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ABSTRACT
While neural networks have been employed to handle several
different text-to-speech tasks, ours is the first system to use
neural networks throughout, for both linguistic and acoustic
processing.  We divide the text-to-speech task into three
subtasks, a linguistic module mapping from text to a linguistic
representation, an acoustic module mapping from the linguistic
representation to speech, and a video module mapping from the
linguistic representation to animated images.  The linguistic
module employs a letter-to-sound neural network and a
postlexical neural network.  The acoustic module employs a
duration neural network and a phonetic neural network. The
visual neural network is employed in parallel to the acoustic
module to drive a talking head.  The use of neural networks that
can be retrained on the characteristics of different voices and
languages affords our system a degree of adaptability and
naturalness heretofore unavailable.

1. INTRODUCTION
We have developed a text-to-speech synthesizer including five
cooperating neural networks, each specializing in a particular
area of human natural language ability.  This synthesizer
represents a significant advance in naturalness and adaptability to
different voice qualities and languages over previous rule-based
and concatenative approaches.

Two linguistic neural networks in conjunction with a text
preprocessor construct a linguistic representation including the
pronunciation of incoming text.  The linguistic representation is
then passed to two acoustic neural networks which output speech
parameters and a visual neural network which drives a talking
head.  These different neural network components feature
modular architectures, time delay neural networks and recurrent
internal data paths.  Most of the networks are designed to be
trained on a labeled speech database of a particular speaker.  In
this way, particular voice characteristics can be captured at each
level of the system, resulting in a very natural voice quality.

The use of neural networks in the solution of these problems has
helped to produce a text-to-speech system that offers an
architecture that is easily adaptable to different languages and
voices resulting in a significantly more natural voice than
competing synthesizers, along with a talking head that enhances
intelligibility and provides a rich multimodal communication
experience.

2. TRAINING DATA

2.1 Lexical Data

We created a relational lexical database from three source lexica:
The Carnegie Mellon Pronouncing Dictionary [16], Moby
Pronunciator II [15] and COMLEX English pronouncing lexicon
[8].  For speech synthesis, it is important to pronounce input
orthographies correctly.  We employ a stochastic disambiguator
to tag incoming words for part of speech in order to select the
appropriate pronunciations in the case of non-homophonous
homographs.  This requires that the lexicon contain part of
speech tags for all words.  The resulting database, Lexorola,
contains almost 200,000 word entries, of which over 1500 are
non-homophonous homographs.  Sociolinguistic variants were
removed in favor of one fairly consistent dialect. The idea behind
removing sociolinguistic variation from the lexicon was to have a
lexicon representing one plausible dialect of American English,
and one from which various dialects and styles could be derived
[9].

We refer to the level of transcription found in the dictionary as
the “lexical” level.  We contrast this with the “postlexical” level
in accordance with lexical phonology [6]. Lexical pronunciations
are characterized by their appropriateness for use in isolation, in
contrast to postlexical pronunciations, which are appropriate in
connected speech.  We collect new lexical data for each major
language or language variety we wish to synthesize.  We can
train a new letter-to-sound network for each such language or
language variety, as described below.

2.2 Speech Data

The training vectors for most of the neural networks were derived
from a single-speaker speech database. This database includes
recordings of sentences from forty-eight of the Harvard sentence
lists. The database has been augmented to include recordings of
words spoken in isolation, questions, and paragraph-length
recordings of texts from news stories.

These recordings have been hand-labeled on several levels. The
phonetic labeling was performed in accordance with the
procedure used for the TIMIT database [13].  Syllable, word,
phrase, and clause boundaries were also marked. Each syllable
was marked as having no stress, secondary stress or primary
stress. Each word was tagged with a flag indicating whether it
was a content or function word, and a number indicating
expected prominence based on part of speech [11]. Finally, the
rhythm and intonation of the speech was marked using the ToBI
transcription system [1].



Information derived from this database was used to train the
postlexical, duration, and phonetic neural networks described
below.  We record a new speech database for each voice to be
synthesized by our system.  We consequently retrain each of
these neural networks for each new voice.

2.3 Video Data

In addition to the acoustic and linguistic data required to train the
text-to-speech system, motion data must also be collected in
order to generate an animated image.  This animated image is
preferably an accurate representation or characterized
representation of the person whose voice is being modeled.  The
underlying model used to generate the animated image is a
wireframe model.

The role of the video data is to allow the system to learn how the
nodes on the wireframe model move as the subject speaks.  In
addition to the speech motions, gestures such as smiles, winks,
eyebrow movements, and head nods are also recorded. Reference
points, which correspond to the scaled wireframe model nodes,
are located on the subject’s face and black dots are placed at
these locations.  The marking of reference points is not necessary
for the system but the motion tracking software which is used to
extract the subject’s movements can be greatly simplified by
using physical marks placed on the subject.  During the audio
recording of the subject’s voice, two video cameras are used to
video tape the subject’s motions from the front and the side
angles.

