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Abstract: In this paper, a robust M-estimate adaptive filter for 
impulse noise suppression is proposed. The objective function 
used is based on a robust M-estimate. It has the ability to 
ignore or down weight large signal error when certain 
thresholds are exceeded. A systematic method for estimating 
such thresholds is also proposed. An advantage of the 
proposed method is that its solution is govemed by a system of 
linear equation. Therefore, fast adaptation algorithms for 
traditional linear adaptive filters can be applied. In particular, a 
M-estimate recursive least square (M-RLS) adaptive algorithm 
is studied in detail. Simulation results show that it is more 
robust against individual and consecutive impulse noise than 
the MN-LMS and the N-RLS algorithms. It also has fast 
convergence speed and a low steady state error similar to its 
RLS counterpart. 

I. Introduction 

Recently, there are considerable interests in studying 
adaptive filtering algorithms that are robust to impulse noise 
and interferences. Such impulse noise can be due to natural or 
man-made electromagnetic sources [l]. Under this adverse 
condition, the performance of the linear adaptive filters can 
deteriorate significantly. Nonlinear techniques are often 
employed to reduce these adverse effects of the impulse noise. 
For example, median filtering has been applied in the LMS 
algorithm to protect the filter weights from the effects of 
impulsive noise [l 11. Another class of nonlinear technique is 
to smooth out the momentary fluctuation of the error signal in 
conventional adaptive filters by means of some nonlinear 
clipping functions. These include the nonlinear LMS algorithm 
(N-LMS) and the nonlinear recursive least squares algorithm 
(N-RLS) proposed in [6] and [7], respectively. A mixed-nom 
adaptive filter using a combination of L, and L, norm as the 
objective function has also been proposed recently [2,3,4]. 
Using the stochastic gradient method, an algorithm similar to a 
combination of the Least Mean Square (LMS) and the Least 
Absolute Difference (LAD) algorithms, called the mixed-nom 
LMS algorithm (MN-LMS), is obtained. The method is further 
extended to study the system identification problem in the 
presence of impulsive noise or noise with heavy tailed 
distribution. This algorithm is robust against the impulse noise 
occurred in the desired signal [2]. However, due to the LMS 
nature of the algorithm, it usually suffers from slow 
convergence speed when the input is coloured. 

In this paper, a new adaptive filter using the robust M- 
estimate as the objective function is proposed. M-estimate, like 
the median, belongs to the general class of robust statistical 

estimates, which are designed to perform robust estimation 
under model mismatch or the presence of outliners. A block- 
based adaptive filter based on the Huber M-estimate objective 
function has previously been proposed in [lo]. The Huber 
measure uses the 4 norm when the signal error is smaller 
than a certain threshold and the 4 norm when the error signal 
is large. The adaptive filter down-weights the outliners and 
behaves like a least squares filter on impulse free condition. 
The M-estimate proposed in this paper is differed &om the 
Huber estimate in that the error will be completely ignored if 
the signal error is larger than certain threshold. A systematic 
method for estimating such thresholds is also proposed. The 
solution is govemed by a system of linear equation similar to 
the conventional normal equation. Using this M-estimate 
normal equation, it is possible to derive different fast 
adaptation algorithms as in the traditional linear adaptive 
filters. In particular, a M-estimate recursive least square (M- 
RLS) adaptive algorithm is proposed. Simulation results show 
that the proposed M-RLS algorithm in this paper is more 
robust against individual and consecutive impulse noise than 
the MN-LMS and the N-RLS algorithms. It also has a low 
steady state error similar to the RLS algorithm 

IL Overview 
Fig.1 shows the block diagram of a FIR adaptive filter 

being used in a system identification setting. x ( n )  and y ( n )  

are, respectively, the input and output of the unknown system 
The output of the adaptive filter is given by 

where, w(n)=[w,(n)  ,..., wL-,(n)Jr ,and x(n)  = [x (n)  ,.... x ( n - L + I ) ] '  

are the weight and signal vectors, respectively. d(n)  is the 
desired signal and is assumed to be conupted with additive 
Gaussian noise, and probably impulse noise. The problem is to 
identify the coefficients of the unknown system by minimizing 
certain objective function or distortion measure. In the 
conventional least squares adaptive filter, the exponentially 
weighted square error is used as the cost function, 

jqn) = w'(n)X(n) . (1) 

