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ABSTRACT

This paper presents a novel low complexity, frequency do-
main algorithm for reconstruction of speech from the mel-
frequency cepstral coe�cients (MFCC), commonly used by
speech recognition systems, and the pitch frequency val-
ues. The reconstruction technique is based on the sinu-
soidal speech representation. A set of sine-wave frequencies
is derived using the pitch frequency and voicing decisions,
and synthetic phases are then assigned to each respective
sine wave. The sine-wave amplitudes are generated by sam-
pling a linear combination of frequency domain basis func-
tions. The basis function gains are determined such that the
mel-frequency binned spectrum of the reconstructed speech
is similar to the mel-frequency binned spectrum, obtained
from the original MFCC vector by IDCT and antilog oper-
ations. Natural sounding, good quality intelligible speech
is obtained by this procedure.

1. INTRODUCTION

The mel-frequency cepstral coe�cients (MFCC) [1] are com-
monly used in many speech recognition systems [2]. They
play the role of the acoustic feature vectors, extracted by
the front-end of the speech recognizer. The pitch frequency
may also be used for recognition, especially for tonal lan-
guages (e.g. Mandarin Chinese).

Speech recognition technologies are �nding their way
into client-server applications. In some scenarios, a client
compresses the speech during recording using one of the
common speech compression techniques. The compressed
speech is then stored on the client for future uploading to a
speech recognition server (\deferred recognition"), or trans-
mitted over a bandwidth limited channel to a server for
real time speech recognition. In addition, the client may
also support playback of the compressed speech. However,
compressing the speech waveform usually increases recog-
nition errors (especially for dictation tasks), and therefore
high quality compression methods should be used. These
methods require large processing power or high bit rates,
which are often not available in client-server systems (e.g.,
when a thin-client is used).

An alternative to the above would be to perform the
MFCC feature vectors extraction and compression on the
client. The compressed feature vectors can then be stored
locally or transmitted to the speech recognition server. It
has been shown that MFCC compression at a bit rate of 4.0

Kbps [3] is possible for continuous speech recognition tasks,
without impairing recognition rates. If the pitch frequency
is also determined and compressed during recording, such
a client can reconstruct the speech for playback purposes,
using the algorithm presented in this paper. This alleviates
the need for a separate compression scheme to be active
during recording. In addition, playback can be performed
on the server, without the need to transmit information
other than the required MFCC feature vector and the pitch.

Techniques for speech reconstruction from mel-cepstral
or cepstral like parameters have been previously proposed
[4], [5]. However, in both cases, the de�nition of the cepstral
parameters is rather speci�c, chosen a priori to allow spec-
tral reconstruction and not in line with the MFCC features
used in speech recognition systems.

The MFCC feature vector is computed by integration
of the spectrum within triangular bins arranged on a mel-
frequency axis to form a mel frequency binned spectrum,
followed by a log and DCT operations. The MFCC vectors
and pitch if used, contain su�cient information for continu-
ous speech recognition (at various rates of error). However,
it is not obvious that good quality speech can be regen-
erated from them, since during the feature extraction, a
signi�cant amount of information is lost. This includes the
phase information, discarded during the spectrum calcula-
tion (absolute value of the windowed DFT) and the �ne
details of the spectrum discarded during the integration.
In addition, in most cases some of the higher order cepstral
coe�cients are discarded. This information is considered
\redundant" to some extent for the recognition process.

The proposed reconstruction algorithm synthesizes the
extra information required for speech reproduction. The
reconstructed speech will have the same pitch as the original
speech and a similar binned spectrum (or MFCC).

Section 2 presents the reconstruction scheme. Sections
3 and 4 describe the computational details of the main algo-
rithmic blocks. Results and future directions are discussed
in section 5.

