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ABSTRACT 
This paper focuses on the spectral representation of the sub-band 
cepstrum in relation to that of the full-band cepstrum. Through 
theoretical analysis it is shown that the net spectral information 
content of the cepstral coefficients with the same index in 
different sub-bands is only comparable to that of a full-band 
cepstral parameter whose quefrency is given by the product of 
that specific index with the number of sub-bands. A new method 
is proposed to tackle this deficiency of the sub-band cepstrum 
when it is used in the context of text-dependent speaker verifi- 
cation. The experimental investigations have clearly demon- 
strated the effectiveness of this method in speaker verification. 

1. INTRODUCTION 
In the conventional speech feature extraction process, each 
feature vector is generated by utilising the entire frequency spec- 
trum of a given speech frame. Therefore, when the speech signal 
is partially degraded by an anomaly which is localised in time 
and frequency, the feature vectors that are generated within the 
time-span of that anomaly are completely contaminated. In such 
cases, however, it is likely that the unaffected parts of the 
spectral regions contain useful information for speaker discrimi- 
nation. A logical way to tackle this problem is to split the entire 
frequency domain into a number of sub-regions and to use the 
spectral information contained in each of these regions to 
generate independent feature vectors. This technique is com- 
monly known as the sub-band analysis and has been studied in 
the context of both speech and speaker recognition [3][41[7][10]. 

The use of sub-band analysis is also motivated by the fact that i t  
closely resembles the front-end processes involved in human 
perception [ 11. Moreover, the technique provides a way to 
emphasis the sub-bands that are more specific to the speaker and 
gives the possibility of relaxing the conventional time-synchrony 
assumption between the sub-bands [4]. 

Cepstrum has been the predominant speech feature type in both 
speech and speaker recognition. It therefore seems natural that 
the sub-band analysis is incorporated in the methods for extrac- 
ting this type of feature [3][4][7][10]. This paper takes a closer 
view of the sub-band cepstrum in the context of text-dependent 
speaker verification. 

The paper is organised in the following manner. The next section 
provides a review of the sub-band based speaker verification 
systems operated in the text-dependent mode and discusses 
various related issues. Section 3 focuses on the sub-band cepstral 
parameters. Section 4 gives a description of the utilised speech 
database. The experimental work and results are detailed in 
Section 5 ,  and the overall conclusions are presented in Section 6. 
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2. SUB-BAND BASED TEXT-DEPENDENT 
SPEAKER VERIFICATION 

In a typical sub-band based speaker verification method, each 
registered speaker is represented using a set of reference models 
i n  which each model is formed using the feature vectors of a 
particular sub-band. A simple strategy for text-dependent verifi- 
cation is to independently time-align the given sub-band vector 
sequences to the corresponding reference models, and to use the 
resulting scores to make the final decision. However, the time- 
warping paths obtained in this manner are less reliable because a 
sub-band vector consists of less spectral information than that of 
the full-band. 

A possible method to tackle this problem is to recombine the 
intermediate outcomes of the separate time-alignment processes 
at certain pre-defined stages. In theory, it would be ideal to set 
each of these recombination stages to correspond to a certain 
rime segment, such as a phoneme, syllable or word [4]. This will 
ensure the time-resynchrony of the speech events in different 
sub-bands at recombination and thereby will prevent the need to 
reintroduce the time-synchrony assumption between sub-bands. 
in  practice, however, i t  has been found that the recombination 
stages set on this criterion has performed poorly compared to the 
simple frame-level recombination [IO]. This may be due to the 
fact that many certain time segments are relatively too long in 
duration and thus incapable of limiting the extensive use of 
partial information. Another problem is in reliably defining the 
boundaries of the certain time segments. In this study it was 
decided to choose the simple frame-level recombination. 

Another critical issue in the sub-band based speaker verification 
is the recombination process itself. Ideally, for this purpose, the 
scores of different sub-bands are to be fused in a constructive 
way so that sub-bands that are specific to the target speaker are 
emphasised while the contaminated ones are de-emphasised or 
removed. The main step in accomplishing this is to determine a 
weight for each sub-band score. In the literature, there have been 
a number of proposals for determining these weights [4][10]. A 
brief description of each of these techniques and.an analysis of 
their strengths and weaknesses are given below. 

