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ABSTRACT 
In this paper, the signal subspace approach for non-parametric 
speech enhancement is considered. Several algorithms have been 
proposed in the literature but only partly analyzed. Here, the dif- 
ferent algorithms are compared, and the emphasis is put onto the 
limiting factors and practical behavior of the estimators. Experi- 
mental results show that the signal subspace approach may lead to 
a significant enhancement of the signal to noise ratio of the output 
signal. 

1. INTRODUCTION 

In single-microphone speech enhancement techniques such as the 
signal subspace approach [ l ,  2, 3,4], the noise is attenuated out- 
side the band of perceptual importance. Thus, the remaining noise 
is nonstationary (musical noise), and as shown in the compari- 
son, some algorithms have partly met this problem, using modified 
weighting rules. 

Now, let x = ( Z I , Z Z , .  . . , z ~ ) ~  denote the noisy signal vec- 
tor and assume that the noise component nk is additive and un- 
correlated with the speech signal sk. A set of time shifted vectors 
can be organized in a data matrix X = S + N E RmX" with 
Toeplitz structure (m 2 n), where we assume broad-banded noise 
so rank(N) = n and that the speech signal can be described by 
a low order model, giving a numerically rank deficient matrix S 
with rank(S) = p < n. This observation can be used to estimate 
the clean signal from the noisy signal in a signal subspace of di- 
mension p. Traditionally, the SVD is used in frame-based methods 
to decompose the vector space as [ 1,2,  3,4] 

x = ( UXl ux2 ) ( "0"' & ) ( ;g: ) (*) 

which in recursive methods, can be efficiently approximated by the 
rank-revealing ULV decomposition (RRULVD) [4] 

x =  ( UXl uxz ) ( "F",' G9, ) ( ) (2) 

where the decompositions are partitioned according to the signal 
subspace dimension. In practice, a clean speech frame also re- 
sults in a matrix that span the total space, however, the quality 
of the speech is mainly associated with the formants, which are 
represented by the pairs of singular values in the first part of the 
singular spectrum or in the RRULVD case, by the lower triangular 
matrix L x l .  The matrix dimensions (m, n) must be chosen so the 
4-5 most important formants can be separated, e.g., n = 20 and 
p = 12 (see the complete analysis in [4]). 
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2. EXPERIMENTAL FRAMEWORK 

Non-parametric linear estimation of the clean signal using signal 
subspace methods can be represented by the general model 

(3) 

where the transformation Y = XVx approximates the Karhunen- 
Loeve transform. Thus, the filter matrix W is applied to X ,  and 
the enhanced vectors are combined using the overlap and add syn- 
thesis approach (averaging along the diagonals). The gain matrix 
GI depends on the estimation method as shown in Table 1 for the 
Least Squares (LS), Minimum Variance (MV) [5], Time Domain 
Constrained (TDC) [2] and Spectral Domain Constrained (SDC) 
[2] case, where the last three are based on a white noise assump- 
tion, i.e., NTN = u&iseIn. Note, that the LS estimator results 
in the lowest possible signal distortion and in the highest possible 
residual noise level ( P / ~ ) U & ~ ~ ~ ,  while the MV estimator (Wiener 
gain function) is the optimal linear estimator, which gives the min- 
imum total residual power. The TDC estimator keeps the residual 
noise power below some threshold while minimizing the signal 
distortion. Thus, this estimation criterion will control the musi- 
cal noise component. The SDC estimator is a generalization of 
the TDC estimator which keep the residual noise power in each 
spectral component below some threshold ai. 

The gain gi as function of the spectral SNR, i.e., u ~ , i / ~ ~ o i s e ,  
can be used to characterize the different estimation methods as 
shown in Fig. l(a). Fig. l(b) shows estimated Wiener gains ob- 
tained from a noisy sentence, where a large variance in the es- 
timated gains is observed for small S N R s ,  which illustrates the 
importance of explicitly introducing a signal subspace. Thus, the 
performance depends on the estimation of unoise, i.e., the TDC 
and SDC based gain functions can be expected to perform better 
as illustrated in Fig. I(c), since they are less sensitive to estimation 
errors. 

