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ABSTRACT
Acoustic emission-based techniques are promising for non-
destructive inspection of mechanical systems. For reliable
automatic fault monitoring, it is important to identify the
transient crack-related signals in the presence of strong time-
varying noise and other interference. In this paper we propose
the application of the Kohonen network for this purpose. The
principal components of the short-time Fourier transforms of
the data were applied to the input of the network. The
clustering results confirm the capability of the Kohonen
network for reliable source identification of acoustic emission
signals, assuming enough care has been taken in implementing
the training algorithm of the network.

1. INTRODUCTION

Acoustic emission (AE) is an ultrasonic wave emitted from the
deformation of materials. Specifically, AE is the transient wave
resulting from the sudden release of stored energy during a
deformation and failure process, such as fretting or crack growth
in a material [2]. By using a surface-mounted transducer, which
is sensitive to displacement or velocity, the released energy can
be detected. An AE signal, recorded in a material test, conveys
useful information about the fatigue behavior of a specimen, and
is one of the several promising nondestructive inspection
methods for automatic fault monitoring in mechanical systems.
Usage of AE-based fault monitoring techniques can avoid costly
and dangerous consequences in industrial and aeronautical
applications, and increase the reliability and safety of the
processes. In any AE-based monitoring, the recorded signal, not
only contains damage-related sources such as fracture, slip,
corrosion and crack, but also very strong interfering sources, e.g.
electromagnetic interference, fretting, vibration noise, etc. These
spurious sources make the automatic diagnosis a difficult task,
and hence efforts should be made to develop robust source
identification techniques.

As an alternative approach to standard pattern recognition and
signal processing techniques, neural networks offer high
capability in signal classification, based on automated learning
procedures for massively parallel networks of simple processing
elements [3] [11]. Neural network classifiers produce highly
nonlinear decision surfaces, discovering structures and patterns
among data, and have the generalization capability of correct
classification of unobserved data. These features make neural
networks attractive tools for identifying damage-related AE
sources in a highly noisy environment.

Over the past few years, extensive research has been conducted
on AE signal detection, classification, and localization at the
University of Minnesota [6] [5] [4] [1] [12]. In this paper, we
propose the application of the Kohonen network for clustering
the crack-related AE signals. Since the data is not presented
with a set of input-output pairs, we cannot use a supervised
method. Hence we use the Kohonen network, because it is an
unsuper-vised method in which the network is presented with
only the input samples and samples are grouped into classes
which are self-similar [8].

2. DESCRIPTION OF COLLECTED DATA
In this paper we have used two different sets of data: in-flight
and multi-sensor laboratory data.

2.1 In-flight data

The rotor acoustic monitoring system (RAMS) was developed
by Honeywell. More than 16 hours of flight data were recorded
from eight piezoelectric sensors mounted on one of the rotor
arms. A piezoelectric pinger is mounted on the connection link
of the rotor arm to simulate micro-crack generation. When the
pinger is ON, a small pressure proportional to the control
voltage is added to the connection link. When the pressure is
released, a transient acoustic signal is emitted from this area.
Fig. 1 shows a segment of the time domain signal. This set of
data was recorded in eight vectors, where each vector
corresponds to a sensor. The sampling rate was 2 MHz.

Figure 1. A segment of time domain signal from sensor 2
C: Crack   I: Interference



2.2 Multi-sensor laboratory data

A fatigue test was conducted at the Georgia Institute of
Technology on a specimen to acquire multi-sensor data under a
laboratory-controlled environment. The experimental setup is
shown in Fig. 2. During the fatigue experiment, the specimen is
stretched to generate the micro-crack in the central notch. Four
sensors were arranged in specific positions such that transient
acoustic signals emitted from the notch could propagate to the
sensors at nearly the same time. The particular arrangement of
the sensors is one of the most important criteria to distinguish
the crack-related AE signal from other transient interference as
well as multiple reflections of the original AE signal.

Figure 2. Experimental setup for generating the multi-sensor
laboratory data at Georgia Tech.

