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ABSTRACT

Traffic burstinessresultsin thepredictabilityof useractiv-
ity at the individual sourcelevel, and the exploitation of
suchpredictabilityin thereceiverdesignfor wirelesspacket
switching randomaccess/CDMAnetworks is investigated
in this paper. It is shown thattheconventionalapproachof
assumingall usersareactive resultsin substantialperfor-
mancelosswhena linearmultiuserdetector, andin partic-
ular, a decorrelatingdetectoris implemented.A two-stage
receiver is proposedwherethefirst stagetracksactiveusers
andprior to thesecondstagesymboldetection.Two differ-
entusertrackersarepresentedin thispaperandit is demon-
stratedthat,with the helpof traffic predictability, accurate
estimateof activesetof usersis possible,evenwith asimple
matchedfilter bankimplementationat thefirst stage.

1. INTRODUCTION

While traffic modelingfor packet switchingnetworks has
beenstudiedfor morethana decade,its usagewaslimited
largelyto network performanceanalysis.With theadventof
wirelesspacketswitchingnetworks,however, traffic model-
ing could be valuablein the receiver designaswell. Con-
sider, for example,the uplink of a randomaccess/CDMA
packet switching network [7]. Assumetransmittercode,
i.e., eachuserencodesits packetswith its own spreading
code. Eachuserfreely accessesthe network whenever it
hasnew packets arriving, thereforethe knowledgeof ac-
tive usersis not known a priori to the receiver. This ran-
dom accessmechanismis in contrastto mostcellular sys-
temswhereactiveusersatany timeis known to thereceiver
throughinitial handshaking.The lack of suchinformation
promptstwo different approachesin the receiver design.
The first one, referredto as the conventionalapproachin
thesequel,assumesthatall potentialusersareactive. The
secondoneidentifiesthesetof activeusersfirst beforesym-
bol detection.
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With simplematchedfilter receivers,theapproachof as-
sumingall usersareactivedoesnotrenderany performance
loss.However, if amultiuserdetector(MUD), e.g.,adecor-
relatingdetector(DD), is employedto mitigatemultipleac-
cessinterference(MAI) and near far effect, this conven-
tional viewpoint will incur significantperformancedegra-
dation. It would thereforebe betteroff for the receiver to
adoptthe secondapproach,performinguseridentification
prior to symbol detection. The problemof detectingac-
tive usershasbeenaddressedby several authorsin a dy-
namicCDMA system[5, 4, 9]. A commonfeatureof their
approachesis that the detectionis focusedon currentdata
window without utilizing the traffic continuity. For packet
switchingnetworks, however, the traffic burstinesscauses
highly correlateduseractivities which resultsin enhanced
predictabilityof usertraffic at the individual sourcelevel.
Exploitationof suchpredictabilityto improve the receiver
performanceis thetopic of this paperandin particular, we
adopta first orderapproximationof burstytraffic originally
proposedby Viterbi in 1986 [8]. The key to utilizing the
traffic modelis to convert theuseridentificationproblemto
modelselectionproblemfor which the traffic continuity is
incorporatedin theregressorselectionprocedure.

Theorganizationof thepaperis asfollows. In thenext
section,the signal model is presented,followed by a de-
tailedstudyof theovermodelingeffect on thereceiver per-
formance.In section3,atwo stageMUD is proposedwhere
thefirst stageaimsto detectthesetof active users.This is
followedby somesimulationresultin section4 alongwith
someconcludingremarks.

2. OVERMODELING EFFECT

Considera slottedrandomaccesspacket switchingsystem
with

�
subscribers,asin [7]. Eachuserisassignedaunique

spreadingcodeandtransmitssynchronouslyoveracommon
channel.AssumeBPSK for simplicity, the receivedsignal
within a packetslotcouldbewrittenas�������	��
������������ ���	� � ��������	�	� � �����! � �"�	��#$�%
'&�#)(*(*(*#	+ (1)



where , is thepacket index, � is thesymbolindex within a
packet, + is thepacket size, - is theuserindex, � � ��� #.� � ���aretheamplitudeandthesignaturevectorof user - present
atthereceiver,

� � ���� ���	� is the �0/"1 symbolwithin the , /"1 packet
for user - ,

 � ���	� is additivewhiteGaussiannoisewith zero
meanandcovariancematrix 243�5 , and 6 � is theindex setof
the active usersat slot , , thus 6 �87:9 &;#=<>#)(*()(�# �@?

