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ABSTRACT

The automatic classification of environmental noise sources from
their acoustic signatures recorded at the microphone of a noise mon-
itoring system (NMS) is an active subject of research nowadays.
This paper shows how hidden Markov models (HMM’s) can be used
to build an environmental noise recognition system based on a time-
frequency analysis of the noise signal. The performance of the pro-
posed HMM-based approach is evaluated experimentally for the
classification of five types of noise events (car, truck, moped, air-
craft, train). The HMM-based approach is found to outperform pre-
viously proposed classifiers based on the average spectrum of noise
event with more than 95% of correct classifications. For compari-
son, a classification test is performed with human listeners for the
same data which shows that the best HMM-based classifier outper-
forms the “average” human listener who achieves only 91.8% of
correct classification for the same task.

1. INTRODUCTION

The latest generation of noise monitoring systems (NMS’s) is ba-
sed on digital signal processing technology. They commonly im-
plement such features as computation and storage of noise levels
(Leq), one-third-octave spectra, statistical indices or the detection
of noise events based on thresholds. Since the computational power
of signal processors keeps increasing, it is likely that NMS’s will
become capable of even more sophisticated treatments of the sound
data they record. Consequently, research has been undertaken to
develop new measurement features for inclusion in NMS’s. An area
of research that has started to attract much attraction recently is au-
tomatic noise recognition (ANR). The goal of an ANR system is
the automatic —i.e., without human intervention—classification of
the noise sources that are present in the acoustic environment from
their recordings at the microphone of the NMS.

One particular problem in ANR is the classification of noise
events such as car or truck pass-bys, aircraft fly-overs, etc. The
ANR systems that have been proposed for that task rely generally
on two-step process: a pre-processor converts the acoustical signal
of the noise event into a set of characteristic features which are then
used by a classifier to make a decision on the nature of the source of
the noise event. Until now, the pre-processors that have been pro-
posed were based on a “static” approach. That is, the noise event
was reduced to a global set of characteristics which is then used
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to perform the classification. For instance, the average spectrum
of the is a common choice. Various statistical pattern recognition
techniques have been suggested for the realization of the classifier
acting on that “static” representation.

In this paper, a new method for the classification of noise events
based on hidden Markov models (HMM’s), a technique that has
been widely successful in automatic speech recognition [5, 3], is
proposed. HMM-based classifiers use a “dynamic” recognition me-
thod that takes directly into account the time-frequency structure of
the noise events. As will be seen, the utilization of hidden Markov
models can bring significant improvement over previously proposed
methodologies for the automatic recognition of noise events.

The remainder of this paper is organized as follows. In sec-
tion 2, the choice of the pre-processor for an ANR system based on
HMM’s is discussed. Application oh HMM’s to ANR is discussed
in section 3. Experimental results obtained for the classification of
five types of environmental noise events are presented in section 4
together with results of human listeners for the same task. Conclu-
sions are drawn in section 5.

2. PRE-PROCESSING

For the classifier to act directly on the time-frequency structure of
the signal, the pre-processor must convert the raw acoustic signal
sampled at the microphone into a time-frequency representation.
Such time-frequency representation can be obtained by splitting the
signal into T (consecutive or possibly overlapping) short frames
and compute a set of features characteristic of the spectrum for each
frame. The output of the pre-processor will then be a series of spec-
tral components x = (x1; x2; : : : ; xT ), where xt is a set of fea-
tures representative of the spectrum corresponding to the t-th frame
of signal. For example, if a one-third-octave filter bank is used and
short-time Leq’s are computed in d frequency bands, xt can be the
d-dimensional vector formed from the d one-third-octave levels for
the t-th integration interval of the Leq’s. In this case, the frame
length corresponds to the integration length for the Leq’s.

Instead of using a filter bank, other types of spectral analysis
can be used on the signal frames. In section 4, LPC (Linear Pre-
diction Coding) cepstral analysis will be used [3].

Both the filter-bank method and LPC-cepstrum method of spec-
tral analysis convert the original acoustic signal into a sequence of
continuous-valued vectors xt 2 IRd. This sequence of continuous-
valued vectors can be converted into a sequence of discrete sym-
bols by a technique called vector quantization (VQ) [4]. VQ allows
the utilization of discrete HMM’s.



