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ABSTRACT

While neural networks have been employed to hasdigeral

different text-to-speech tasks, ours is the fingstam to use
neural networks throughout, for both linguistic aadoustic
processing. We divide the text-to-speech task ithoee

subtasks, a linguistic module mapping from texatbnguistic

representation, an acoustic module mapping fromlitigiistic

representation to speech, and a video module mgpgmm the

linguistic representation to animated images. Tihguistic

module employs a letter-to-sound neural network aand
postlexical neural network. The acoustic modulepleys a

duration neural network and a phonetic neural nkwdhe

visual neural network is employed in parallel te@ tacoustic
module to drive a talking head. The use of nenealvorks that
can be retrained on the characteristics of differaices and
languages affords our system a degree of adapyatdhd

naturalness heretofore unavailable.

1. INTRODUCTION

We have developed a text-to-speech synthesizendmg five

cooperating neural networks, each specializing ipaaticular

area of human natural language ability. This sysitter

represents a significant advance in naturalnesadaptability to
different voice qualities and languages over pnaevicule-based
and concatenative approaches.

Two linguistic neural networks in conjunction with text

preprocessor construct a linguistic representaitimtuding the

pronunciation of incoming text. The linguistic repentation is
then passed to two acoustic neural networks whithut speech
parameters and a visual neural network which dravealking

head. These different neural network componentufe

modular architectures, time delay neural networkd @ecurrent
internal data paths. Most of the networks are giesl to be
trained on a labeled speech database of a partispéaker. In
this way, particular voice characteristics can bptared at each
level of the system, resulting in a very naturateauality.

The use of neural networks in the solution of thesblems has
helped to produce a text-to-speech system thatrsoffan

architecture that is easily adaptable to differlamiguages and
voices resulting in a significantly more naturalios than

competing synthesizers, along with a talking hdwd enhances
intelligibility and provides a rich multimodal commication

experience.

2. TRAINING DATA
2.1 Lexical Data

We created a relational lexical database from temeece lexica:
The Carnegie Mellon Pronouncing Dictionar§y16], Moby
Pronunciator 11[15] and COMLEX English pronouncing lexicon
[8]. For speech synthesis, it is important to jpuomce input
orthographies correctly. We employ a stochastsamibiguator
to tag incoming words for part of speech in ordeis¢lect the
appropriate pronunciations in the case of non-hdmopus
homographs. This requires that the lexicon contaamt of
speech tags for all words. The resulting databas&prola,
contains almost 200,000 word entries, of which oi800 are
non-homophonous homographs. Sociolinguistic visiamere
removed in favor of one fairly consistent dialéldte idea behind
removing sociolinguistic variation from the lexicams to have a
lexicon representing one plausible dialect of Awcemi English,
and one from which various dialects and styles ddd derived

9.

We refer to the level of transcription found in ttlietionary as
the “lexical” level. We contrast this with the “gitexical” level
in accordance with lexical phonology [6]. Lexicabpunciations
are characterized by their appropriateness folirusslation, in
contrast to postlexical pronunciations, which aperapriate in
connected speech. We collect new lexical dataefmh major
language or language variety we wish to synthesi¥¢e can
train a new letter-to-sound network for each sumhglage or
language variety, as described below.

2.2 Speech Data

The training vectors for most of the neural netvgonlere derived
from a single-speaker speech database. This databelsides
recordings of sentences from forty-eight of theudad sentence
lists. The database has been augmented to inchodedings of
words spoken in isolation, questions, and paraglapgth
recordings of texts from news stories.

These recordings have been hand-labeled on sdeged. The
phonetic labeling was performed in accordance wikie
procedure used for the TIMIT database [13]. Sydabvord,
phrase, and clause boundaries were also markedh. $dlable
was marked as having no stress, secondary stregsirary
stress. Each word was tagged with a flag indicatumgther it
was a content or function word, and a number initiga
expected prominence based on part of speech [143ll¥; the
rhythm and intonation of the speech was markedgusia ToBI
transcription system [1].
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Figure 1. System Architecture

Information derived from this database was usedram the
postlexical, duration, and phonetic neural netwodescribed
below. We record a new speech database for eack t@ be
synthesized by our system. We consequently regach of
these neural networks for each new voice.

2.3 Video Data

In addition to the acoustic and linguistic datauieed to train the
text-to-speech system, motion data must also bkatetl in

order to generate an animated image. This animatede is

preferably an accurate representation or charaetri
representation of the person whose voice is beiodeted. The
underlying model used to generate the animated émaga

wireframe model.

The role of the video data is to allow the systertearn how the
nodes on the wireframe model move as the subjemksp In
addition to the speech motions, gestures such @sssminks,
eyebrow movements, and head nods are also recdraééetence
points, which correspond to the scaled wireframelehmodes,
are located on the subject’'s face and black daspsaced at
these locations. The marking of reference pomtsoit necessary
for the system but the motion tracking softwarealihis used to
extract the subject's movements can be greatly Igieth by
using physical marks placed on the subject. Duthrey audio
recording of the subject’s voice, two video cameaes used to
video tape the subject's motions from the front ahd side
angles.

