in a
number of about 3.2 million free parameters.

For large vocabulary tasks, discriminative
training methods become computationally very
extensive. Most of the training time is needed for
determination and calculation of the discrimina-
tive part of the criterion and the discriminative
averages. Performing unconstrained recognition,
we obtained word graphs for the approximately
15 h of WSJO training data with a word graph
density of 29. The word graphs took about
150 MB of disk space without compression. The
completion of the unconstrained recognition pass
on the training data took a bit less than a week
on an ALPHA 5000 PC, resulting in a RTF of
10.4. This recognition time was then reduced to
RTF 2.3 using the extended constrained recog-
nition on the resulting word graph as described in
Section 3.3.

Table 9 shows recognition results for MMI
training with rescoring and constrained recog-
nition in comparison to the initial ML results.
Clearly, the determination of competing word

{zﬁg:u:ge model perplexities: ARPA WSJO training and testing corpora®
Corpus Perplexity
Zero Uni Bi Bi-phr Tri Tri-phr
Training 10110 1372 398 - 289 -
Nov. ’92 Dev. - - 107 94 58 54
Nov. 92 Eval. - - 107 91 53 48

#The notations ‘bi-phr’ and ‘tri-phr’ refer to language models containing phrases/multiwords.

Table 9

Comparison of rescoring and constrained recognition using word graphs for the determination of competing word sequences during
discriminative training. Results on ARPA WSJO Nov. 92 corpus, training and recognition with bigram language model

Training criterion Determination of alternative Word error rates (%)
word sequences Dev Eval Dev & eval
ML - 6.91 6.78 6.86
MMI Rescoring 6.96 6.41 6.72
Constrained recogn. 6.71 6.20 6.48
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Table 10
Comparison of full (unrestricted) recognition and constrained recognition using word graphs with At = 5. Recognition with bigram
language model*

Recognition method Search space: number of WER (%) RTF
States Arcs Trees Words

Full 6472 1835 36 106 6.86 10.5

Constrained 989 239 17 67 6.86 1.9

#The search space is indicated by the numbers of state, arc, tree and word hypotheses. The real time factors (RTF) correspond to an
ALPHA 5000 PC. Results on the ARPA WSJO Nov. ’92 corpus.

sequences using constrained recognition per-
forms better than word graph rescoring, since
the word boundaries from the initial word
graphs are left unchanged by rescoring. There-
fore, constrained recognition was chosen in all
subsequent experiments on MMI training pre-
sented here.

As shown in Table 10, without any deteriora-
tion in recognition performance, the constrained
recognition algorithm reduced the corresponding
recognition time by a factor of more than 5, re-
sulting in an RTF of 1.9 on an ALPHA 5000 PC.
Note that these experiments were performed on
unseen data. Therefore the corresponding RTFs
differ from those given for training above. In-
cluding the calculation of word probabilities and
the reestimation process, a single iteration step of
MMI training on the ARPA WSJO training corpus
took about 1.5 days resulting in an RTF of about
2.3 on an ALPHA 5000 PC.

5.2. Convergence

When changing to discriminative training on
large vocabulary tasks the optimization methods
developed for small vocabulary whole word rec-
ognizers were transferred. Especially the method
to obtain estimations of the iteration constants for
pooled variance had to be checked for large vo-
cabulary. Similar to the small vocabulary appli-
cations, for MMI training on the WSJO training
corpus good overall convergence could be ob-
served for both the MMI criterion itself (Fig. 7)
and more smoothly for the word error rate on the
training data (Fig. 8). Note that, in contrast to the
small vocabulary application (Fig. 4), convergence
of the word error rates on the training corpus and

on the development test set is not similar (Fig. 8).
Consequently the choice of references for evalua-
tion was made according to the best recognition
results on the development test set.

5.3. Interdependence of language models and MMI
training

In order to check the hypotheses on the inter-
dependence of language models and discriminative
training stated in Section 2.4, experiments using
language models of varying context length for
training and recognition were performed on the
WSJO corpus, as shown in Table 11. The initial
recognition and the constrained recognition for
the trigram training has been performed using the
trigram language model, and the constrained rec-
ognitions for the zerogram, unigram and bigram
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Fig. 7. MMI criterion as a function of the iteration index for
the WSJO training corpus.
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Fig. 8. Word error rates as a function of the iteration index of
an MMI training for the WSJO training corpus and the WSJO
Nov. ’92 development test set.

training were performed using the bigram. In or-
der to distinguish the recognition for MMI train-
ing from the test set recognition, the latter will be
referred to as ‘test’ in the following.