~ ( n )  = i X + e ( i ) e * ( i )  (2) 
;=I 

where, O C A  I 1 is the forgetting factor, and 
e(n)  = d ( n ) -  j ( n )  is the instantaneous error. Differentiating 
(2) with respect to w(n) and setting the derivative to zero, one 
gets the normal equation, 

R ( n ) i ( n )  = r(n), (3) 
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where, R ( n ) = A Z - ' X ( i ) X T ( i )  is the autocorrelation matrix of 

X(n) and r(n) = A Z - ' d ( i ) X ( i )  is the cross-conelation vector. 

Well-known techniques for solving (3) include the recursively 
least square (IUS) algorithm and its various extensions [5]. In 
practical situations, y(n )  or x(n)  may be corrupted by 
additive noise whose nature is impulsive. In this case, R(n) 
and/or r(n), e(n)  and hence i ( n )  , will exhibit momentary 
fluctuation which might take many iterations to recover, 
affecting the convergence performance of the adaptive filter. 

In the non-linear recursive least square algorithm (N- 
RLS) [7], a non-linear clipping function, f,(.), is applied to 
e(n)  to reduce its influence if e(n)  is large. More specifically, 
the coefficient update equation is, 

(4) 

, = I  

i=l 

i ( n )  = w ( n  - 1) + f,(e(n))K(n), 

vector. The parameter, h , is estimated from the variance as 
follows, 

h = 2.246,(n), 

c?:(n) = ~~c?. ,Z(n- l )+ ( l - i l , )e (n)e ' (n) .  (5)  

In the mixed-norm LMS (MN-LMS) algorithm, the 
weight vector is updated to minimize. a combination of the L., 
and L, norm of the error [2], 

i ( n )  = i ( n  - 1) + p[A(n)e(n) + (1 - A(n))sign(e(n))X(n) (6) 
where, p is the stepsize and A(n) is a mixing parameter that 
determines the relative importance of the two distortion 
measures. In the presence of the impulsive noise, e(n) will be 
very large and the weighting of the & norm will be decreased 
to minimize the adverse effects of the noise pulses. On the 
other hand, the weighting of the L, norm will dominate in the 
noise free case to reduce the steady state error. Assuming that 
e(n) is Gaussian, A(n) can be estimated as [2], 

(7) 
where erJc(.) is the complementary error function. Here, the 
robust estimate of the error signal variance &=(n) can be 

A(n) = 2ectic+(n)l/6, (n) )  . 

calculated as d,(n) = ,/O'(n)AO(n)/(N, -3) , where 
A = diag(O,l.l,.~.,l,O) is the diagonal trimming matrix, 
O(n) = sor?[e(n);..,e(n - No +1)], and sorr[..] is the operator 
that rearranges the components in the square bracket in 
ascending order. The limitations of this algorithm are the slow 
convergence speed of the LMS-type algorithm and the 
increased steady-enor, due to the use of the mixed-nom 

III. Robust M-estimate RLS Algorithm 
The M-estimator proposed in this paper is given by, 

The objective function is, 

(9) 

As shown in Fig. 2, p(.) is an even real-valued function. It is 
quadratic when le(i)l is smaller than 5 . For values of Ie(i] in 
the interval [t, A], the function is linear. For values of /.(id 
greater than A , the function is eqwd to a constant, c = 6 / 2 . 
It becomes apparent that the M-estimator is capable of 
suppressing outliers with large amplitude. Parameters 5 and 
A control the degree of suppression of the outliers. They are 
usually chosen according to the applications or estimated 
continuously. J ( n )  , as defined as (9), helps to s m t h  out 
momentary fluctuation due to impulsive interferences and 
model mismatches. Using (8), (9) can also be rewritten as, 

k-ie(i)e*(i)+ ~ , ~ - i c  (10) 