2. RECONSTRUCTION ALGORITHM

The algorithm is based on using a sinusoidal model [6], [7],
where a short-term (ST) speech signal is represented by a
sum of sine waves. The ST-signal is characterized by the
frequencies, amplitudes and phases of the sine-wave com-
ponents. Given the MFCC vector, the pitch frequency and



the voicing decision, a set of sine-wave frequencies are deter-
mined, according to the required synthesis sampling rate.
Synthetic phases are then generated and assigned to them.
The sine-wave amplitudes are estimated according to the
desired binned spectrum, calculated from the given MFCC
vector. Finally, the short time Fourier transform (STFT)
is reconstructed and converted to a time domain signal by
an overlap-add method.

The reconstruction scheme is presented in Fig. 1. It is
applied every 10 msec frame using an MFCC feature vector,
a voicing decision and a pitch frequency value for the voiced
case. The output is a windowed short-term signal (20 msec
long). After an overlap-add with the ST-signal of previous
frames, a 10 msec speech signal frame is produced.
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Figure 1: Block diagram of the reconstruction scheme.

The algorithm is comprised of the following stages:

1. Mel-cepstrum to binned spectrum conversion

(block 1 in Fig. 1) { This is the mathematical in-
version of the log and DCT operations carried out
during the MFCC computation. If the number of
mel-cepstral coe�cients is smaller than the number
of frequency bins, the MFCC vector is expanded by
adding zero coe�cients.

2. Frequencies and voicing weights selection (block
2) { At this point a set of sine-wave frequencies is
selected according to the voicing decision and pitch
frequency. Each sine-wave component is assigned a
voicing weight according to a predetermined template
representing the voicing degree. This is described in
subsection 3.1.

3. Phase synthesis (block 3) { In this stage the sine-
wave phases corresponding to the sine-wave frequen-
cies are synthesized. The phase synthesis algorithm
is described in subsection 3.2.

4. Amplitude generation (blocks 4) { The sine-wave
amplitudes are calculated in accordance with the tar-
get binned spectrum, using a set of frequency domain
basis functions. The algorithm is described in sec-
tion 4.

5. STFT reconstruction (block 5) { The frequencies,
phases and amplitudes are combined to form a sine-
wave representation. The �nal reconstructed STFT
is constructed from the sine waves by a convolution
procedure.

6. Conversion to time domain (block 6) { This is the
�nal stage in which the time domain signal frame is
computed. A windowed short-term signal is obtained
by an IDFT and then overlap-added to the previous
ST signal.

An additional step may be necessary in the time do-
main if the original MFCC vectors were computed on a
pre-emphasized version of the speech signal, as is commonly
done in speech recognition systems [2]. A de-emphasis �l-
ter, which inverts the e�ect of the pre-emphasis �lter should
then be applied.

3. HARMONIC EXCITATION GENERATION

For every short-term analysis interval, the sine-wave speech
representation is de�ned as the set ffi;Ai; 'ig

N�1
i=0 , where

N is the number of sine-wave components, and fi, Ai and
'i are their frequencies, amplitudes and phases respectively.
The \harmonic excitation" is de�ned by the sine-wave fre-
quencies and phases, and the amplitudes are associated with
the actual spectral shaping.

3.1. Frequencies and voicing weights selection

This step consists of selecting the N sine-wave frequen-
cies ffig

N�1
i=0 and the voicing weights f�ig

N�1
i=0 . The voic-

ing weights are assigned values between 0 and 1, and are
embedded in the amplitude calculation (see de�nition (4)
below).



In voiced frames, the frequencies are chosen as the pitch
harmonics, fi = i � F0 where F0 is the pitch frequency. To
reconstruct a more natural sound, additional \unvoiced"
frequencies are arbitrarily added. These are mostly concen-
trated in the upper frequency band. The pitch harmonics
are assigned voicing weights of 1. The additional unvoiced
frequencies are assigned weights rising from 0 to 1 as the
frequency increases.

In unvoiced frames, the frequencies selected correspond
to the frequencies of the DFT points, each assigned an equal
weight of 1.