For testing with either bigram or trigram lan-
guage models, clearly the best results are obtained
using a unigram language model for MMI training
resulting in relative improvements of up to 11% in
word error rate. Moreover, for testing with the
bigram, the results for training with the trigram
language model are even worse than those for

Table 11

training with the zerogram. Even for testing with
the trigram, the results for training with the tri-
gram language model are only slightly better than
those for training with the zerogram. Best results
were obtained using a unigram language model for
MMI training, which resulted in a word error rate
of 4.01% using a trigram language model for
testing.

In another experiment, the correlation between
the language models chosen for training and test-
ing was examined. As shown in Table 11, in
comparison to ML training the improvements
obtained by MMI training using a bigram lan-
guage model for training remained approximately
the same for testing with a bigram, trigram,
phrase-bigram and phrase-trigram language mod-
el. For these cases, the relative improvements in
word error rate in comparison to ML training
ranged between 5% and 6%.

It should be noted that both sets of experiments
clearly support the covering hypothesis as stated in
Section 2.4. It suggests that language models
which are too accurate are in fact able to cover
deficiencies of acoustic models by weighting down
their contributions from MMI training. Moreover,
the experiments presented here indicate that the
improvements obtained by discriminative training
using a particular language model are fairly inde-
pendent of the choice of language model for
evaluation.

Comparison of several language models for MMI training and recognition. Results on ARPA WSJO Nov. 92 corpus

Language models Criterion Word error rates (%)

Test Training Dev Eval Dev & eval

Bi - ML 6.91 6.78 6.86
Zero MMI 6.71 6.03 6.41
Uni 6.59 6.00 6.33
Bi 6.71 6.20 6.48
Tri 6.87 6.54 6.72

Tri - ML 4.82 4.11 4.51
Zero MMI 4.63 4.05 4.38
Uni 4.30 3.64 4.01
Bi 4.48 3.94 4.24
Tri 4.58 4.00 433

Bi-phrase - ML 6.40 5.79 6.13
Bi MMI 591 5.60 5.78

Tri-phrase - ML 4.76 4.26 4.54
Bi MMI 448 4.07 4.30
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6. Conclusion

In this paper we presented a unifying approach
to discriminative training for both small and large
vocabulary speech recognition. Based on this ap-
proach a comparison of the frequently applied
minimum classification error (MCE) and maxi-
mum mutual information (MMI) criteria was
performed. For acoustic models of low complexi-
ty, the MCE criterion was found to give better
performance than the MMI criterion, whereas for
sufficient model complexity no significant differ-
ences were observed.

For parameter optimization, both gradient de-
scent (GD) and the extended Baum (EB) algorithm
were investigated. In the case of the MMI criteri-
on, special step sizes were found for GD optimi-
zation showing strong similarities between EB and
GD optimization. Consequently, experiments did
not show significant differences between GD and
EB. Based on the unifying criterion presented, the
similarity of GD and EB was used to find optimal
step sizes for GD optimization from the EB algo-
rithm. For the case of the MCE criterion, this
approach lead to good overall convergence as was
the case for MMI training with EB optimization.

For large vocabulary applications of discrimi-
native training an extended constrained recogni-
tion method using word graphs was developed.
This approach was found to give better perfor-
mance than acoustic and language model rescoring
alone. In combination with word graph-based
methods for the accumulation of discriminative
statistics, it presents an improved method for effi-
cient realization of discriminative training for large
vocabulary speech recognition.

Experiments were performed both for the rec-
ognition of continuous digit strings and for large
vocabulary speech recognition. For digit string
recognition both the TI digit string corpus for
American English digits and the SieTill corpus for
telephone line recorded German digits were used.
For these tasks relative improvements in word
error rate of up to 1/3 were observed in compari-
son to ML training. Largest improvements were
obtained for low complexity of acoustic models,
where ML trained acoustic models needed up to 8
times more parameters to outperform discrimina-

tively trained models. The results obtained for the
SieTill corpus are the best known to the authors.
Finally, MMI training for large vocabulary
speech recognition has been investigated with
special reference to its interdependence with the
choice of language models for training and rec-
ognition. Experiments were performed on the
ARPA WSJO corpus. Best results were obtained
using a unigram language model for MMI train-
ing. Using a trigram language model for recogni-
tion, a relative improvement of 11% was obtained
in comparison to ML training leading to a word
error rate of 4% on the test data. No significant
correlation between the choice of language models
for training and recognition has been observed.
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