The quality of the linear estimators are characterized by the 
residualmatrixR = S(W-I,)+NW = R s + R ~ , i . e . , s i g n a l  
distortion denoted by the matrix Rs and residual noise denoted by 
the matrix R N ,  as shown in Fig. 2(a) for the noisy voiced speech 
frame in Fig. 2(c). The minimum residual power is obtained for 
the MV estimator (02 = 2) and is dominated by the residual noise, 
however, by choosing the perceptually more meaningful parame- 
ter 0 2  = 5, the signal distortion will become dominant for the 
price of a slightly increase in the level of the total residual signal. 
Thus, in this case less noise accompany the low energy spectral 
components of the speech in accordance to the masking threshold 
of the auditory system (see Fig. 2(b)), i.e., both the quality and 
intelligibility of the noisy signal can be improved. 

9 = XW = XVx1GiV:L 
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Figure 1 (a) Wiener and SDC gain functions for different choices of P2.  (b) Estimated Wiener gains {gi}fzl of 165 speech frames (X E R'41x20) 
obtained from a noisy speech sentence (white noise and SNR=I(MB). (c) For the SDC estimator (Pz  = 5). 

The consequence of prewhitening in signal subspace meth- 
ods is illustrated in Fig. 2(c). Obviously, the magnitude of the 
prewhitened speech frame are rescaled in accordance with the noise 
spectrum, so in general, the effect of prewhitening is a (maybe 
large) bias of the signal subspace. This is a major limitation of 
subspace methods which is often overlooked. 

3. SIMULATIONS AND RESULTS 

Comparisons of signal subspace based estimators are made on the 
basis of the improvement in segment SNR, tracking capability, and 
informal listening tests. The experiments illustrate the differences 
in speech enhancement that may arise from the use of different es- 
timation strategies, decomposition methods (SVD or RRULVD) 
and window types (sliding or exponential). Also the effect of 
prewhitening is evaluated. The experiments have been performed 
by using a rectangular analysis window consisting of 160 samples, 
i.e., with data matrix dimensions (m,n) = (141 x 20). and by 
using a fixed signal subspace dimension p = 12. The noise matrix 
N (or onojse) is obtained from an initial noise-only segment. 

A speech sentence contaminated by white noise is shown in 
Fig. 3(a), and Fig. 3(b) - 3(c) show the enhanced speech signals 
obtained by the MV and SDC estimator, respectively. From Fig. 
4(a), it is seen that the segmental S N R s  for the SDC estimator 
have been improved in most cases. Only frames with high SNR 
will not be enhanced due to the signal distortion obtained by in- 
troducing a signal subspace. Note also that the variations among 
the segmental SNRs are reduced, and that the SNRs of the en- 
hanced signal are mainly above 0 dB. The latter observation rely 
on the actual gain function, which sets spectral components be- 
low 0 dB to zero (see Fig. l ( ~ ) ) .  Fig. 4(b) illustrates the improve- 
ments in segmental SNRs for the enhanced waveforms. The LS 
estimator gives a nearly constant improvement n / p  as expected 
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from the p-dimensional signal subspace, while the two other meth- 
ods perform considerably better. At low SNRs, the improvements 
obtained by the SDC estimator are significantly larger than the 
ones obtained by the MV estimator, which can be explained by 
the practical behavior of the estimators (see Fig. 1). Fig. 5 shows 
the input-output relations of segmental SNRs for the MV and SDC 
estimators. Clearly, the improvement in output SNR increases for 
decreasing input SNR, and no improvement can be expected in 
frames with SNR close to 20 dB. Note again the 0 dB limit for the 
SDC estimator. 

In the colored noise case, Fig. 6(a) illustrates the difference 
between SNR improvements obtained by estimators based on the 
QSVD and estimators based on the SVD. Thus, for most frames, 
the QSVD approach with integrated prewhitening delivers the best 
result, so in spite of the bias of the signal subspace as discussed 
previously, it is still better to use a signal subspace method with 
prewhitening, than without. However, the SNR improvement plots 
in Fig. 6(b) demonstrates a significant lower performance com- 
pared with the white noise case in Fig. 4(b). This can also be 
observed from Fig. 5(c) which shows the input-output relations of 
segmental SNRs for SDC estimator corresponding to the example 
in Fig. 5(b). 

