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ABSTRACT

A truly personal and reactive computer system should
have access to the same information as its user, in-
cluding the ambient sights and sounds. To this end,
we have developed a system for extracting events and
scenes from natural audio/visual input. We �nd our
system can (without any prior labeling of data) clus-
ter the audio/visual data into events, such as passing
through doors and crossing the street. Also, we hierar-
chically cluster these events into scenes and get clusters
that correlate with visiting the supermarket, or walking
down a busy street.

1. INTRODUCTION

Computers have evolved into miniature and wearable
systems[7]. As a result there is a desire for these com-
puters to be tightly coupled with their user's day-to-
day activities. A popular analogy for this integration
equates the wearable computer to an intelligent ob-
server and assistant for its user. To �ll this role ef-
fectively, the wearable computer needs to live in the
same sensory world as its human user. [8]

Thus, a system is required that can take this nat-
ural and personal audio/video and �nd the coherent
segments, the points of major activity, and recurring
events. The �eld of multimedia indexing has wrestled
with many of the problems that such a system creates.
However, audio/video data that these researchers typi-
cally tackle are very heterogeneous and thus have little
structure and what structure they do have is usually
arti�cial, like scene cuts, and patterns in camera an-
gle. The \eyes and ears" audio/video data that we are
tackling is much more homogeneous and thus richer in
structure, and �lled with repeating elements and slowly
varying trends.

The use of our system's resulting indexing di�ers
greatly from the typical \querying for key-frames". Sup-
pose our system has clustered its audio/video history
into 100 models. Upon further use, the system notices

that whenever the user requests his grocery list, model
42 is active. We would say that model 42 is the super-
market. However, the system does not need to have
such a human-readable for model 42. (What would
the system do with it? The user presumably knows
already that he is in the supermarket.) However, a
software agent built on our system would know to au-
tomatically display the user's grocery list when model
42 activates.

2. THE PERSONAL AUDIO-VISUAL TASK

In contrast to subject-oriented video or audio [5], such
as TV [4], movies, and video recordings of meetings
[3], our goal is to use video to monitor an individual's
environment. Literally, the camera and microphone
become an extra set of senses for the user. [1, 2]

2.1. Data Collection

In order to adequately sample the visual and aural en-
vironment of a mobile person, the sensors should be
small and have a wide �eld of reception. The environ-
mental audio was collected with a lavalier microphone
(the size of a pencil eraser) mounted on the shoulder
and directed away from the user. The environmen-
tal video was collected with a miniature CCD cam-
era (1/4" diameter, 2" long) attached to a backpack
(pointing backwards). The camera was �tted with a
180� wide-angle lens giving an excellent view of the
sky, ground, and horizon at all times.

The system was worn around the city for a few
hours, while the wearer performed typical actions, such
as shopping for groceries, renting a video, going home,
and meeting and talking with acquaintances. The re-
sulting recording covered early to late afternoon (no
night-time data). The camera's automatic gain control
was used to prevent saturation in daylight.



2.2. Feature Extraction

Unlike the typical features used for face and speech
recognition, we require features that are much less sen-
sitive. We want our features to respond only to the
most blindingly obvious events { walking into a build-
ing, crossing the street, riding an elevator. Since, our
system is restricted to unsupervised learning, it is nec-
essary to use robust features that do not behave wildly
or respond to every change in the environment { only
enough to convey the ambiance.

Video First the (r; g; b) pixel values were separated
into (pseudo) luminance and chrominance channels:

I = r + g + b Ir = r=I Ig = g=I

The visual �eld of the camera was divided into 9
regions that correspond strongly to direction. The fol-
lowing features were extracted from the (I; Ir ; Ig) val-
ues of each region:
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Figure 1: The 9 features on the left were extracted from
each of the 9 regions shown on the right.

Hence, we are collapsing each region to a Gaussian
in color space. This rough approximation lends robust-
ness to small changes in the visual �eld, such as distant
moving objects and small amplitude camera movement
(the human body is not a stable camera platform).

Audio Auditory features were extracted with 25 Mel-
scaled �lter banks. The triangle �lters give the same
robustness to small variations in frequency (especially
high frequencies), not to mention warping frequencies
to a more perceptually meaningful scale.

Both the video and the audio features were calcu-
lated at a rate of 10Hz.

3. TIME SERIES CLUSTERING

The algorithm we used to cluster time series data is
a variation on the Segmental K-Means algorithm [6].
The procedure is as follows:

1. Given: N , the number of models, T the number
of samples allocated to a state, S, the number
of states per model, f the expected rate of class
changes.

2. Initialization: Select N segments of the time se-
ries each of length T*S, spaced approximately
1=f apart. Initialize each of the N models with a
segment, using linear state segmentation.

3. Segmentation: Compile the N current models into
a fully-connected grammar. A nonzero transition
connects the �nal state of every model to the ini-
tial state of every model. Using this network, re-
segment the cluster membership for each model.

4. Training: Estimate the new model parameters
using the Forward-Backward algorithm on the
segments from step 3. Iterate on the current seg-
mentation until the models converge and then go
back to step 3 to resegment. Repeat steps 3 and
4 until the segmentation converges.

We constrained ourselves to left-right HMMs with
no jumps and single Gaussian states.