During the AE dormant period, the micro-activities are
accumulating or building up to overcome the threshold of the
next higher energy level fracture. Spurious noise due to
electrical-mechanical interference (EMI) can be largely
eliminated with a proper system configuration, i.e., filter and
threshold setting. AE events are generated from micro-fractures,
which emit waves that are of similar amplitude to the noise level
in the system.  The micro-activities during this initial stage are
basically the uniform growth and distribution of small sub-grain-
sized cracks. The total number of events for each sensor is 941.
These events were divided into four stages according to the
event count history shown in Fig. 3. The first stage includes 508
events, the second stage has 108 events, the third stage contains
218 events, and the fourth stage has 107 events. Stage 1
correspondes to the initial micro-crack generation, and in stage 4
the cracks become visible. This set of data has been stored in
four matrices, where each matrix corresponds to a sensor. Each
column of a matrix contains 2048 samples of an AE event. The
sampling rate was 25 MHz.
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Figure 3.  Event counts versus fatigue cycles.

3. DATA PREPROCESSING AND
FEATURE EXTRACTION-REDUCTION

Since the main AE-related spectral information is concentrated
in the 20 kHz -1 MHz frequency range, first we used a bandpass
filter to remove undesired spectral data from the signals. For the
multi-sensor laboratory data, we also did a downsampling by a
factor of eight to reduce the amount of oversampled data.

Frequency-domain information is promising for source
identification of AE signals. Therefore, we computed the 1024-
point and 256-point short time Fourier transform (STFT) of the
in-flight and laboratory data, respectively. We discarded the
second half of all the STFT vectors because of the symmetry
property of the Fourier transform of real signals. Due to the
large size of the feature vectors (512 and 128 for the first and
the second data set, respectively), we carried out a principal
component analysis (PCA) to reduce the dimensionality of data
without any significant lost of information [13] [3].
Consequently, the size of all the feature vectors for both data
sets was reduced to five, because the first five principal
components contain more than 90% of the energy. Finally, the
five-dimensional output of the PCA block was applied to the
self-organizing map (SOM) Kohonen network for clustering the
AE signals.  Fig. 4 shows the block diagram of the above
procedures.

Figure 4.  The block diagram of preprocessing, feature
extraction reduction, and clustering procedures.

4. IMPLEMENTATION OF THE
KOHONEN NETWORK

Consider a k-input, M-by-N Kohonen network, where each
neuron has a k-dimensional weight vector iW , MNi ...,,2,1= .
The training steps for the network are as follows [8]:

1. Initialize the network by assigning small random values
}...,,,{ 21 kmmm  to the weight vector of each neuron:

MNimmmW ki ,,2,1],[)0( 21 LL == ,

where )0(iW  refers to the initial value of  iW . Let n=0, where n
is the training step.

2. From the set of k-dimensional training vectors, choose a
vector as the initial input vector ][)( 21 kxxxnX L= . Then
calculate the Euclidean distance between the weight of all
neurons and )(nX :

MNinWnXnD ii ,,2,1,)()()( L=−= .

3. Select the *j -th neuron as the winner neuron if Dj is mini-
mum among jD ’s, i.e.:

MNjDj j
j

,,2,1,minarg* L== .

4. Update the weight vectors of the winner neuron *j  and its
neighboring neurons according to the following equations:
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where )(nη  is the learning rate such that 1)(0 << nη , and
Sj*(n) is the neighborhood of the winner neuron *j .

5. Repeat steps 2-4 for n=1, ..., NT –1, where NT is the total
number of training vectors. This number should be at least
500 times more than the number of neurons MN in the
Kohonen network [8].

In order to improve the performance of the Kohonen network for
our purpose, we suggest the following issues regarding the
implementation of the learning process

1. For selecting appropriate values of M and N, we can start
with a large number, say M=N=8. In the next step, we
change M and N such that MN is approximately equal to
the number of the neurons which have been activated.

2. The norm of the initial weight vectors have been chosen so
as to fall within the range of the norms of training vectors.

3. The initial Sj*(0) can be large enough to include all the MN
neurons in the network. If after several hundred training
steps, neurons show an ordered pattern, Sj*(n) can
eventually shrink to contain only the winner neuron *j . Let
M > N. Several experiments have shown that the following
Sj*(n) is the best:
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 is the size of the neighborhood and
TNnMMng /10)/1()( = .