One method to compute the required weights is to use the a priori 
knowledge of the sub-bands effectiveness in speaker discrimina- 
tion. This knowledge may be gained simply through a series of 
experiments using a given set of speech data [lo]. However, a 
more formal method is through discriminative training 141. In 
general, this technique is expected to improve the verification 
accuracy by appropriately emphasising the sub-bands that are 
more specific to the target speaker. However, since the weights 
are computed prior to the verification process, if a test utterance 
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(produced by the true speaker) is contaminated in the regions 
where the weights are relatively high, then the approach can lead 
to an increase in the false rejection error. An obvious way to 
tackle this problem is to incorporate an estimated level of 
contamination of the test utterance in the process of generating 
the weights. 

If the contamination is due to additive band-limited noise, then 
the recombination weights may be computed as SNR dependent 
[4]. An important issue in this approach is the estimation of the 
noise levels. A common method for this purpose is the use of the 
noise spectrum in the last few non-speech segments preceding 
the speech utterance. In this technique, it has to be assumed that 
the interfering noise remains stationary during speech activities. 
Obviously, this cannot be the case in many practical applications. 
To tackle this problem a technique has been introduced [8] which 
involves the use of spectral magnitude distributions of the band- 
limited speech segments. The estimation of the noise levels is in 
fact based on the peak shifts observed in these distributions. A 
disadvantage of this technique is that, for accurate estimation of 
the noise level, a relatively large speech segment (typically in the 
range of 1-2 s) is required. 

In practice, additive band-limited noise is one of several types of 
anomalies that cause the sub-band contamination. Other such 
anomalies include those resulting from speaker generated 
variations and changes in the environmental and transmission 
channel conditions. An effective method to tackle the problems 
caused by time and frequency localised anomalies in the sub- 
band technique has been proposed by the authors in an earlier 
study [lo]. This technique is referred to as dynamic recom- 
bination weight (DRW) and is based on the use of a set of back- 
ground speaker models capable of competing with the sub-band 
model set of the target speaker. The competing speaker model set 
can be selected based on its closeness to either the target model 
set or the test utterance. For the purpose of this study, the second 
approach was chosen because of its superior ability in reducing 
the false acceptance error [Z]. 

As reported in [IO], this technique can be incorporate into the 
HMM framework by modifying the Viterbi algorithm as follows: 

Step 1 : Initialisation : 
I S  
s s=l 

4 (1) = --clog(? ( S P A  (0 , l ) )  

for j = 2 to J ,  SI(;) = --oo 

Step 2 : Muin Recursion : for t = 2 to T and j = I to I 

Step 3 : Termination : final score 
1 = max[b,(j)] (4) 

ISjSJ 

where asij are the state transition probabilities associated with the 
sth sub-band model, bsj(O,) is the probability for observing the th 
test vector of the sLh sub-band in the J'~ state of the slh sub-band 
model, J is the number of states in each sub-band model, Tis the 
number of test vectors in each sub-band, S is the number of sub- 
bands, and w,(s) are the recombination weights of the form 

( 5 )  
I L  

logw,(s) = - - x l ~ g b ~ ~ ~ . , ~ ( O ~ , )  
L !=I 

where L is the number of speakers in the selected competing set 
andb;(,,,,(O,,) is the probability for observing the rth test vector of 
s'h sub-band in the q(s,r) state of the lth competing speaker 
models. 

3. SUB-BAND CEPSTRUM 
As noted in the introduction, the cepstrum is the most commonly 
used type of speech feature in sub-band analysis. This section 
focuses on the generation of various types of sub-band cepstral 
features in order to determine their spectral representations in 
relation to that of the corresponding type of full-band cepstral 
parameters. 

The first step in generating any type of sub-band cepstral features 
is the computation of the magnitude spectrum. In order to 
accomplish this, the utterances are usually pre-emphasised using 
a first-order digital filter. Each utterance is then segmented into 
fixed size frames at predetermined intervals using a Hamming 
window, and subjected to a fast Fourier transform (FFT). 

One method of determining the sub-band cepstral coefficients is 
first to compute the logarithm of the magnitude spectrum and 
then group them according to the preset frequency divisions. The 
required cepstral parameters are obtained by independently appl- 
ying the inverse FFT (IFFT) in each of these groups. Since the 
logarithm of the magnitude spectrum is real and even, the IFFT 
formula to compute the sub-band cepstral coefficients can be 
expressed in the following form: 

where cc6(s ,n)  is the nlh cepstral coefficient of the slh sub-band, 
N is the number of log spectral magnitudes in the full-band and 
Y(k)  is the kth log spectral magnitude. In this formulation i t  is 
assumed that the frequency range is divided into S, non- 
overlapping, equally spaced sub-bands. 