. The
receiver’s taskis to detectthe symbols

� � ���� for all -BAC6 �
withoutprior knowledgeof 6 � .

A linearDD canbeviewedasa leastsquare(LS) esti-
matorfollowedby asigndetector. A directresultof includ-
ing inactive usersin the system– so calledovermodeling,
is theincreasedvarianceof thoseparametersof interest.To
illustratethis, assumeonly oneuseris active whosesigna-
ture vector is � , while D is the signaturevectorsof those
inactive userserroneouslyincludedin themodel. It canbe
shown that thevarianceof LS solutionis the inverseof the
magnitudesquareof � for thetruemodel;while for thefull
modelit is the inverseof themagnitudesquareof thepro-
jectionerror E 5GFBD � DIHJD �LK�M DNHPO � (cf. Figure1). Clearly,
theformeris alwayssmallerthanlatter. Generalresultholds
when Q hasmorethanonecolumns(morethanoneactive
users)[1].
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Figure1: Illustrationof thecovarianceof LS estimateusingtrue
andfull model.

The increasedvarianceof LS estimateof assumingthe
full modelwill increasethe symboldetectionerror proba-
bility, which, in turn, degradethepacket successprobabil-
ity (PSP).Notice PSPis alsoa function of channeltraffic
condition. Conceptually, if on the averagethereis only a
small numberof usersbeingactive, thenthe advantageof
correctmodelingshouldbe moresignificantthanan over-
loadedchannel. Assumea homogeneouschanneltraffic
with eachuserat any slot transmittinga packet with prob-
ability T , hencethe overall numberof packets (or equiv-
alently, numberof active users,denotedby U ) per slot is
binomialwith successprobability T . We canobtainpacket
errorrate( & FWV�XYV ) asafunctionof T asshown in Figure2.
Thegain in termsof packet error rateis of severalmagni-
tudeover thatof thefull model.Also plottedin dashedline
is thepacketerrorrateusinga matchedfilter (MF) bankfor
all users.Clearly, MF receiver is arbitrarilycloseto theDD
usingthetruemodelaschannelloadapproacheszero.
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Figure2: Packet errorprobabilityasa functionof traffic load Z
for thedecorrelatorusingfull model(dash-dottedline), truemodel
(solid line), and simple matchedfilter bank (dashedline). The
totalnumberof potentialusersis [�\ andthecorrelationcoefficient
is assumedto be ]_^`\�a b for eachpairof signaturevectors.

3. TRAFFIC-AIDED MUD

3.1. Traffic modeling for packet switching networks

Theperformancedegradationof a DD wheninactiveusers’
signaturevectorsareerroneouslyincludedprovokestheidea
of a two stagereceiver. In the first stage,the setof active
usersis detectedwhile in thesecondstageaMUD is imple-
mentedby adaptingto thechangeof userprofile. To facili-
tatetheuseridentification,we first introducethefollowing
signalmodelasanalternative to thatof (1).

� � �"�	�Y
dc���e M � �
���	f � ���� ���	�hg � ���� �B � �"�	�

where, in the , th slot, g � ���� is the indicator function that
takesvalue & if the - /"1 useris active and i otherwise,andf � ���� 
 � � ��� � � ���� . Incorporatingthe indicator functionsin
the signalmodelprovidesa naturalframework to include
thetraffic informationwhichwill beinterpretedastheprob-
ability law thatdictatesthebinaryprocessg � ���� .