3.1. Time Hierarchy

Varying the frame-state allocation number directs the
clustering algorithm to model the time-series at varying
time scales. In the Initialization step, this time scale is
made explicit by T , the frame-state allocation number,
so that each model begins by literally modeling S � T
samples. Of course, the reestimation steps adaptively
change the window size of samples modeled by each
HMM. However, since EM is a local optimization the
time scale will typically not change drastically from
the initialization. Hence, by increasing the frame-state
allocation we can build a hierarchy of HMMs where
each level of the hierarchy has a coarser time scale than
the one below it.

3.2. Representation Hierarchy

There are still important structures that just clustering
at di�erent time scales will not capture. For example,
suppose we wanted a model for a supermarket visit, or
a walk down a busy street. As it stands, clustering will
only separate speci�c events like supermarket music,
cash register beeps, walking through aisles, for the su-
permarket, and cars passing, crosswalks, and sidewalks
for the busy street. It will not capture the fact that
these events occur together to create scenes, such as the
supermarket scene, or busy street scene. (Notice that
simply increasing the time scale and model complexity
to cover the typical supermarket visit is not feasible
for the same reasons that speech is recognized at the
phoneme and word level instead of at the sentence and
paragraph level.)



We address this shortcoming by adapting a hierar-
chy of HMMs much a like a grammar. So beginning
with a set of low-level hmms, which we will call object
HMMs (like phonemes), we can encode their relation-
ships into scene HMMs (like words). The process is as
follows:

1. Detect: By using the Forward algorithm with a
sliding window of length �t, obtain the likeli-
hood,

L�(t) = P (Ot; � � � ; Ot+�tj�)

for each object HMM, �, at time, t.

2. Abstract: Construct a new feature space from
these likelihoods,

F (t) =

2
64

L1(t)
...

LN (t)

3
75

3. Cluster: Now cluster the new feature space into
scene HMMs using the algorithm from Section 3.

test [1]

4. RESULTS

We evaluated our performance by noting the correla-
tion between our emergent models and a human-generated
transcription. Each cluster plays the role of a hypoth-
esis. A hypothesis is veri�ed when its indexing corre-
lates highly with a ground truth labeling. Hypotheses
that fail to correlate are ignored, but kept as \garbage
classes". (Hence, it is necessary to have more clusters
than \classes" in order to prevent the useful models
from having to model everything.)

In the following experiments we restricted the sys-
tem to two levels of representation (i.e. a single object
HMM layer and a single scene HMM layer). The time
scales were varied from 3 secs to 100 secs for the object
HMMs, but kept at 100 secs for the scene layer.

Short Time Scale Object HMMs

In this case, we used a 3 sec time-scale for each
object HMM and set the expected rate of class changes,
f , to 30 secs. As a result, the HMMs modeled events
such as doors, stairs, crosswalks, and so on. To show
exactly how this worked, we give the speci�c example
of the user arriving at his apartment building. This
example is representative of the performance during
other sequences of events. Figure 2 shows the features,
segmentation, and key frames for the sequence of events
in question. The image in the midde represents the raw
feature vectors (top 81 are video, bottom are audio).

Notice that you can even see the users steps in the
audio spectrogram.

Long Time-scale Object HMMs

Here we increase the time-scale of the object HMMs
to 100 secs. The results are that HMMs model larger
scale changes such as long walks down hallways and
streets.

We give some preliminary results for the perfor-
mance of classi�cation as compared to some hand-labeled
ground truth. Since we did no training with labeled
data, our models did not get the bene�t of embedded
training or garbage-modeling. Hence frequently the
models are overpowered by a few that are not model-
ing anything useful. Typically this is where the system
would make an application-driven decision to eliminate
these models.

As an alternative we present the correlation coef-
�cients between the the independently hand-labeled
ground truth and the output likelihood of the highest
correlating model. The table below shows the classes
that the system was ably to reliably model from only
2hrs. of data:

Correlation
Label Coe�.
o�ce 0.9124
lobby 0.7914

bedroom 0.8620
cashier 0.8325

Long Time-scale Scene HMMs

We also constructed a layer of scene HMMs that
are based on the outputs of the Short Time-scale Ob-
ject HMMs from above. Where before we were unable
to clean classes for more complex events, like the su-
permarket visit and walk down a busy street, now this
level HMMs is able to capture them. The following
table gives the correlations for the best models:

Correlation
Label Coe�.
dorms 0.8024

charles river 0.6966
necco area 0.7495
sidewalk 0.7804
video store 0.9802

Figures 3 and 4 show the model likelihoods for the
models that correlated with \walking down a sidewalk"
and \at the video store". While the video store scene
has elements that overlap with other scenes, the video
store model is able to cleanly select only the visit to
the video store.



Figure 2: Coming Home: this example shows the user entering his apartment building, going up 3 stair cases and
arriving in his bedroom. The system's segmentation is depicted by the vertical lines along with key frames.
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Figure 3: The Sidewalk Scene: above is the indepen-
dently hand-labeled ground truth, below is the likeli-
hood of the most correlated model.
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Figure 4: The Video Store Scene: above is the indepen-
dently hand-labeled ground truth, below is the likeli-
hood of the most correlated model.

5. CONCLUSION

It is pretty clear that the unsupervised clustering of au-
dio/video data is feasible and useful. In addition, the
clustering algorithm in this paper can be easily adapted
to an incremental and pseudo-realtime framework. In-
stead of iterating over all past data, the system can
have a \memory" by only training on a recent window
of data. This implies that the system can then adapt
as new memories habituate.

Our immediate goal is to integrate our system with
a software agent so that the performance of our models
can be grounded in some meaningful context.
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