From the log spectral magnitudes the full-band cepstral coeffi- 
cients can be computed using the following expression: 

1 N-l 

(7) 

By comparing equation (6) and (7), it can be seen that 

(8) 

which indicates that the mean value of the nlh cepstral coefficient 
of a S sub-band system is equal to the (Sn)lh cepstral coefficient 
of the full-band. For example, in a 4 sub-band system, the mean 
values of the first three cepstral coefficients are equal to that of 
the 4Ih,  8Ih and I Zth full-band cepstral coefficients respectively. 

The cepstral parameters obtained in the above manner are 
referred to as the real cepstrum [6]. This is because the method 
uses only the magnitude information of the spectrum and ignores 
the phase information. 

I S  
s s=l 

c(Sn) =-Cc'"s,n) 
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Another way of generating sub-band cepstral coefficients is first 
to analyse the magnitude spectrum using a mel-scale filterbank 
[5 ] .  The log-energy outputs of the filterbank { Y'(k), k = 0,1 ,..,N'-I } 
are then grouped according to the preset frequency divisions. In 
this case, it is common to use the discrete cosine transform 
(DCT) instead of IFFT to determine the cepstral coefficients [5 ] .  
The DCT based formulae to compute the sub-band and full-band 
cepstral coefficients are 

respectively. In this case, only the mean value of each even num- 
bered sub-band cepstral coefficient is equal to that of a full-band 
parameter, i.e. 

1 s  

s s=i 
(11) 

In the case of odd numbered cepstral coefficients, the DCT basis 
function that operates in every even numbered sub-band will be 
negated in relation to that which operates in the corresponding 
portion of the full-band (Figure 1). Thus the relationship in 
equation ( 1  1) does not apply here. However, by considering the 
spectral variation measured by the DCT basis function, it can be 
argued that the spectral information represented by c(S(2n-1)) is 
the same as that of (1/S)~~=,cC6(s,(2n - 1)). 

c(2Sn) = -ZcC"s,2n) 

I I Subbandl I SubbandZ I Subband3 1 Subband4 

Figure 1: Examples of full- and sub-band DCT basis functions. 

The cepstral parameters computed in the above manner are 
commonly referred to as mel-frequency cepstral coefficients 
(MFCCs). In order to maintain consistency with an earlier investi- 
gation conducted by the authors [IO], i t  was decided to use this 
type of feature in the experimental work. In generating these 
features, each utterance was segmented into 32 ms frames at 
intervals of 16 ms using a Hamming window, and subjected to an 
gLh order FFT. 

Another type of cepstral parameter commonly used in sub-band 
analysis is the LPC-derived cepstrum. In the computation of 
these parameters, the spectrum in each sub-band is modelled 
independently using an all-pole filter. The technique to 
accomplish this is known as selective linear prediction [9]. There 
exists an efficient recursive method to compute the required 
cepstral coefficients from the parameters of the modelling filter 
[6]. Although this method inherently uses both the magnitude 
and the phase information of the spectrum, the result is 
effectively a scaled version of the real cepstrum 161. This is due 
to the fact the all-pole filters used in this case are of minimum 
phase. Although this may imply that equation (8) can be applied 
here, this is not necessarily true. The reason for this is that the 

all-pole spectral fit for each sub-band is performed independently 
and thus it  is difficult to tune them to match that of an all-pole fit 
of the full-band spectrum exactly. 

From the above discussions it is evident that in a given sub-band 
system, the local cepstral features cover only a portion of the 
spectral information represented by the full-band cepstral para- 
meters. More specifically. the net effect of cepstral coefficients 
with identical indices in different sub-bands is only equal to that 
of a full-band cepstral parameter whose quefrency is given by the 
product of that specific index with the number of sub-bands. 

One method for tackling this problem is to supplement the sub- 
band cepstral coefficients with the full-band parameters that are 
not covered by them. For example, in the case of a 4 sub-band 
system, the full-band features c(n), n = 1-3,5-7,9-11, may be 
supplemented to the sub-band features. Of course, this prevents 
the complete realisation of the benefits of the sub-band analysis. 
It has, however, been shown that using sub-band and full-band 
features in this manner can lead to a better, speaker verification 
accuracy than that obtainable using any of these individually 
1101. 

