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ABSTRACT 
Recently we suggested a regularization scheme which 
iteratively adapts regularization parameters by mini- 
mizing validation error using simple gradient descent. 
In this contribution we present an improved algorithm 
based on the conjugate gradient technique. Numerical 
experiments with feed-forward neural networks success- 
fully demonstrate improved generalization ability and 
lower computational cost. 

, 1. INTRODUCTION 

Neural networks are flexible tools for regression, time- 
series modeling and pattern recognition which find ex- 
pression in universal approximation theorems [6 ] .  

The risk of over-fitting on noisy data is of major 
concern in neural network design, as exemplified by the 
bias-variance dilemma, see e.g., [5]. Using regularizit- 
tion serves two purposes: first, it remedies numericd 
instabilities during training by imposing smoothness on 
the cost function; secondly, regularization is a tool for 
reducing variance by introducing extra bias. The over- 
all goal is to minimize the generalization error, i.e., the 
sum of the bias, the variance, and inherent noise. 

In recent publications [l], [lo], [ll] we proposed an 
adaptive scheme for tuning the amount of regulariza- 
tion by minimizing an empirical estimate of the genet- 
alization error, e.g., the hold-out cross-validation error 
or K-fold cross-validation error. The adaptive scheme 
was based on simple gradient descent which is known t,o 
have poor convergence properties [15]. Consequent1 y, 
we suggest an improved scheme based on conjugate 
gradient minimization' [3, 131 of the simple hold-out 
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validation error. 

2. TRAINING AND GENERALIZATION 

Suppose the neural network is described by the vector 
function f(z; w) where x is the input vector and w is 
the vector of network weights and thresholds with di- 
mensionality m. The objective is to use the neural net- 
work to approximate the conditional input-output dis- 
tribution p(ylz) or its moments. Normally, we model 
only the conditional expectation E[ylz] which is opti- 
mal in a least squares sense. 

Assume that we have available a dataset, 
v = {(x(~~),y(k))):=~, of N input-output examples 
split into two disjoint sets: a validation set, V ,  with 
Nu = [?NI examples' for estimation of regularization, 
and a training set, 7, with Nt = N - Nu examples for 
estimation of network parameters. 0 5 y 5 1 is re- 
ferred to as the split-ratio. 

The neural network is trained by minimizing a cost 
function which is the sum of a loss function (or train- 
ing error), S ~ ( W ) ,  and a regularization term R(w, K ) ,  

where K is the set of regularization parameters: 

where C(.) measures the cost associated with estimating 
output y(k) by the network prediction 
@(IC) = f (z (k) ;w) .  In the experimental section we 
consider the mean squared error loss C = (y - G)'. 
Nt 171 defines the number of training examples and 
k indexes the specific example. 

Training provides the estimated weight vector 6 = 
argmin, C(w). The validation set consists of another 
Nu ZE IUI examples and the validation error of the 

r.1 denotes rounding upwards to the nearest integer. 
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trained network reads 

where the sum runs over the Nu validation examples. 
Sv(G) is thus an unbiased estimate of the generaliza- 
tion error defined as G(G) = Em,y{t(y,y^; G)}, i.e., the 
expectation of the loss function w.r.t. to the (unknown) 
joint input-output distribution. 

Ideally we need N, as large as possible which leaves 
only few data for training, thus increasing the true gen- 
eralization error G(G). Consequently there exists an 
optimal split-ratio y corresponding to a trade-off be- 
tween the conflicting aims, see e.g., [8] ,  [9]. 

A minimal necessary requirement for a procedure 
which estimates the network parameters on the train- 
ing set and optimizes the amount of regularization from 
a validation set is: the generalization error of the reg- 
ularized network should be smaller than that of the 
unregularized network trained on the full data set D. 
However, this is not always the case (see e.g., [ll]), 
and is indeed the quintessence of the so-called "no free 
lunch" theorems. 

3. ADAPTING REGULARIZATION 

Our aim is to  adapt K so as to  minimize the valida- 
tion error. We can apply the iterative gradi&t descent 
scheme originally suggested in [lo]: 

(3) 

where 7 is a line search parameter and G ( K ( ~ ) )  is the 
estimated weight vector using ~ ( j ) .  The regularization 
term R(w, I.) is supposed to be linear in K: 

9 

~ ( w ,  tc) = KTr(w) = Iciri(w> (4) 
i=l 

where ni are the regularization parameters and ri(w) 
the associated regularization functions. In these condi- 
tions, the gradient of the validation error becomes [lo], 
[ll]: 

(5) 
as, (Q) . P(Q).  --(.ti), 

dSu A d r  -(w) = -__ aK awT aw 
where J = a2C/dwawT is the Hessian matrix of the 
cost function. Suppose that the weight vector is par- 
titioned into q groups w = (w1,w2,. . . ,wq) and we 
use one weight decay parameter ~i for each group, i.e., 
R(w,K)  = E:='=, 1ci1wi1~. In this case, the gradient 
vields: 

where s = [ s l , s2 , . . . , sq]  = J-'(&).aS,(&)/dw. In 
order to ensure that ~i 2 0 we perform a re-paramete- 
rization, 

and carry out the minimization w.r.t. the new param- 
eters A. Note that a§v/aAi = dK.i/dAi . dSv/aKi. 