3. SYSTEM OVERVIEW
As shown in Figure 1, the Motorola text-to-speech system
consists of three principal modules: a linguistic module, an
acoustic module and a visual module.  The linguistic module is
responsible for generating a linguistic representation from text.
The acoustic module is responsible for generating speech from
the linguistic representation.  Finally, the visual module is

responsible for driving a talking head based on the linguistic
representation.

3.1 Linguistic Module

The linguistic module of the Motorola speech synthesizer is
responsible for building a linguistic representation of user-
supplied text to be spoken.  To do this, we employ a text
preprocessor that tokenizes textual input and looks up word
pronunciations and tags in the lexical database. A stochastic
disambiguator uses part of speech information to determine
pronunciations in the case of non-homophonous homographs,
such as live /lihv/ and live /layv/.  At this point, syntactic and
prosodic boundaries are also determined.  Words that did not
appear in the lexical database are submitted to a letter-to-sound
neural network to determine their pronunciation.  Finally,
pronunciations from both the lexical database and the letter-to-
sound neural network are submitted to a postlexical neural
network that modifies pronunciations in a manner appropriate for
the context in which they appear.

3.1.1 Letter-to-sound neural network

Some words that are to be spoken will not be present in our
lexicon, or any lexicon, no matter how large.  These “out-of-
dictionary” words may include some business, personal, and
place names, neologisms and misspellings. Our approach is
inspired by work using neural networks trained on dictionaries to
determine pronunciations from orthography [12].

The first step in training the neural network to learn letter-phone
correspondences is to align letters and phones in a meaningful
way.  In order to do this, we used a dynamic programming
alignment algorithm [7].  While this algorithm is described for
aligning sequences from the same alphabets, we needed to define
a specialized cost function reflecting the likelihood that
particular letters correspond with particular phones.
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In addition to providing the network with aligned pronunciations
and orthographies for each word in the dictionary, we provided
the network with feature information for both phones and letters.
We defined features for a letter to be the union of the features of
the phones that that letter might represent.  So the features for the
letter ‘c’ would be the union of the features for /s/ and /k/.

While we are currently achieving competitive results, we believe
that improved performance will come from simplifying the
phonological representations found in the dictionary, for
example, by removing allophones.  We are confident that such
simplifications will not detract from the quality of our ultimate
output, due to the postlexical module, to be described next.

At this point, a preliminary linguistic representation of the
utterance has been built from the input text.  The linguistic
representation organizes the utterance into a hierarchical
prosodic phonological structure, including phones, syllables and
phonological words, as well as higher order constituents.

3.1.2 Postlexical neural network

The linguistic representation is then submitted to a postlexical
module where lexical pronunciations derived from the lexicon
are converted to postlexical pronunciations typical of the speaker
whose voice is being modeled.  It is important to generate
pronunciations typical of those upon which the acoustic neural
networks were trained, in order to assure the highest quality
speech output.  In addition, learning the postlexical phenomena
of each speaker to be synthesized assures that the speech will be
natural and resemble the original talker as much as possible.

The modifications that take place in the postlexical module at
present involve segmental insertions, deletions and substitutions,
such as flapping and t,d deletion.  In addition, the postlexical
module learns any dialect differences between the lexical
database and the voice database being modeled.

We aligned the speech database with lexical pronunciations from
the lexicon used in letter-to-sound training.  This alignment used
the same dynamic programming algorithm as described above in
the context of the letter-to-sound neural network’s letter-
phoneme alignment.  A principal difference was in the
substitution cost function employed.  As described above, when
sequences from different alphabets are to be aligned, it is
important to explicitly define the cost of substituting particular
members of those alphabets.  In the case of the lexical-postlexical
conversion, the alphabets are largely the same, but not identical.
For example, phones like [q] and [dx] appear in the postlexical
alphabet, but not in the lexical alphabet.

The neural network input coding employed a window of nine
phones.  The use of such a window allows for important
contextual information to be accounted for by the net. For each
phone, we provided feature information for both lexical and
postlexical phones.  In addition, for each phone, distance to
word, phrase, clause, and sentence boundaries was included.  In
future work, we intend to make use of the prosodic hierarchy,
provided by the database’s ToBI annotation, in the neural
network encoding.

In an unseen testing subset of the data, the lexical and postlexical
phones were identical 70% of the time.  That is, 30% of the time,

there was a different postlexical phone from lexical phone.
Testing of a neural network trained as described above on a
segment of the database that was excluded from training resulted
in 87% correct prediction of postlexical phones.  This indicates
that while substantial learning took place, there is still room for
increased learning.