3. SYSTEM OVERVIEW

As shown in Figure 1, the Motorola text-to-speegistam
consists of three principal modules: a linguistiodule, an
acoustic module and a visual module. The linguistbdule is
responsible for generating a linguistic represémafrom text.
The acoustic module is responsible for generatpepsh from
the linguistic representation. Finally, the visuaodule is

responsible for driving a talking head based on lthguistic
representation.

3.1 Linguistic Module

The linguistic module of the Motorola speech sysiber is
responsible for building a linguistic representatiof user-
supplied text to be spoken. To do this, we emphoyext
preprocessor that tokenizes textual input and loggsword
pronunciations and tags in the lexical databasest@chastic
disambiguator uses part of speech information tterdene
pronunciations in the case of non-homophonous hoapbg,
such adive /lihv/ andlive /layv/. At this point, syntactic and
prosodic boundaries are also determined. Words diianot
appear in the lexical database are submitted titerdto-sound
neural network to determine their pronunciation. inaly,
pronunciations from both the lexical database d&llétter-to-
sound neural network are submitted to a postlexialral
network that modifies pronunciations in a mannegarapriate for
the context in which they appear.

3.1.1 Letter-to-sound neural network

Some words that are to be spoken will not be ptesemur
lexicon, or any lexicon, no matter how large. Thésut-of-
dictionary” words may include some business, peakoand
place names, neologisms and misspellings. Our appras
inspired by work using neural networks trained artionaries to
determine pronunciations from orthography [12].

The first step in training the neural network tarle letter-phone
correspondences is to align letters and phones rireaningful
way. In order to do this, we used a dynamic pnogning

alignment algorithm [7]. While this algorithm isstribed for
aligning sequences from the same alphabets, weeddedlefine
a specialized cost function reflecting the likebldo that
particular letters correspond with particular prene



In addition to providing the network with alignedopunciations
and orthographies for each word in the dictionavg, provided
the network with feature information for both pherand letters.
We defined features for a letter to be the uniotheffeatures of
the phones that that letter might represent. 8daatures for the
letter ‘c’ would be the union of the features fef@nd /k/.

While we are currently achieving competitive resultre believe
that improved performance will come from simplifginthe
phonological representations found in the dictignafor
example, by removing allophones. We are confideat such
simplifications will not detract from the qualityf our ultimate
output, due to the postlexical module, to be dbscrinext.

At this point, a preliminary linguistic represenat of the
utterance has been built from the input text. Tihguistic
representation organizes the utterance into a rolgcal
prosodic phonological structure, including phorsdlables and
phonological words, as well as higher order constits.

3.1.2 Postlexical neural network

The linguistic representation is then submittedatpostlexical
module where lexical pronunciations derived frone texicon

are converted to postlexical pronunciations typafahe speaker
whose voice is being modeled. It is important ®nerate
pronunciations typical of those upon which the aticuneural

networks were trained, in order to assure the [siglyality

speech output. In addition, learning the postkExjghenomena
of each speaker to be synthesized assures thapéseh will be
natural and resemble the original talker as mugboasible.

The modifications that take place in the postldxivmdule at
present involve segmental insertions, deletionssarubtitutions,
such as flapping antld deletion. In addition, the postlexical
module learns any dialect differences between thdcal
database and the voice database being modeled.

We aligned the speech database with lexical praatians from

the lexicon used in letter-to-sound training. Talignment used
the same dynamic programming algorithm as descritede in

the context of the letter-to-sound neural networkétter-

phoneme alignment. A principal difference was ihe t
substitution cost function employed. As descrilbbdve, when
sequences from different alphabets are to be aligite is

important to explicitly define the cost of subdliiig particular

members of those alphabets. In the case of thealepostlexical

conversion, the alphabets are largely the samendauidentical.

For example, phones like [q] and [dx] appear in postlexical

alphabet, but not in the lexical alphabet.

The neural network input coding employed a winddwnime

phones. The use of such a window allows for ingmurt
contextual information to be accounted for by tte. f-or each
phone, we provided feature information for bothidek and

postlexical phones. In addition, for each phonistadce to
word, phrase, clause, and sentence boundariesnalasiéd. In
future work, we intend to make use of the prosddararchy,

provided by the database’s ToBl annotation, in theural

network encoding.

In an unseen testing subset of the data, the leximhpostlexical
phones were identical 70% of the time. That i®31f the time,

there was a different postlexical phone from leiipaone.
Testing of a neural network trained as describedvabon a
segment of the database that was excluded fromirtgaresulted
in 87% correct prediction of postlexical phoneshisTindicates
that while substantial learning took place, therstill room for
increased learning.