Due to the nonlinear function, (10) will have multiple solutions 
but they are close to each other. Differentiating both sides of 
(10) and setting dJ(n)/&, ( n )  to zero, one gets the following, 

+51& 1W)IDA 

L 
% (n)ie,3$-ix(n - k)x(n - i )  , 

= 5 sgn[e(i)lx(n - i ) +  A"-'d(n)x(n-i) (11) 

R,(n)G(n) = r , (n) .  (12) 

i+(+ I.,?% 
or in matrix form, 

(12), which is referred to as the Mestimate normal equation 
here, can be viewed as the counterpart of the normal equation 
(3). Since (12) is linear, traditional adaptive filtering 
algorithms such as the recursive least square algorithm (IUS) 
can be used to solve (12) by properly updahng R,(n) and 
r,(n) . Depending on the values of e(i) , there are three 
different cases for updating R,(n) and r, ( n )  , as suggested by 
(1 1). 
Case 1: le(n)l I 5. In this case, the error function is quadratic 
and the update equation is similar to the conventional RLS 
algorithm 

R,(n)=AR,(n-l)+X(n)XT(n) (13) 
r, ( n )  = A r, ( n  - 1) + d ( n ) X ( n )  (14) 

It is natural to use fast adaptive algorithms to update the filter 
weight recursively. Here, the conventional RLSA is adopted 
for its fast convergence speed. 
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Case 2: 5 < le(n)l S A .  Here, the L, norm of the error is used. 
R,(n) remains unchanged, R,(n) = R,(n-1), and the cross 
correlation vector is updated as follows, 

Since R,(n) is unchanged, the inverse in the previous 
iteration can be used to update the new weight vector, 

3 ( n )  = R;(n-l)r,(n). (16) 

Case 3: le(n] > A . In this case, the error will be completely 
ignored and updatmg is not necessary. 

(17) 
The remaining problem is to estimate the parameters 5 

and A .  We fist compute the probability of e(n) greater than 
a given threshold T. Though the distribution of e(n) is 
unknown, it is assumed to be Gaussian distributed when there 
is no outlier, so that, 

rN (n) = rN(n - 1) + Ssgn(e(n))X(n) (15) 

R,(n) = R,(n-1), r,(n) = r, (n-1), 3 ( n ) =  3 ( n  - 1). 

where erf(.) is the error function, and 6f(n) is the estimated 
variance. The probability of e(n) greater than 5 and A are 
therefore ee and e,, respectively. By appropriate choice of 
ec and e,, the values of 4 and A can be determined. In this 
work, e, and ea are chosen as 0.2 and 0.1, respectively, so 

that we have 80% confident to down weight the enor in the 
interval k , A ]  and 90% confident to reject it completely when 
e(n) > A . The traditional estimate of 6: can be computed by 
the second equation in (5), which is however not robust in 
impulse noise environment because the impulses can increase 
the variance of the error signal and hence the value of 5 and 
A .  Therefore the impulsive noise cannot be removed by the 
nonlinear function, p(.) .  Here, 6: is estimated by [l 11 

6: =TouD(n) = 1 . 4 8 3 * m e d ~ l e 2 ( i ) - m e d ( e 2 ( ~ ) ~ ) ,  i+i I 
i , j=n,. . . ,n-N,+l,  (19) 

where TMm(n) is the median absolute deviation from the 
median (MAD) of the block data in the data window with 
length No and med(.) is the median operator. 