In order to improve convergence we suggest to use 
the Polak-Ribiere conjugate method. Let g ( j )  be the 
gradient at the current iteration j: 

The search direction h(j) is updated as follow: 

(9) 

Once the search direction h(j)  has been calculated, 
a line search is performed in order to find a set of pa- 
rameters that lead to a significant decrease in the cost 
function. The traditional method involves a bracketing 
of the minimum followed by a combination of golden 
section search and parabolic interpolation to  close in 
on the minimum. In such a scheme, most function 
evaluations are performed during the line search. We 
prefer to implement an approximate line search com- 
bined with the Wolfe-Powell stop condition [14, App. 
B]. Prospective parameters are obtained by a,combina- 
tion of section search and third order polynomial inter- 
polation and extrapolation. The line search stops when 
the current function value is significantly smaller than 
what we started with, while the slope is only a fraction 
of the initial slope. 

It has been argued [2], [13] that the line search could 
be performed efficiently without derivatives. While 
there are some arguments in favor of this claim, we 
favor a line search with derivatives, for two main rea- 
sons: l) the stop condition for the approximate line 
search involves the slope, hence the derivatives, and 2) 
the gradient will be needed to calculate the next search 
direction. 

In the comparison of section 4, the steepest descent 
algorithm uses the same line search. 

In summary, the adaptive regularization algorithm 
is: 

1. Select the split ratio y and initialize K ,  and the 

2. Train the network with fixed K to achieve &(K, ) .  

3. Calculate the gradient dSv/dr;. using Eq. (5). 

weights of the network. 

Calculate the validation error Sv. 
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4. Calculate the search direction using Eq. (9). 
5.  Perform an approximate line search in the direction 

h(j) to find a new K .  

6. Repeat steps 2-5 until either the relative change in 
validation error is below a small percentage or the 
gradient is close to 0. 

Train. 
Val. 
Test 
Test after 
retrain. 

4. EXPERIMENTS 

Neural Flexible Linear 
Network Kernel Model 
0.92 f 0.11 1.22 
1.79 f 0.13 
3.01 f 0.30 

2.26 rt 0.18 

5.06 

5.96 7.93 

We test the performance of the conjugate gradient d- 
gorithm for adapting regularization parameters on ar- 
tificial data generated by the system described in [4, 
Sec. 4.31: 

where the inputs are uniformly distributed z, - U(0, l )  
and the noise is Gaussian distributed E - N ( 0 , l ) .  The 
data set consisted of N = 200 examples with 10 dimen- 
sional input vector x. Inputs 26,. . . , z10 are U(0 , l )  
and do not convey relevant information for the output 
y, cf. Eq. (11). The data set were split into Nt = 100 
for training and N ,  = 100 for validation. In addition, 
we generated a test set of Ntest = 4000 samples. 

In OUT simulations, we used a feed-forward neu- 
ral network model with 10 inputs and 5 hidden un‘ts 
with hyperbolic tangent activations. Training is done 
by minimizing the quadratic loss function, augmented 
with weight decay regularizers. All weights from one in- 
put have an associated weight decay parameter 
61,. . . lc1oI and the hidden-to-output weights have a 
weight-decay parameter 611. 

Weights were initialized uniformly over the interval 
[-0.5/fl10.5/.\/fl, where f is the “fan-in”, i.e., the 
number of incoming weights to a given unit. Regular- 
ization parameters are first initialized to The 
network is then trained for 10 iterations] after which 
the K ,  are set to  4,,,,/104, where vmax is the maximum 
eigenvalue of the Hessian matrix of the cost function. 
This prevents numerical stability problems. 

Weights are estimated using the conjugate gradi- 
ent algorithm and the regularization parameters are 
adapted using the algorithm in Sec. 3. The inverse Hos- 
sian required in Eq. (5) is found as the Moore-Penrose 
pseudo inverse (see e.g., [15]) ensuring that the eigen- 
value spread is less than lo8, i.e., the square root of tihe 
machine precision [3]. J is estimated using the Gauss- 
Newton approximation [15]. 

Weights are finally retrained on the combined set of 
training and validation data using the optimized weight 
decay parameters. 

Table 1 reports the average and standard deviations 
of the errors over 5 runs for different initializations. 

Table 1: Training, validation and test errors. For the 
neural network the averages and standard deviations 
are over 5 runs. For comparison we listed the perfor- 
mance of a linear model and of a kernel smoother with 
a diagonal smoothing matrix [16] optimised by mini- 
mizing the leave-one-out cross-validation error. 

Note that retraining on the combined data set decreases 
the test error somewhat on the average. 

Fig. 1 shows a typical run of the K. adaptation al- 
gorithm as well as a comparison with a simple steepest 
descent method. 

5. DISCUSSION 

Our experience with adaptive regularization is glob- 
ally very positive. Combined with an efficient multi- 
dimensional minimization method like the conjugate 
gradient algorithm, it allows for a reliable adaptation 
of the regularization parameter. 

Furthermore, it is flexible enough to allow a wide 
class of regularization. We have here shown how this 
scheme can be used to estimate the relevance of the 
input. This is similar in spirit to the Automatic Rele- 
vance Determination of Neal and MacKay [12]. 

6. CONCLUSIONS 

This paper presented an improved algorithm for adap- 
tation of regularization parameters. Numerical exam- 
ples demonstrated the potential of the framework. 
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Figure 1: Typical run of the K adaptation algorithm 
using either steepest descent (SD) or conjugate gradi- 
ent (CG). Panel (a): training and validation errors in 
both cases. Note that CG both converges faster and 
yield slightly lower validation error. The total num- 
ber of cost and gradient evaluation is a good measure 
of the total computational burden. Panel (b): evolu- 
tion of the log-weight decay parameters using conjugate 
gradient. Most active inputs have small weight decays, 
while the noise inputs have higher weight decays. How- 
ever, notice that the overall influence is determined by 
the weight decay as well as the value of the weights. 
The output layer weight decay is seemingly not impor- 
tant. 
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