3.2 Acoustic Module

Once the text has been converted to a linguispicesentation,
the system converts the linguistic representatmrsgeech in
three stages. First, the timing of the speech signestablished
by associating a segment duration with each phonehe
linguistic representation. An acoustic represeotgticonsisting
of input parameters for the synthesis portion ofoaoder, is
generated for each ten-millisecond frame of speEatally, the
synthesis portion of the vocoder is used to geaespeech from
these acoustic descriptions.

3.2.1 Duration neural net

The neural network used to generate segment dogatias been
described in detail in a previous paper [2]. Thitwork is

trained to produce output representing the durafimth the log
of the segment duration and the number of standaxations
the duration differs from the mean duration for gifteone have
been used as output values. The input to the newatbork

identifies the phone, the stress on the syllabletaining the
phone, the type of word containing the phone, ahithvof the

marked boundaries fall on the start and end ofptmene. This
information is contained in a context window desicry the

phone and several surrounding phones. In additiennetwork
has input describing the position of the phonetiradato the

nucleus of the syllable and the position of théakyé relative to
prosodic boundaries and pitch accents. Finallyrethie a bit
vector input to the network describing which of arigty of

conditions are met by the phone. These conditiom® wlerived
from a rule-based system for computing durationgining

vectors for this network were derived from the labfor the

speech database described above.

3.2.2 Phonetic neural net

The phonetic neural network, which converts thegdistic
representation and timing information, has alsabescribed in
previous papers [3][4][5]. The output of this ndunatwork is
the input to the synthesis section of the vocodescdbed in
section 3.2.3. Training data is generated from #peech
database using the analysis section of the vocodéis is the
most complicated neural network in the text-to-spesystem,
containing over 8000 inputs.

3.2.3 Vocoder

The phonetic neural network is not trained to gateespeech
directly. Instead, it is trained to produce a sexeeof acoustic
descriptions of ten-millisecond frames of speediese are then
synthesized using a vocoder. Since the neural mktisamot well
suited to selecting entries from a codebook, arpetdc vocoder
was used. A mixed-mode vocoder, with excitatiorid#id into a
low-frequency voiced band and a high-frequency igedband,
was used. The parameters consist of the fundamiatplency,
the power of the speech signal, the boundary fregueetween



the voiced and unvoiced bands, and ten line spdotguencies.
An analysis section converted the recorded speemm the
database to these parameters for neural netwanlinga

3.3 Video Module

The video subsystem takes the output of the linguimodule

(section 3.1) and the output of the duration neuraiwork

(section 3.2.1) and generates an animated figureidiyg an
additional neural network. The input to the neumatwork is

exactly the same as the information used as inpythonetic
neural network (section 3.2.2). The output is etaloordinates
of the nodes of the underlying wireframe model.training the
video neural network, the targets are the refergodets that are
extracted from the two video sequences that wererded from
a human subject (see section 2.3). Ideally these video

sequences are combined to generate 3-dimensiagak f@oints
but system complexity can be reduced if a 2-dinerai

wireframe model is used. During normal executidre scaled
output coordinates are used to control the shapeeofvireframe
model. Texture mapping is performed on the wiraganodel to
give the animated figure a natural appearance.

The use of a neural network in generating animatetion that
is synchronized with the synthetic speech has ataevantages.
The first is that the system is able to automdsickdarn the
idiosyncrasies of the specific person it was trdine imitate,

which include characteristic movements and gestuiése high

order equations contained within the neural netwgekerate
realistic movements, which lack the undesirablechamical’ or

‘digital’ qualities common in computer animationhd final

major advantage to using neural network based diwimé that
the system is scaleable. The size of the neutalanks can be
reduced in order to meet system requirements whilsing only
a slight degradation in the performance of the wiglgstem.

4. PERFORMANCE

An independent speech perception lab conductedriexpets
comparing the acceptability and intelligibility tife phoneme-to-
speech portion of the system to that of three cortialetext-to-
speech systems [10]. In the acceptability experimbsteners
were presented with sentences generated by thdotspeech
systems, and asked to rate them on a scale frontcoseven,
with one being unacceptable, and seven being hiatdgptable.
The results showed that the Motorola system weasdratore
acceptable than the other systems. In the inteiliti
experiment, listeners were presented with wordskepoin
isolation, and asked to identify them. The Motorsyatems did
not do as well as some of the other systems irettperiment. At
the time, the neural networks had not been traimgdg words
spoken in isolation. Studies with networks trairead isolated
words have not yet been carried out.

The system has been successfully implemented tatepim real
time on both PowerPC and Pentium machines, runkiagOS,
Windows NT, and Windows 95.

5. SUMMARY

A text-to-speech system using neural networks éwesl of its
components has been shown to be feasible. Thelspeeduced
from the system is found to be more acceptablésteriers than

that of existing commercial systems. The incorporeof neural
networks in multiple levels of a text-to-speechtegs permits
rapid adaptability to new dialects and languagesamparison
with other methods.
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