3. APPLICATION OF HMM’S TO ANR

As the theory of HMM’s is widely described in the literature, we
invite the reader who is not familiar with hidden Markov modeling
to refer to standard tutorials such as the ones available in [5] or [3].

In this paper, five specific types of noise event sources are con-
sidered: cars, trucks, mopeds, aircraft, and trains. Because of their
transient nature, these types of noise events are well suited to be
modeled by left-right HMM’s. Several issues involved in the de-
sign of a HMM classifier for this environmental noise event recog-
nition application are now discussed.

First, a spectral analysis pre-processor must be selected for the
classifier and its parameters must be chosen. For the LPC-cepstral
analysis pre-processor, the parameters are: the analysis frame length,
the analysis frame shift, the order p of the LPC model, the num-
ber of cepstral coefficients, etc. For the filter-bank analysis pre-
processor, a practical choice would be to use the one-third-octave
or octave filter-banks with computation of short-timeLeq commonly
provided by standard sound level meters.

Second, it must be decided if a vector quantization step is in-
corporated between the spectral analyzer pre-processor and the hid-
den Markov model classifier. If VQ is used, it is necessary to de-
cide on a codebook size and a distance measure. Finally, the type
of HMM’s that will be used must be selected and their parame-
ters (number of states, transition probability matrix structure, etc.)
must be chosen.

Once the type of HMM and the type of pre-processor have been
chosen, taking into account the external constraints, it is still neces-
sary to find the parameter set that will yield the best performance.
This can only be done with a combination of trial-and-error experi-
ments and engineering experience, possibly guided by some phys-
ical understanding of the acoustical phenomena modeled. It is also
possible to use the rules-of-thumb for the design of HMM-based
classifiers which are used in speech recognition community.

4. EXPERIMENTAL RESULTS

In this section, experimental results obtained for the classification
of environmental noise events with hidden Markov models are pre-
sented. Five types of noise event sources are considered: cars, trucks,
mopeds, aircraft, and trains. The noise event recordings used for
the training and the evaluation of the HMM’s are extracted from
the MADRAS database. The STRUT software provides the imple-
mentation of HMM algorithms.

4.1. The MADRAS Database

The MADRAS database of environmental noise sources has been
constructed for the MADRAS project which has been partially funded
by the European Community and involves several research part-
ners in various European countries [2]. The aim of the MADRAS
project (Methods for Automatic Detection and Recognition of Acoustic
Sources) is to develop new noise monitoring instruments with the
ability to automatically identify and quantify, in real time, the vari-
ous acoustic sources which make up a given acoustic environment.
The MADRAS database includes high quality recordings of vari-
ous types of common environmental noise sources such as trains,
cars, trucks, delivery vans, motorcycles, mopeds, aircraft, chain saws,
lawnmoyers, industrial plants, etc. Several instances of each type
of source are provided. The recording conditions of each noise sour-
ce are documented.

For the classification experiments that will be presented here,
only five types of noise recordings available in MADRAS were used:
cars, trucks, mopeds, aircraft, and trains recordings.

4.2. The STRUT Software

The practical implementation of HMM algorithms is not a trivial
programming task. Fortunately, software tools are available that
can greatly help the realization of HMM-based classification sys-
tems. Our application of hidden Markov modeling techniques to
environmental noise event recognition relies on the Speech Train-
ing and Recognition Unified Tool (STRUT) developed in the Cir-
cuit Theory and Signal Processing (TCTS-Multitel) Laboratory of
Faculté Polytechnique de Mons to conduct research on speech recog-
nition [6]. STRUT is a software toolbox that consists of many small
“independent” pieces of code running on Unix (SUN, HP, Linux)
and Windows workstations. Each small program implements a spe-
cific step in the speech recognition process: signal pre-processing
(extraction of spectral features), vector quantization, Viterbi decod-
ing, probability evaluation, maximum-likelihood training, classifi-
cation, etc. The small programs communicate by exchanging files,
through Unix pipes or through Unix sockets.