A first orderapproximationof theburstytraffic for indi-
vidual sourceis a two stateMarkov chain[8]. This Marko-
vian assumptionresultsin geometricaldistribution of both
themessagelength(numberof contiguouspackets)andidle
period lengths,which is consistentwith the bursty model
adoptedin [3]. Define j � 
k�lg � M �� #)(*()(*#mg � c �� � asthe state
variableof userprofile, i.e., thosecoordinatesthatequalto
‘1’ in j � indicatethatthecorrespondingusersaretransmit-
ting at slot , . Thecombinedstatevariable j � is now also
a Markov sequencewith statedimensionalityequalto < c
where

�
is thetotalnumberof potentialusers.Its transition

matrix is simply theKroneckerproductof all thetransition
matricesfor eachindividual g � ���� . In turn, our observation



is now ahiddenMarkov model(HMM).
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where + is the packet size. The detectionof active users
amountsto the inferenceof the underlyingstate j � . The
optimal stateestimatormaximizesthe posteriorprobabil-
ity, V � j ��� � � #)�*�*�*#	� M � , and this could be evaluatedusing
theso-calledforwardvariable,whichadmitsefficientrecur-
sive computation[6]. However, thestatedimensionalityofj � is < c , meaningthereare total numberof < c models
needsto beevaluated,ausuallyformidabletaskin practice.

3.2. Traffic tracking

The prohibitive complexity of the optimal HMM tracker
motivatesalternative(hencenon-optimal)approacheswhose
complexity grow linearly in thenumberof users.The key
is the‘decoupling’of individualuser’sstatetracking,which
resultsin asuboptimalstructureshownin Figure3(a).Specif-
ically, the received signal is first mappedto a new statis-
tic + � ��� �	� � which serves as approximate‘lik elihood’ of a
particularuserbeingactive givencurrentslot observations.
Then,thestateof theuser’s previousslot is usedto jointly
decidewhethertheuseris transmittingat thecurrentslot.
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Figure3: (a)A suboptimaltwo stageMUD implementation;(b)
MF front end;(c) Projectionfront end.

Dependingonthesummarystatistic+ � ��� �	� � , variousstruc-
turesof usertrackercouldbeformed.In [1], aMF front end
is used,asshown in Figure3(b). Thekey to this approach
is to approximatetheMAI of theMF outputwith Gaussian
noise.Notethatthis is not trivial asthereceiverdonothave
knowledgeof theactive interferingusersat thecurrentslot.

Theapproachis again,to utilize theMarkovianassumption
of thechanneltraffic andadopttheso-calledpredictedvari-
ancefor theMF output.Specifically, theoutputvarianceof
theMF is approximatedas�p � ^ �¡  � �¢ � £ �o�¤p¥ ^ x¦¨§^©

vhx%ª Z � £ � y ]  ��£*« � £ �   � �¢ �P¬ �o�¤z¥ ^`\®§^©
¯ � £ � ]  ��£*« �P¬ �  

where 2 3 is the channelnoisevariance, T ��° � is the state
transitionprobability from & to i for user ± , while ² �´³ � is
the statetransitionprobability from i to & for user µ . The
above Gaussianassumptionled to the developmentof the
uniformly mostpowerful invariant(UMPI) statisticfor test-
ing themeanvalue(zerovs. nonzero)of a Gaussianvector.
Thisstatisticfollowscentralor noncentralchi-squaredistri-
bution dependingon which hypothesisis true. Thestatistic
is thenfed to thestateestimatorwhich alsoutilize thepre-
viousslot’s (estimated)stateto decidethecurrentstatusof
theparticularuser.

In thispaper, wesuggestadifferentfrondendwhichre-
quiresanadditionalassumption:all users’signaturevectors
arelinearly independent.Specifically, a projectionoperator
is usedto mitigateall potentialusers’interference,asshown
in Figure3(c),where

����¶� 
 5�F·Q � � QrH� Q � �LK�M QrH� and Q �
containsspreadingvectorsof all users’spreadingvectors
save � � . The input signal is thereforeprojectedonto the
orthogonalcomplementof the spacespannedby all other
users’signaturevectors.Notethisfront operationis equiva-
lent to adecorrelatorassumingfull model,henceinevitably
enhancesthe noisevariance. The argumentis that at the
first stagethetaskis theuseridentification,not symbolde-
tection, hencethe noiseenhancementcan be toleratedto
someextent. Theremainingpart is similar to theMF front
endimplementationanda similarUMPI statisticcanbede-
velopedasthe input to thestateestimator. Thedifference,
however, is that theprojectionandmatchedfilter outputis
preciselyGaussian,hencethe input to thestateestimateis
now exactlycalibrated.

