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ABSTRACT

We propose a computationally e�cient version of
the Decision Feedback Equalizer (DFE) and compare
its performance with the conventional DFE. The pro-
posed equalizer requires fewer taps than the conven-
tional one. This reduces the computational load pro-
portionally and leads to faster adaptation. Identical
performance of the two structures in terms of probabil-
ity of error is also demonstrated using both theoretical
and simulation results.

1. INTRODUCTION

The Decision Feedback Equalizer (DFE) has been used
and studied [1, 2, 3, 4, 7, 9] for so long that it is surpris-
ing to �nd new improvements for it. Nonetheless, we
have identi�ed an alternative structure with essentially
equivalent performance and between 0 to 50% reduc-
tion in computation as compared to the standard and
widely used structure. This is accomplished by using
proportionally fewer taps than before to deal with the
same channel.

The DFE is commonly split into a forward equal-
izer and a feedback equalizer. Our analysis builds upon
the linear prediction interpretation of the DFE as pro-
posed by Messerschmitt [5]. Computational complexity
and speed of adaptation are crucial considerations for
a DFE, especially for rapidly varying channels, and the
proposed structure is able to achieve improvements in
both the aspects.

The paper is outlined as follows. Sections 2 and
3 describe the standard implementation of the DFE
and the proposed structure, respectively. In Section 4,
we present the simulation model used and the results
generated thereof. The advantages and disadvantages
of the proposed structure over the currently used one
are summarized in Section 5, before we close with a
conclusion.
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Figure 1: The Decision Feedback equalizer under the
current implementation.

2. STANDARD IMPLEMENTATION

The channel through which the information is trans-
mitted introduces inter-symbol interference (ISI). In
this paper, we consider a discrete-time baseband equiv-
alent of the channel, G(z). In addition to this distor-
tion, the received signal is corrupted by noise, modeled
as additive white gaussian noise.

The standard implementation of the DFE is de-
scribed in [4, 9]. Fig. 1 shows a block diagram of the
DFE, with the separate forward and feedback equalizer

paths. Under Messerschmitt's linear prediction inter-
pretation, the received signal x(n) is passed through
the zero forcing equalizer C(z) and the prediction er-
ror �lter (1 � z�1F (z)). The combination of the two
forms the forward equalizer which removes the precur-
sor ISI, without noise enhancement. The other �lter in
the DFE is the feedback equalizer, F (z), which removes
the postcursor ISI. As observed in [5], F (z) can be de-
rived from the linear predictor for the colored noise at
the output of C(z). The zero forcing equalizer exists for
a wide variety of channels, as demonstrated in [4]. For
a time varying channel, the tap values of both the for-
ward and feedback equalizers are made adaptive, using
the decision-directed technique.

If the channel equalization requires M taps and the
feedback path has N taps, then the feedforward path
will have N +M taps, making the total number taps



G(z)
b(n)

x(n)

Z F(z)-1

w(n)

u(n) b(n)y(n)

N Taps

M Taps

C(z)

Figure 2: The proposed equalizer.

required 2N + M . The choice of M (the number of
taps for the zero forcing equalizer) is governed by the
channel characteristics while N (the number of taps
in the linear predictor) depends on the rate of decay
of the zero forcing equalizer's impulse response. For
example, if the channel is modeled as a k-pole �lter,
then M = k + 1; N is ideally in�nite, but is truncated
to a reasonable length depending on the pole locations,
for practical implementation.

3. PROPOSED STRUCTURE

An alternative structure for the DFE is presented in
Fig. 2.

The received signal x(n) is �rst fed through the zero
forcing equalizer C(z). This �lter removes the ISI com-
pletely, so the output u(n) is the transmitted signal
corrupted by colored noise. Since we are using a sim-
ple threshold for the decision device, best performance
is achieved when the background noise is white. So the
next step is to whiten the noise, without a�ecting the
signal. Assuming the tap values are well adapted to the
channel (having used a training sequence during initial-

ization), the estimate b̂n is correct with high probabil-
ity. Th approximation of the colored noise given by
u(n) � b̂(n) is fed into the linear predictor F (z) to re-
move the correlation in the colored noise. The output
y(n) is then the desired signal corrupted by white noise,

and is thresholded to yield b̂n. Thus we have a chan-
nel equalizer C(z) and a predictor F (z) to achieve the
e�ect of the DFE described in Section 2. The system
is made adaptive using the standard decision-directed
method and its performance estimated in terms of the
probability of error in the quantized signal.