3.2. Phase synthesis

The unvoiced frequencies are each assigned a uniformly ran-
dom phase, i.e., 'i = U [��; �]. For the voiced frequencies
(pitch harmonics), a phase generation scheme based on [7]
is used. In this case voiced phases may consist of two com-
ponents:

'i = i�0(kT ) + �i; i = 0; 1; : : : ;N�1;

where k is the frame index, T is the frame duration, �0 is
the pitch excitation phase and �i is an optional phase o�set
associated with the vocal tract. The pitch excitation phase
is calculated such that the pitch harmonics are continuous
over frame boundaries. It is evaluated using the following
expression:

�0(kT ) =

Z kT

0

2�F0(�)d�

= �0[(k� 1)T ] + 2�

�
F
(k�1)

0 + F
(k)

0

�
T

2
;

where F0(�) is the continuous-time pitch frequency function

and F
(k)
0 is the pitch at frame k. Linear interpolation of the

pitch frequency function is assumed between the frames.

The additional phase �i can be derived using a mini-
mum phase model. Assuming the vocal tract transfer func-
tion is minimum phase, a relation between its amplitude
and phase can be expressed via the complex cepstrum [8].
The input binned spectrum may be used in order to esti-
mate a smoothed version of the speech spectrum, and from
it the additional phase components �i can be calculated at
the frequencies fi.

4. AMPLITUDE GENERATION

4.1. Minimization problem de�nition and solution

The objective of this stage is to reconstruct the sequence
fAig

N�1

i=0 , given the sine-wave frequencies ffig
N�1

i=0 and the

target binned spectrum f�kg
M�1

k=0
, where M is the number

of frequency bins (typically 24).

In general, given a sine-wave speech representation, the
discrete-time Fourier transform1 of the corresponding win-

1The discrete-timeFourier transformof a signal x[n] is de�ned

as: X(f)
4

=
P

n
x[n] exp(�jn2�f=fs), where fs is the sampling

frequency.

dowed short-term signal is given by:

S(f) =

N�1X
i=0

Aie
j'iW (f � fi); (1)

where W (f) is the Fourier transform of the time domain
window (typically a Hamming window). W (f) is real, since
the window is symmetric, and for all practical purposes it
may be assumed to have a zero value for jf j> BWwin.

The binned spectrum of S(f) is computed using the
same �lter-bank as in the MFCC computation [1]. The
k'th component of the binned spectrum is computed by:

Bk =
X
l

Hk(l�f) jS(l�f)j ; k = 0; 1; : : : ;M�1; (2)

whereHk(f) is the frequency response of the k'th triangular
bandpass �lter, �f is the frequency resolution of the DFT
utilized, and the summation is over all DFT points. By
substituting (1) in (2) we obtain the reconstructed binned
spectrum as a function of the sine-wave amplitudes Ai:

Bk =
X
l

Hk(l�f)

�����
N�1X
i=0

Aie
j'iW (l�f � fi)

����� : (3)

Given the frequencies fi and target binned spectrum �k,

we wish to �nd fAig
N�1

i=0 s.t.
PM�1

k=0
[Bk��k]

2 is minimized
and Ai � 0; 8i. This minimization problem is underdeter-
mined (usually N > M). In order to decrease the number
of degrees of freedom, additional constraints should be in-
troduced. We de�ne a set of M positive frequency domain
basis functions:  m(f); m = 0; : : : ;M�1, and de�ne the
set of amplitudes to be samples of a linear combination of
these basis functions at the sine-wave frequencies fi:

Ai
4

= �i

M�1X
m=0

xm m(fi); i = 0; 1; : : : ;N�1; (4)

where xm are the non-negative basis function gains (xm �
0; 8m) and �i are the respective voicing weights as de-
scribed in subsection 3.1. By substituting (4) in (3) and
changing the order of summation, we obtain an expression
for the binned spectrum of the reconstructed signal as a
function of the basis function gains xm:

Bk =
X
l

Hk(l�f) �

�����
M�1X
m=0

xmS
(m)(l�f)

����� ; (5)

where:

S
(m)(f) =

N�1X
i=0

 m(fi)�ie
j'iW (f�fi) ; m = 0; 1; : : : ;M�1

is the discrete-time Fourier transform of the signal recon-
structed using the m'th basis function alone. Note that

S(f) =
PM�1

m=0
xmS

(m)(f).