3.2 Acoustic Module

Once the text has been converted to a linguistic representation,
the system converts the linguistic representation to speech in
three stages. First, the timing of the speech signal is established
by associating a segment duration with each phone in the
linguistic representation. An acoustic representation, consisting
of input parameters for the synthesis portion of a vocoder, is
generated for each ten-millisecond frame of speech. Finally, the
synthesis portion of the vocoder is used to generate speech from
these acoustic descriptions.

3.2.1 Duration neural net

The neural network used to generate segment durations has been
described in detail in a previous paper [2]. This network is
trained to produce output representing the duration. Both the log
of the segment duration and the number of standard deviations
the duration differs from the mean duration for the phone have
been used as output values. The input to the neural network
identifies the phone, the stress on the syllable containing the
phone, the type of word containing the phone, and which of the
marked boundaries fall on the start and end of the phone. This
information is contained in a context window describing the
phone and several surrounding phones. In addition, the network
has input describing the position of the phone relative to the
nucleus of the syllable and the position of the syllable relative to
prosodic boundaries and pitch accents. Finally, there is a bit
vector input to the network describing which of a variety of
conditions are met by the phone. These conditions were derived
from a rule-based system for computing durations. Training
vectors for this network were derived from the labels for the
speech database described above.

3.2.2 Phonetic neural net

The phonetic neural network, which converts the linguistic
representation and timing information, has also been described in
previous papers [3][4][5]. The output of this neural network is
the input to the synthesis section of the vocoder described in
section 3.2.3. Training data is generated from the speech
database using the analysis section of the vocoder.  This is the
most complicated neural network in the text-to-speech system,
containing over 8000 inputs.

3.2.3 Vocoder

The phonetic neural network is not trained to generate speech
directly. Instead, it is trained to produce a sequence of acoustic
descriptions of ten-millisecond frames of speech. These are then
synthesized using a vocoder. Since the neural network is not well
suited to selecting entries from a codebook, a parametric vocoder
was used. A mixed-mode vocoder, with excitation divided into a
low-frequency voiced band and a high-frequency unvoiced band,
was used. The parameters consist of the fundamental frequency,
the power of the speech signal, the boundary frequency between



the voiced and unvoiced bands, and ten line spectral frequencies.
An analysis section converted the recorded speech from the
database to these parameters for neural network training.

3.3 Video Module

The video subsystem takes the output of the linguistic module
(section 3.1) and the output of the duration neural network
(section 3.2.1) and generates an animated figure by using an
additional neural network. The input to the neural network is
exactly the same as the information used as input to phonetic
neural network (section 3.2.2).  The output is scaled coordinates
of the nodes of the underlying wireframe model.  In training the
video neural network, the targets are the reference points that are
extracted from the two video sequences that were recorded from
a human subject (see section 2.3).  Ideally these two video
sequences are combined to generate 3-dimensional target points
but system complexity can be reduced if a 2-dimensional
wireframe model is used. During normal execution, the scaled
output coordinates are used to control the shape of the wireframe
model.  Texture mapping is performed on the wireframe model to
give the animated figure a natural appearance.

The use of a neural network in generating animated motion that
is synchronized with the synthetic speech has several advantages.
The first is that the system is able to automatically learn the
idiosyncrasies of the specific person it was trained to imitate,
which include characteristic movements and gestures.  The high
order equations contained within the neural network generate
realistic movements, which lack the undesirable ‘mechanical’ or
‘digital’ qualities common in computer animation. The final
major advantage to using neural network based animation is that
the system is scaleable.  The size of the neural networks can be
reduced in order to meet system requirements while causing only
a slight degradation in the performance of the video system.

4. PERFORMANCE
An independent speech perception lab conducted experiments
comparing the acceptability and intelligibility of the phoneme-to-
speech portion of the system to that of three commercial text-to-
speech systems [10]. In the acceptability experiment, listeners
were presented with sentences generated by the text-to-speech
systems, and asked to rate them on a scale from one to seven,
with one being unacceptable, and seven being highly acceptable.
The results showed that the Motorola system was rated more
acceptable than the other systems. In the intelligibility
experiment, listeners were presented with words spoken in
isolation, and asked to identify them. The Motorola systems did
not do as well as some of the other systems in this experiment. At
the time, the neural networks had not been trained using words
spoken in isolation. Studies with networks trained on isolated
words have not yet been carried out.

The system has been successfully implemented to operate in real
time on both PowerPC and Pentium machines, running MacOS,
Windows NT, and Windows 95.

5. SUMMARY
A text-to-speech system using neural networks for several of its
components has been shown to be feasible. The speech produced
from the system is found to be more acceptable to listeners than

that of existing commercial systems.  The incorporation of neural
networks in multiple levels of a text-to-speech system permits
rapid adaptability to new dialects and languages in comparison
with other methods.
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