The channel equalizer needs M taps while the pre-
dictor needs N taps, making a total of N +M taps for
equalization. The choice of N and M are governed by
the same considerations as outlined in Section 2. This
provides us with a reduction of N taps over the con-
ventional DFE implementation. The fractional gain in
the number of taps is thus N+M

2N+M
. In the worst case,

for N �M , there is little reduction in number of taps.
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Figure 3: The simulation model.

However, when N � M , we have as much as 50% re-
duction in the number of taps. For a typical situation
when N 'M the improvement achieved is 33%.

We consider the equivalence of the two zero-forcing
structures:

YDFE (z)=X(z)C(z)[1 � z�1F (z)] + z�1F (z)b̂DFE(z)

YNEW (z)=X(z)C(z) � z�1F (z)[X(z)C(z) � b̂NEW (z)]

If the probability of error is su�ciently low, then
we have b̂DFE(n) = b̂NEW (n) = b̂(n) and therefore
YDFE(z) = YNEW (z). Furthermore, in a noiseless sit-
uation, when the received signal is distorted by the
dispersive channel alone, we have b̂(n) = b(n), showing
that both the structures are zero-forcing and achieve
the same performance.

4. SIMULATION

To verify the theoretical results, we set up a simulation
model for the system, using the Ptolemy simulation
environment [http://ptolemy.eecs.berkeley.edu].

In the simulation model illustrated in Fig. 3, we
model the input bit stream to be binary antipodal. It
passes through a channel which is modeled as an all-
pole �lter, corrupted by additive white gaussian noise.
The outputs from the conventional DFE and the pro-
posed DFE are then compared with respect to their
rates of convergence and probabilities of error.

The signal to noise ratio (SNR) for the 2-pole chan-
nel is varied over the range 1 to 15 dB and the prob-
ability of error is computed for each of the structures.
The results plotted in Fig. 4 show that the DFE and
the newly proposed algorithm perform almost identi-
cally, when there are enough taps to match the chosen
AR model for the channel. The plot also includes the
unequalized case, which justi�es the use of the equal-
izer.

The theoretical limit for the probability of error in
the case of binary antipodal signaling over an additive
white gaussian noise channel is given by Pe = Q(

p

b
2
),
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Figure 4: A Comparison of the probability of error.

where 
b is the SNR per bit [9]. As seen from the plot,
the performance of both the DFE and the proposed
structure are very close to the theoretical limit, leav-
ing little scope for improvement in this simple channel
model.

In addition to the above simulations, the following
cases of channels were also considered,

� Minimum-phase FIRmodel : The channel is mod-
eled to be an `All Zero' �lter, with all zeros in-
side the unit circle. Here the channel is invertible
and the LMS �lters are ideally in�nite impulse
response �lters. But in practice, a large enough
number of taps (depending on the location of the
zeroes of the channel) is su�cient to achieve per-
formance that is close to the theoretical limit. In
the simulations, 12 taps used for a channel model
having a 3 tap response was seen to have a per-
formance very close to the theoretical limit.

� Non-Minimum phase FIR model : The channel
is modeled to be an `All Zero' �lter, with not all
zeros inside the unit circle. The channel is de�-
nitely not invertible but its equalizer exists due
to the existence of the zero forcing equalizer [4].
The simulations were performed with a channel
�lter having one zero outside the unit circle and
the other inside. It was seen that after an initial
transient period, the probability of error could be
brought arbitrarily close to the theoretical limit
by increasing the number of taps in the LMS �l-
ter. In the example chosen, the LMS �lters with
12 taps showed results comparable to the ones
stated above.