When the RRULVD-based estimators are used to enhance the 
noisy speech signal in Fig. 3(a), the improvements in segmental 
SNRs compared to the SVD approach is shown in Fig. 7(a) for the 
MV based estimation. Obviously, the recursive RRULVD method 
gives the best results, when there is a change in the dynamics of the 
signal, while the frame-based SVD approach is more accurate in 
stationary periods. However, as illustrated in Fig. 7(b), the varia- 
tions between the two methods are larger in the colored noise case. 
The same observation is made in Fig. 7(c), when the RRULVD- 
based algorithm using a sliding window is compared with the one 
based on an exponential window (forgetting factor p = 0.99). 
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Figure 2 (a) Power of the residual noise rlI. and the signal distortion rs for the SDC estimator (p = 12) as function of ,&. The data matrix X E IR141 2o 

represents a voiced speech frame of 160 samples added white noise (global SNR=SdB). (b) LPC-based magnitude spectra of the residual noise. (c) LPC- 
based magnitude spectra for a voiced speech frame (solid), AR(1,-0.7) noise process (dashed), and the speech prewhitened with the noise frame (dash-dot). 

(a) (b) (C) 

Figure 3 (a) Noisy speech sentence contaminated by white noise (SNRSdB). (b) Enhanced speech signal obtained by the MV estimator. (c) Enhanced 
speech signal obtained by the SDC estimator (pz = 5).  

4. INFORMAL LISTENING TEXTS 

Informal listening tests have been carried out for a number of 
speech sentences corrupted by white and colored noise. At higher 
noise levels (global SNR<lO dB), the enhanced speech signals 
obtained by the LS and MV methods are seriously affected by the 
musical noise. For the TDC and SDC estimators, the informal lis- 
tening tests confirm that musical noise and/or audible distortions 
are still present in the processed speech. For example, the SDC 
estimator with pz = 5 results in enhanced speech almost free of 
musical noise, but with a significant distortion of the speech. In 
the case with colored noise, the audible speech distortion has in- 
creased and the musical noise is now dominated by low frequen- 
cies due to the bias of the signal subspace. 

In the case of spatially uncorrelated noise, it is possible to 
eliminate the musical noise by using a multi-microphone solution, 
i.e., applying speech enhancement in each channel followed by 
summing of the outputs. Then the highly colored residual noise as 
shown in Fig. 2(b) will be whitened. Informal listening tests us- 
ing four microphones confirm that the enhanced speech are almost 
free of both musical noise and speech distortions. 

5. SUMMARY 

The subspace-based noise reduction algorithms have been applied 
successfully to continuous speech embedded in white noise as well 
as colored broad-band noise. It has been demonstrated that the 
SVD-based signal subspace approach is able to achieve satisfac- 
tory improvements in the speech quality. Furthermore, arguments 

have been given for both introducing an recursive approach like 
the RRULVD, and for using a sliding window. In the colored noise 
case, the performance is highly dependent on the noise statistics. 
Thus, a noise process dominated by the same frequencies as the 
speech, will result in a less reliable algorithm. Furthermore, i t  
should be emphasized that subspace techniques are a compromise 
between musical noise and signal distortion, and that this is less 
critical in combination with multi-channel solutions. 
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(a) (b) 
Figure 4 (a) Segmental SNRs of the noisy signal and the SDC based enhanced waveform shown In Fig. 3. (b) lmprovement in segmental SNRs for the 
enhanced waveforms obtained by the LS (7 = 0), MV (7 = 1) and SDC (/32 = 5) estimators. 
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Figure 5 Segmental SNRs of the enhanced speech signal as function of the segmental SNRs of the noisy signal. (a) Using the MV estimator. (b) Using the 
SDC estimator (82 = 5). (c) As (b) but obtained by the QSVD in the colored noise case using an AR(1,-0.7) noise process (global SNR=SdB). 
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(a) (b) 
Figure 6 (a) Difference between segmental SNRs of estimates obtained by using the QSVD and SVD algorithms, i.e., SNRQ~~D/SNR~W. The colored 
noise is an AR(1,-0.7) process (global SNR=SdB). (b) Improvement in segmental SNRs for the QSVD based estimators. 
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(a) (b) (C) 
Figure 7 (a) Difference between segmental SNRs of enhanced speech (MV estimator) obtamed by the RRULVD and the SVD, i e ,  SNR,QRULVD/SNRSVD 
(b) As (a) but in the colored noise case obtained by the RRULLVD and the QSVD, i.e., SNR,QR~LLW/SNRQSW. (c) Difference between segmental SNRs of 
enhanced speech (MV estimator) obtained by the RRULVD using a sliding and exponential window (/3 = 0.99), respectively, I.e., SNR,J,/SNR, 
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