4. The learning rate )(nη , can be either a constant or a
monotonically decreasing function. We suggest the
following learning rate:
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5. Since we have used random initial weight vectors, after
repeating the training procedure with the same training set

)}(...,),1(),0({ TNXXX , similar weight vectors will be
assigned to different neurons. For repeatability of the
training results with the same training vector, the final
weight vectors after the training procedure should be
sorted.

At this time, the raw features of the input signal, namely the
time-frequency distribution data, have been encoded into the
weight vectors of the Kohonen network. Each weight vector
represents a particular kind of input pattern. Thus different
locations of the neurons in the Kohonen map reflect different
input spaces, which provide us with the information required for
clustering the test data. During the clustering of the test data,
each neuron or a group of neighboring neurons in the Kohonen
map responds to a particular kind of input pattern. So, we
expect different types of transient input signals to activate
neurons (winning neurons) in different locations of the Kohonen
map. Consequently, we can use the index sequence of active

neurons to discriminate between crack-related AE’s and
transient interference.

5. CLUSTERING RESULTS OF DATA

5.1 In-flight data

For the first set of data, a 5×5 Kohonen network was
considered. The training set was composed of 2000 five-
dimensional principal component vectors of the STFT’s of the
first half of the signal recorded by sensor 2. In this case the
window size and FFT point of the STFT are 1024. The test set
consists of the second half of the signal of sensor 2, and all the
signals of other sensors. Note that both the training and the test
sets contain simulated cracks together with other interferences.
Fig. 5 shows a small portion of the input test signal in time-
frequency space, and Fig. 6 is the index of the corresponding
activated neurons at the output of the Kohonen network. As can
be inferred from these two figures, crack events (spikes in the
time-frequency domain) activate neurons with high indices. This
kind of behavior has been observed  for other test signals, and
shows the mechanism by which the Kohonen network
successfully identifies cracks from strong interferences.

Figure 5. STFT of a segment of data from sensor 2.

Figure 6. Indices of the activated neurons corresponding
to the time-frequency components of the above segment.
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For sensor 2, the probability of incorrect identification was less
than 4%, i.e. more than 96% of simulated cracks were identified
correctly. For other sensors (except sensor 3 which has
corrupted, useless data), the probability of correct identification
was in the range of 75%-85%.

5.2 Multi-sensor laboratory data

For the second set of data, a 5×5 Kohonen network was again
found to be suitable. The training set was composed of 200 five-
dimensional principal component vectors of the STFT’s,
randomly chosen from the signal of sensor 1. Because of the
limited number of the available training vectors, we used them
repeatedly during the training phase  (so NT is the number of the
training vectors, 200, plus the number of repeated vectors). The
test set consists of the signals of all four sensors, with the
training set excluded. Similar to the previous data set, both the
training and the test sets contain real cracks together with other
noises.

Since all four sensors are at approximately the same distance
from the central notch, we expect the same time delay for the
crack-related signals, which are generated at the central notch.
Since the information of the time delays can help us in
identifying cracks, we have estimated the time delays using a
lowpass filter, followed by a threshold block. Based on this time
delay estimation, the events that do not occur simultaneously in
four sensors can be defined as noise. In addition, as we
explained before, we know that as time goes on, the probability
of crack generation increases. Based on these two criteria, we
can evaluate the performance of the designed Kohonen network.
Fig. 7 shows the result of Kohonen-network clustering for a test
set, composed of 941 events at sensor 3.

Figure 7. Indices of the activated neurons corresponding to
the AE transients of sensor 3.

This figure shows that, neurons with higher indices are activated
as time increases. As a rule of thumb, we assume that an
activated neuron whose index is higher than 20 corresponds to a
crack-related signal. So, Fig. 7 is in agreement with the increase
in the number of cracks as time progresses. The point of interest

is that all neurons with indices higher than 20 correspond to
simultaneous events in four sensors, as we expect.

6. CONCLUSION
In this paper we have proposed the application of the Kohonen
neural network to the clustering of the acoustic emission signals
for fault monitoring. Two different sets of data were used.
Short- time Fourier transform of the data was employed as a
useful feature for clustering. Principal component analysis was
carried out to reduce the dimensionality of the data. Several
suggestions were also made to improve the learning procedure,
which in turn yields a more reliable network. Our results show
that the Kohonen network is able to identify the crack-related
signals in a high-noise/interference environment, with a small
probability of error.
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