� ARMA model : The channel is a `Pole-Zero' IIR

�lter. The impulse response of the channel is cho-
sen to be of the form rncos(!0n)u(n) with !0 =

�
4

and r = 1p
2
. This gives a �lter with 2 poles and

a zero. As expected, both the equalizers perform
identically and close to the theoretical limit.

5. ADVANTAGES AND DISADVANTAGES

The proposed equalizer has been shown to perform
identically to the DFE in Section 4 in terms of proba-
bility of error. The new structure is however preferable
due to a number of advantages explained below.

� The proposed implementation requires only N +
M taps compared to the 2N + M taps in the
conventional DFE (Sections 2 and 3). A saving
of N taps per sample is a signi�cant reduction in
complexity.

� The update stepsize � of an adaptive �lter is con-
strained by 0 < � < 1

K�2
where K is the number

of taps and �2 is the variance of the input ran-
dom process [3]. The stepsize governs the rate of
convergence, with a larger stepsize resulting in a
faster rate of convergence. In both the structures,
F (z) has the same number of taps and hence its
convergence is identical in both. But the forward
equalizer in the DFE has N +M taps implying
0 < �DFE < 1

(N+M)�2
while the channel inver-

sion in the proposed structure has N taps and
thus 0 < �NEW < 1

N�2
. This means that we

can choose a larger � for the proposed structure,
ensuring faster convergence rates and better sta-
bility. The proposed structure thus has better
adaptation to time-varying channels.

� For a large class of channels, the channel equalizer
has an impulse response that looks like C(z) =
C1(z) + z�LC2(z). Such situations are common
in a closed room kind of environment and in echo
paths and the di�erence in the number of tap
updates becomes even more apparent here.

Suppose C1(z) requires M1 taps and C2(z) re-
quires M2 taps, and L � M1;M2. In the pro-
posed structure, we would have a parallel imple-
mentation of two �lters (Fig. 5), which means
that the implementation would take M1 + M2

taps.

In the conventional DFE, we have the channel
equalizer C(z) convolved by another �lter. Con-
volution being a spreading operation in time do-
main, we can expect to require more tap up-
dates. In particular, for the system in Fig. 6, we
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Figure 5: Channel equalizer in the proposed structure.
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Figure 6: Channel equalizer in conventional DFE.

would require (N +M1 +N ) + (N +M2 +N ) =
4N +M1 +M2 updates. Thus in this practical
situation, we save up to 4N taps, instead of the
previously achieved gain of N taps.

� The tap values in the proposed equalizer are spread
over a much narrower range than in the con-
ventional DFE. In the feed-forward part of the
conventional equalizer, the zero forcing equalizer
C(z) is convolved with 1 � z�1F (z). The con-
volution increases the spread in the range of tap
values. This poses a problem with quantization
of tap values [8], which is reduced in the proposed
structure.

However, the proposed structure for the DFE fails
to perform at par for certain other situations.

� The input to the linear predictor F (z) in the
conventional structure is a symbol sequence (Fig.
1). Hence, in VLSI implementations of the DFE,
asymmetricmultipliers can be used to achieve sig-
ni�cant hardware savings. In the proposed struc-
ture (Fig. 2), the input to F (z) is spread over
the entire continuum due to the presence of noise
(rather than being con�ned to the symbol set).
So, the asymmetric multipliers cannot be used
and these savings are lost.

However, in the case of programmable processor
implementations, where special hardware is not
used, the above problem does not arise.

6. CONCLUSION AND FUTURE WORK

We have outlined our e�orts in proposing a computa-
tionally e�cient version of the Decision Feedback Equal-
izer. In this paper, we presented the proposed DFE and

compared it with the conventional DFE. The proposed
equalizer requires fewer taps and hence has fewer com-
putations (for �ltering). Moreover, it also has a faster
adaptability owing to its higher convergence rate. The
two structures perform identically in terms of probabil-
ity of error, as shown using both theoretical and sim-
ulations results. Finally, we outlined the advantages
and disadvantages of using the proposed DFE over the
conventional one.

The issue of the rate of convergence requires a much
more detailed analysis than accorded in this paper.
The applications of the proposed structure in special
situations like the fractionally spaced DFE also need
to be analyzed.
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