4.3. Classification Results

The HMM-based classifiers were trained on a set of noise event
recordings extracted from the MADRAS database and the classi-
fication performance was evaluated on a distinct set of recordings
also extracted from the MADRAS database. The partition of the
events of a given type between training and test set was random.
The training set contained 141 noise event recordings: 45 “car”
events, 33 “truck” events, 28 “moped” events, 14 “aircraft” events
and 21 “train” events. The test set contained 43 noise event record-
ings: 14 “car” events, 11 “truck” events, 9 “moped” events, 4 “air-
craft” events and 5 “train” events. Testing the performance on only
43 samples means that the recognition rate estimates will not be
very reliable, but it was not possible to use a larger testing set (or
training set) because of the limited size of the MADRAS database.

In the first experiment, the pre-processor was the standard LPC-
cepstral pre-processor of speech recognition. The performance of a
classifier for the values of the pre-processor parameters commonly
used in speech recognition applications was evaluated. The values
of the parameters are:

� analysis frame length w = 30 ms

� analysis frame shift (overlapping factor) set to one third of
w,

� order of auto-regressive analysis p = 10

� number of cepstral coefficients equal to 12

� VQ codebook size L = 256.

A three-state HMM was used (M = 3). The HMM also included
three “silence” states at its beginning and at its end. This classifier
correctly recognized 91% (39/43) of the test samples.

In the next series of experiments, the pre-processor was still the
LPC-cepstral pre-processor but, this time, parameters of the pre-
processor (w, p) and the number of states of the HMM’s (M ) were
varied. Only the most significant results will be presented here.
A more complete description of the results obtained can be found
in [7]. Figure 1 shows the influence of the analysis frame lengthw
on the recognition rate for single-state, three-state, and five-state
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Figure 1: Effect of the analysis frame length w on the recognition
rate for M = 1; 3; 5
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Figure 2: Effect of the order of the autoregressive pre-processor p
on the recognition rate for M = 1; 3; 5

HMM’s. All the other parameters are the same as in the first ex-
periment. It is observed that the best classification results are ob-
tained for frame lengths w larger than the standard speech recogni-
tion frame length of 30 ms: on the order of 50–60 ms for three or
five-state HMM’s, and 80–100 ms for single-state HMM’s. This
can be interpreted as an indication that the “typical duration” of
the acoustic events and transitions is longer in noise events than in
speech.

Figure 2 shows the influence of the order p of the LPC analy-
sis on the recognition rate for single-state, three-state, and five-state
HMM’s. The frame length w was set to 100 ms for the single-state
HMM’s, to 50 ms for the three-state HMM’s, and to 60 ms for the
five-state HMM’s, respectively. Again, all the other parameters are
the same as in the first experiment. The best results are always ob-
tained for p = 10, the same value as in speech recognition. The
codebook size L was also varied. Classification results for various
combinations codebook sizes L, number of states M , and analysis
frame length w (in ms) are given in table 1. The best results are al-
ways obtained for L = 256, for all analysis frame lengths and for

Table 1: Effect of the codebook size L on the number of correct
classifications (out of 43)

L M = 1 M = 1 M = 3 M = 5 M = 5

w = 80 w = 100 w = 50 w = 50 w = 60

64 36 34 37 35 36
128 38 38 35 37 37
256 40 40 40 41 41
512 37 35 36 38 34

Table 2: Effect of the analysis frame length and number of states on
the number of correct classifications (out of 43) for the one-third-
octave pre-processor

w (ms) M = 1 M = 3 M = 5 M = 5�

100 34 38 36 —
250 — 36 — —
500 37 38 30 36

all number of states tested. Overall, the best performance achieved
was 95% (41/43) correct classifications by a five-state HMM with
an analysis frame of 50 ms or 60 ms and with a LPC analysis of
order 10 used for the pre-processor.

In the final series of experiments, the LPC-cepstral pre-proces-
sor was replaced by the standard one-third-octave filter bank that
is used in noise monitoring applications. In this way, it was possi-
ble to investigate the possibility of using a HMM-based as a “post-
processor” for a standard sound level meter. Table 2 summarizes
the results that have been obtained for various analysis frame lengths
w (integration times for Leq in noise control parlance). The code-
book size was again set to 256. The last column (M = 5�) corre-
sponds to a HMM with five states but with only one “silence” state
at the beginning and at the end, instead of three. The best perfor-
mance achieved was 88% (38/43) correct classification for a three-
state HMM and an analysis frame of 100 ms or 500 ms.