The expression (5) is replaced by an approximation ~Bk,
in which the absolute of sums is replaced by the sum of
absolutes:

~Bk =

M�1X
m=0

xm

X
l

Hk(l�f) �
��S(m)(l�f)

�� ; (6)



where k = 0; 1; : : : ;M � 1. The resulting approximated
binned spectrum is linear in respect to the basis function
gains. The approximation (6) is accurate when there is no
overlap between the supports of the summed terms in (1),
i.e., F0 > 2BWwin, or when the overlap is small. More-
over, it can be shown that (6) is a good approximation for
particular selections of the basis functions. De�ne:

Rk;m
4

=
X
l

Hk(l�f) �
��S(m)(l�f)

�� :
Then (6) becomes: ~Bk =

PM�1

m=0
xmRk;m:

We wish to �nd a set of non-negative basis function
gains, s.t.

M�1X
k=0

"
M�1X
m=0

xmRk;m � �k

#2

is minimized. Introducing an M�M matrix R, whose en-
tries are Rk;m, and vectors x; �, which are M�1 column
vectors, the above minimization problem can conveniently
be written in a matrix form:

x̂ = argmin
x�0

kRx � �k2 ; (7)

where x̂ is the optimal basis function gain vector.

The least squares problem (7) can be solved by any
number of iterative techniques (e.g. steepest decent) [9],
under the constraint of a non-negative solution. In prac-
tice, a simple iterative method, where at each iteration a
di�erent basis function gain is updated separately, is used
to minimize (7).

Finally, the amplitudes Ai are reproduced using (4).
The STFT can then be reconstructed from the sine-wave
frequencies, amplitudes and phases using (1).

4.2. Basis function selection

The choice of basis functions  m(f) is critical for obtaining
a good reconstruction. The space spanned by the M basis
functions represents the structure of the spectral envelope.
It was found that basis functions similar in nature toHk(f),
i.e., with the same supports and center frequencies, give
good reconstruction results. A typical set of basis functions
is shown in Fig. 2. Such basis functions assure that the re-
construction accuracy increases in lower frequencies, where
the ear is more sensitive, and maintains the spectral enve-
lope formant peaks. Because of the narrow supports, the
matrix R becomes sparse (banded) and the minimization
problem (7) may be solved e�ciently.
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Figure 2: Typical 50% overlapping basis functions  m(f).

5. RESULTS AND DISCUSSION

Speech signals at sampling rates in the range 8-16 kHz were
reconstructed using the described algorithm. It was ob-
served that in spite of approximation (6), the actual binned
spectra computed after reconstruction were indeed very close
to the target binned spectra. Natural sounding, good qual-
ity intelligible speech was achieved, which is applicable for
playback in Voice Recognition systems.

Reconstruction quality is highly dependent on the accu-
racy of the pitch estimation. MFCC feature vector dimen-
sions of 13 and 24 were used (with M=24 frequency bins),
resulting in a noticeable improvement in quality when us-
ing a vector dimension of 24. Using the additional minimum
phase as described in section 3.2 resulted in minor quality
improvement and may be omitted due to complexity consid-
erations. Reconstruction was demonstrated at 4%-6% real
time on a Pentium II 266 MHz PC workstation (depending
on sampling rate and MFCC dimension).

Work is in progress to improve the reconstructed au-
dio quality. This includes psychoacoustic post �ltering,
weighted least square solutions in (7), improved mixture
of voiced and unvoiced frequencies, etc. An improved fea-
ture extraction algorithm will include pitch frequency and
subband voicing degree indicators extracted in a closed loop
manner (analysis-by-synthesis), which may enhance speech
quality at the expense of higher processing power.
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