Finally, in theabsenceof traffic information,theUMPI
statisticdevelopedin both casescould be useddirectly to
infer abouttheuserstatus(cf. thedash-dottedcurvesin Fig-
ures4 and5). Themargin betweensuchone-shottracking
andthe approachesusingstatecontinuity revealsthe gain
obtainedby usingthetraffic modeling.

4. SIMULA TION

Packetsweregeneratedfor a total numberof < i users,with
bothonandoff periodsbeinggeometricallydistributedwith
mean & i and & i;i respectively. Nearfar effect wasconsid-
eredby placingtheuserpowerevenly in thelog spacewith
power rangeof < i;¸;¹ . TheSNRshown in theplot wasthat
for the userwith minimum power. Packet lengthwas &�<�º



andtheerrorcorrectioncodecancorrectup to º bit errors.
Thelengthof thespreadingcodewas » & .

Figure4 shows theresultof usingMF front in thetraf-
fic tracking,we notethat theone-shotmatchedfilter based
tracker doesnot performmuchbetterthan the full model
DD. However, whenthe traffic predictabilitywasused,the
HMM basedtwo stageMUD performsalmostaswell asthe
truemodel.This is becausetheinaccuracy of theGaussian
assumptionfor theMAI is well compensatedvia theutiliza-
tion of thestatecontinuityimposedby thetraffic burstiness.
Figure5 is the resultof usingprojectionfront end,andit
is obvious that theperformancegainof usingtraffic is not
thatsignificant.Thusin thecaseof well conditionedinput
signal,i.e., all � � ’s arelinearly independent,theprojection
front endwithoutusingtraffic modelingcouldtracktheuser
traffic quite accurately. This linear independenceassump-
tion however, putsrestrictionon theusernumberaswell as
thechannelcondition. If theusernumberof usersexceeds
spreadinggain, or the channeldistortioncausesthe corre-
lation matrix of � � ’s to loserank, thentheprojectionfront
endwill fail, at leastfor thoseuserswhosesignaturevectors
lie in thespacespannedby otherusers’signaturevectors.A
moresimpleyetrobustmatchedfilter front endis favoredin
thesescenarios.
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Figure4: SuboptimalHMM trackerusingMF front end.

An importantimplementationissueis thecontrolof false
alarms(aninactiveuserbeingclaimedactive) andmissde-
tections(excluding an active user). A missdetectionwill
result a surepacket loss. Besides,the interferenceof the
misseduseron the receptionof other active userswould
not bemitigatedat thesecondstageMUD hencecouldfur-
ther hinder the receptionperformance. Thus the penalty
imposedby the miss detectionis much more severe than
a falsealarm. This implies that theminimumerror proba-
bility stateestimatemightnotyield thebestperformancein
termsof packetreception.A goodthresholdshouldbemore
stringentin controllingthemissdetection.

FinallyweremarkherethattheMarkoviantraffic adopted
in thispaperis onlyafirst orderapproximationof thesource
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Figure5: SuboptimalHMM trackerusingprojectionfront end.

level traffic. Studyof currentpacketswitchingnetwork traf-
fic revealsthat thepacket lengthaswell asthe idle period
distribution is heavy tailed ratherthangeometrical,which
directly contributesto the so-calledself-similarity of net-
work (aggregated)traffic. This heavy-tailednessresultsin
furtherenhancedpredictabilityof theusertraffic atthesource
level. A more realistic model for such traffic would be
higher order Markov chain, though it will inevitably in-
creasethecomplexity of theuseridentificationprocedure.
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