4.4. Discussion

Even if the limited size of the MADRAS database means that the
performance numbers obtained must be taken carefully, several con-
clusions can still be drawn. First, it appears that HMM-based clas-
sifiers outperform simple spectrum-based classifiers. Indeed, HMM-
based classifiers yield more than 90% of correct classifications and
even more than 95% for the best of them. On the other hand, spec-
trum-based classifiers achieve only more than 80% of correct clas-
sifications for a similar recognition task on the MADRAS database
[2, 1].

The performance improvement shown by HMM-based classi-
fiers could have been expected because the HMM-based classifiers
take into account the temporal structure of the noise events unlike
the previous spectrum-based classifiers.

Second, the analysis frame length is larger in the noise recogni-
tion case. This can be interpreted as an indication that the “typical
duration” of the acoustic events and transitions is longer in noise
events than in speech.

Third, it seems that the filter bank-based classifier is outper-
formed by the LPC-based classifier. Interestingly, it can be noted



Table 3: Correct classification by human listeners

Sound Recognition rate (%)
Car 100

Truck 84.6
Moped 95.8
Aircraft 90.4

Train 92.5

this is also usually the case in speech recognition [3]. This can mean
that LPC-cepstral analysis is better suited to noise recognition than
one-third-octave analysis. However, this could also be due to the
fact that the filter bank pre-processor provides 21-dimensional fea-
ture vectors before quantization whereas the LPC-cepstral pre-pro-
cessor provides 12 coefficients. It is thus possible that, because of
the limited size of the training data, the codebook might not be as
well trained in the filter bank case as it is in the LPC-cepstral case.

Finally, it is possible that the limited size of the MADRAS data-
base may also have caused training and testing problems.

4.5. Listening Tests

In order to get a “baseline” performance level for a human listener,
a series of informal listening tests was conducted. In these tests,
human subjects were asked to classify noise event recordings into
one of five possible categories. The noise event recordings were
the same as the one used in the automatic recognition experiments
of the previous section.

For our experiments, 110 noise event recordings were extracted
from the MADRAS database, with approximately an equal num-
ber of “car,” “truck,” “moped,” “aircraft,” and “train” events. The
event recordings (WAV files) were played in random order on loud-
speakers via the sound board of a PC and a power amplifier. A
group of six human listeners was asked to perform the classifica-
tion test. The listeners’ group included engineers with and without
noise control experience. Globally, the listeners correctly classi-
fied 91.8% of the noise events. Table 3 breaks down the results by
categories of sound. Additional results can be found in [7].

Comparing the results obtained by the HMM-based classifiers
and the results obtained during the listening test, it appears that,
globally, the best classifiers outperform the “average” human lis-
tener by a few percents. Lookine more closely at the noise events
that were missclassified by human listeners and by HMM-based
classifiers, it seems that the sounds that create problems to the HMM
classifiers are also often the sounds that create problems to the hu-
man listeners. So, in a sense, even when committing a classifica-
tion error, the classifier might still make a “perceptually meaning-
ful” decision.

5. SUMMARY AND CONCLUDING REMARKS

It has been shown how HMM’s could be used to build practical
noise classifiers based on a time-frequency analysis of the noise
signal. The HMM-based approach to noise recognition has been
evaluated experimentally for the classification of five types of noise
events (car, truck, moped, aircraft, train). The best results obtained
were 95.3% of correct classifications for a five-state HMM using
LPC-ceptral pre-processsing. For comparison, a classification test

has been performed with human listeners for the same data which
has shown that the best HMM-based classifier outperformed the
“average” human listener who achieves only 91.8% of correct clas-
sification for the same task.

Only discrete HMM’s have been evaluated for the classifica-
tion of noise events because they are the simplest type of HMM.
It was not possible to evaluate the performance of more complex
models such as Gaussian mixtures HMM’s or hybrids neural net-
works/HMM’s because there were not enough training data to use
these more demanding models. Performance improvment can thus
probably be expected once it becomes possible to use these more
complex models.

For further research, it would be a good thing to increase the
size of the MADRAS database. It should contain more samples
of each of the variants of the noise events. Research in environ-
mental noise recognition would greatly benefits from the creation
of large size standardized reusable corpora, like the ones used in
speech recognition.
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