VL Simulation Results 
In order to evaluate the performance of the proposed M- 

RLS algorithm, simulation is performed on the system 
identification problem as shown in Fig. 1.  The unknown system 
is modelled as a FIR filter with impulsive response [0.2,- 
0.4,0.6,-0.8,1,-0.8,0.6,-0.4,0.2]. The adaptive filter is assumed 
to have the same length as the unknown system, i.e. L = 9 . 
The window length N, is chosen as L in our simulation. The 
input signal is a coloured signal generated by passing a zero- 
mean white Guassian process through a linear time-invariant 

filterwithcoefficients f, =.5*[l+cos(2rr(k-2) /w,] ,  k=1,2 ,3  [5]. 
w, is chosen to be 3.5 and the eigenvalues spread of the 
correlation mahix R is approximately 46.8. The additive 
noise n(n) is assumed to be Gaussian with zero-mean and 
variance U:. The signal to noise ratio at the system output is 
given by SNR = 201og10(a~/a~) ,  where a: is the variance of 
the output of the unknown system The impulses are generated 
from the same multiplication model proposed in [2]. The 
initial weights of the adaptive filter are set to zeros and the 
SNR is 50dB. The normalised square norm of the weight 
error vector, (NSWE), is given by, 

which is used as a measure of the convergence performance. 
Here, w,. is the irh coefficient of the unknown system and 
@ ( n )  is its estimate at time instant n . In our experiments, the 
NSWE is obtained by averaging 20 independent runs. 
Example 1 

This simulation is set up to compare the convergence 
performance of the M-RLS, RLS, N-RLS and MN-LMS 
algorithms. The impulses are generated with anival probability 

is shown in Fig.3a where impulses appear at 
n = 150,250,330,420. 1 and 1, are chosen to be 0.99. For N- 
RLS, the scalar parameter, h, is estimated as in (5). For MN- 
LMS, the stepsize, p , is set to 0.025 and the mixing 
parameter, I @ ) ,  is estimated as in (7). The NSWE results are 
plotted in Fig.4. It can be seen that for n =1:149, the 
convergence of the M-RLS, N-RLS and RLS are identical 
with the same adaptation process. When impulsive noise is 
present in the desired signal, the convergence of the RLS is 
significantly affected, showing its sensitivity in impulse noise 
environment. The MN-LMS is able to suppress the impulses 
but its convergence speed is much slower than the other three 
algorithms. Both the M-RLS and the N-RLS algorithms are 
able to robustly identify the unknown system with comparable 
convergence performance. 
Example 2 

This simulation is specifically performed to investigate 
the performance of these algorithms when successive impulses 
appear in the desired signal for the same system identification 
problem The impulses are generated with arrival probability 
par = 2* 10.' and variance A(n) = 200. The desired signal d ( n )  
is plotted in Fig.3b where impulses appear at n = 250,330,420 
and n = 150,151,153,155,156. All other parameters are identical 
to example 1. The NSWE results are plotted in FigS. 
Comparing Fig.5 and Fig.4, it can be concluded that 

par = and variance A(n) = 200. The desired signal d ( n )  
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successive impulses have nearly no influence on the 
convergence performance of the M-RLS. On the other hand, 
the convergence performance of N-RLS is degraded even 
though it can suppress individual impulses occurred at 
n = 250,330,420. The performance of the MN-LMS is slightly 
impaired. It can be concluded that the proposed M-RLS 
algorithm can provide robust identification of the unknown 
system even in the presence of consecutive impulses. It also 
shares the fast convergence speed and the low steady-state 
error of RLS-type algorithms. 

V. Conclusion 
In this paper, a robust M-estimate adaptive filter for 

impulse noise suppression is presented. The objective function 
used is based on a robust M-estimate. It has the ability to 
ignore or down weight large signal error when certain 
thresholds are exceeded A systematic method for estimating 
such thresholds is also proposed. An advantage of the 
proposed method is that its solution is govemed by a system of 
linear equation. Therefore, fast adaptation algorithms for 
traditional linear adaptive filters can be applied. In particular, a 
M-estimate recursive least square (M-RLS) adaptive algorithm 
is studied in detail. Simulation studies demonstrate that the 
proposed algorithm can provide robust identification of the 
unknown system and fast convergence speed in individual and 
consecutive impulse noise environment. 
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