In order to tackle this problem more effectively a new method is 
proposed here which involves the use of the cepstral parameters 
generated from a set of different sub-band systems. For example. 
i t  is possible to cover a large part of the spectral information 
represented by the full-band cepstral parameters 1-12, if the 
cepstral coefficients from sub-band systems 2-4 are utilised. In 
this case. the Viterbi algorithm given by equations (1)-(4) could 
be modified by replacing the term 

S-'cs log(w,(s)b,,(O,,)) in equations ( I )  and (3) with 
,=I 

this study a;, is simply set to ] / M I .  M is the utilised number of 
sub-band systems and the subscript m indicates the association of 
the mth sub-band system. This method certainly provides more 
flexibility in dealing with time and frequency localised anoma- 
lies. Its main drawback, however. is the increase in computa- 
tional complexity. For the purpose ofthis study the above two 
methods are simply referred to as modified sub-band analysis 1 
& 2 (MSBAI and MSBA2) respectively. 

4. SPEECH DATA 
The speech data used for this study was a subset of the BT Millar 
speech database [3][10]. The subset consisted of 25 repetitions of 
digit utterances zero to nine spoken by 20 male native English 
speakers of about the same age. The first I O  versions of each 
utterance were reserved for training and the remaining 15 formed 
the standard test set. The adopted subset, which was recorded in 
a quiet environment, had a bandwidth of 3.1 kHz and a sample 
rate of 8.0 kHz. 

5. EXPERIMENTAL INVESTIGATION 
All the experiments were conducted within the HMM framework. 
The HMM topology used was a four state left-to-right structure 
without the "skip" transition and with two Gaussian mixtures per 
state. The first set of experiments was carried out to determine 
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the relationship between the performance of SB-MFCCs (here 
SB stands for sub-band) and the number of sub-bands. As an 
exception, in this part of the investigation, the recombination 
process is performed a t  the word level with unity weights. Figure 
2 presents the results of this study. For reference purpose, this 
figure also includes the results obtained for SB-MFBOs (MFBO 
stands for mel-scale filterbank outputs) under the same experi- 
mental conditions. 
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Figure 2: Equal error rates (EERs) as a function of the number of 
sub-bands for two types of speech features (for each sub-band group, 
the frequency range of each individual sub-band is also shown). 

These results indicate that the two sub-band system is capable of 
achieving better performance than that of the conventional full- 
band system. A consistent increase in the verification error rate is 
observed in both cases when the number of sub-bands is 
increased from 3 to 5.  This increase is relatively larger in the case 
of SB-MFCCs. In fact, i t  is seen that in the case of the 5 sub- 
band system, SB-MFBOs outperform SB-MFCCs. This implies 
that the reduction in the spectral information due to narrowing 
frequency bands is higher in SB-MFCC. 

For the next part of the experimental investigation an adverse 
effect was simulated by contaminating 1/3 of the test utterances 
with a narrow band noise (0-600 Hz). The aim of this part of the 
investigation was to evaluate the relative performance of the 
conventional sub-band cepstrum based analysis (SBCA) and the 
modified versions MSBAI & MSBA2. In the case of MSBAI, a 
4 sub-band system was chosen whereas in the case of MSBA2, 
sub-band systems 2-4 were used. In all three cases DRW was 
applied. The results of this study are presented as a function of 
SNR in Figure 3. In order to perform a meaningful comparison, 
the figure also includes the results obtained for three other tech- 
niques used in similar experimental conditions. These methods 
are the conventional full-band HMM (FB-HMM), FB-HMM 
with unconstrained cohort normalisation (FB-HMM+UCN) [2], 
and sub-band HMhls with SNR based recombination weights 
(SNR-RW). These results are clearly in favour of MSBA2 with 
DRW. 

6. CONCLUSIONS 
It has been shown in this paper that the net spectral information 
of the cepstral coefficients with identical indices in different sub- 
bands is only comparable to that of a full-band cepstral parameter 
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Figure 3: EER for different approaches as a function of SNR. 

whose quefrency is given by the product of that specific index 
with the number of sub-bands. A new method is proposed to 
tackle this deficiency of sub-band cepstrum when it  is used in the 
context of text-dependent speaker verification. The approach is 
based on the use of the cepstral parameters generated from a set 
of different sub-band systems. In the first part of the experimen- 
tal investigation, the relationship between the size of the freq- 
uency bands and the spectral information content of sub-band 
cepstrum has been analysed. In the second part, the effectiveness 
of the proposed technique for speaker verification has been 
clearly demonstrated. The current work in this area includes 
further investigation into methods for tackling problems associ- 
ated with the sub-band cepstrum. 
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