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Lawrence Livermore National Laboratory and University of California, Davis

P.O. Box 808, L-3
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ABSTRACT

Low Power EM radar-like sensors have made it possible to
measure properties of the human speech production system in
real-time, without acoustic interference.  This greatly enhances the
quality and quantify of information for many speech related
applications. See Holzrichter, Burnett, Ng, and Lea, J. Acoustic.
Soc. Am. 103 (1) 622 (1998).  By using combined Glottal-EM-
Sensor- and Acoustic-signals, segments of voiced, unvoiced, and
no-speech can be reliably defined.  Real-time Denoising filters can
be constructed to remove noise from the userÕs corresponding
speech signal.

1. INTRODUCTION

Acoustic speech signals carry a great deal of information that can
be automatically converted to text, coded for transmission, and
many other applications.  However, under conditions with a great
deal of background noise, with speakers who do not speak clearly
(e.g., who co-articulate, or incompletely articulate, etc.) or who
speak with strong accents, such systems often do not work
adequately.  Many mechanisms, by which additional information,
describing conditions of the vocal articulators as the speech signal
is generated, have been examined to increase the accuracy of
automated systems.  Examples are TV images of the lip opening,
jaw open-close sensors, electro-glottalgraph signals of the vocal
fold conditions, etc.

Recently, it has been shown that very low power Electro Magnetic
(EM) radar-like sensors can measure conditions of many of the
internal (and external) vocal articulators and vocal tract
parameters, in real-time, as speech is generated, Holzrichter (1).
In particular, a voiced excitation function of speech has been
obtained by associating EM sensor signals from the glottal region
(i.e., Glottal Electro Magnetic Sensors, or GEMS) with sub- or
supra-glottal air pressure pulsations, Burnett (2).  These data,
combined with corresponding acoustic data, enable robust
methods for sampling background noise data, and vastly increase
the quality and quantity of information for almost all applications
involving speech processing and use.

In addition, these techniques enable accurate definitions of time
periods of phonation, and using the statistics of the userÕs
language (3) enable the definition of periods preceding and
following phonation when unvoiced speech is likely to occur.  In
addition, they enable the determination of periods of no speech,
when sampling of background noise signals can reliably take
place. Along with robust speech presence determination, the
timing and spectral content of the determined excitation function
enable real-time filters to be constructed for purposes of denoising
corresponding acoustic signal segments.

2. HOMODYNE SENSORS

EM radar-like sensors have been designed to transmit EM waves
at 2.3 GHz with 0.2 mW of total power.  This level is well below
continuous international exposure standards for human use.  The
sensors use a homodyne field disturbance mode of operation that
resembles an interferometer measuring the reflection of a
transmitted wave against a local (phase reference) wave. As a
reflecting interface moves, the phase of the reflected wave varies
with respect to the stationary local wave, and a signal associated
with this change is detected by a mixer and filter combination.
The EM sensor positioned near the glottis in Fig. 1 measures the
positional changes of the rear tracheal wall surface, as the
air/tissue interface moves versus time, driven by air pressure
waves from the glottis opening and closing.

By estimating the EM wave path from the antenna through a high
dielectric medium, such as human neck tissue where ε = 50, and
across the human trachea, the expected signal from a moving,
reflecting air/tracheal-wall interface was obtained [2].  Using the
well-known homodyne-radar sensitivity function, Burnett noted
that the rear trachea wall behaved as if it were at a 75-mm distance
in air.  This equivalent distance in tissue plus air tube is consistant
with dimensions obtained from CTR images of his neck.  This
tracheal wall motion signal (i.e., ÒballooningÓ) is deconvolved
from the wall-tissue response function to obtain a pressure versus
time excitation signal.

Figure 1.  A linearized vocal tract showing locations of EM
sensors, corresponding excitation and acoustic functions, and

resulting transfer function.
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3.  APPLICATIONS OF GEMS TO SPEECH
DENOISING

The GEMS sensor is able to detect the transition boundaries
between voiced and unvoiced or no speech.  Because of the
distinct differences in how voiced and unvoiced speech is
produced, the methods of denoising are also different (4).  GEMS
measurements provide three advantages for speech processing.
First, the GEMS signal can be used to define the onset of speech,
end of speech, no-speech periods, and unvoiced periods. Second,
filters built on the glottal signals can be used to suppress
background noise that falls outside the pass-band of the excitation
function. Third, the GEMS signal enables background noise
spectral content to be determined during periods of no speech
enabling an optimum ÒCorrelationÓ filter to be built to maximally
eliminate the background noise.

For clean audio signals such as the words Òrecognize speech,Ó
shown in Fig. 2, the log of acoustic signal energy can be computed
and thresholds can easily be chosen to separate voiced and
unvoiced periods from the background noise. However, in a high

noise environment such as that shown in Fig. 3, using the log of
signal energy approach to differentiate speech boundaries.  The
boundaries become unreliable.  In contrast, the GEMS signal,
undisturbed by the background acoustics, remains a reliable means
to measure voiced boundaries as shown in Fig. 4.  By computing
the time duration statistics (3) of unvoiced speech before (0.3 sec
for American English) and after a voiced utterance (0.5 sec), one
can statistically identify periods during which unvoiced speech is
likely to occur.  Further, time periods preceding or following the
unvoiced time periods can be assumed to contain no speech,
assuming there are no GEMS signals within appropriate time
intervals. During no speech periods, accurate background noise
spectral information can be measured and used to suppress
background noise during a following or preceding speech period.

Three filtering methods, illustrated in Fig. 5, are employed to
illustrate the noise suppression properties made possible by
GEMS-like sensors: the Wiener filter, the glottal windowing
(GWIN) filter, and the glottal correlation (GCOR) filter. The
sequence of filters provides successively higher performance,
relying on increasing knowledge of signal and noise statistics.

Figure 5.  Filtering procedures using acoustic + GEMs
signals

Figure 3.  Noisy acoustic and log acoustic energy
versus time (sec.)
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Figure 2.  Clean acoustic and log acoustic
energy versus time (sec.)
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Figure 4.  GEMS signal and energy versus time
(sec.) corresponding to acoustic data in Fig. 2.
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3A) WIENER FILTERING

The Wiener filter provides an optimum noise rejection capability
when both the signal and noise spectrum is stationary and known.
The Wiener filter is given by:
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where Psy(f) and Pyy(f) are respectively the cross-power and
auto-power spectral densities of the noise corrupted measurement
and the desired signal, and Pnn(f) is the noise power spectrum.
Note that Psy(f) reduces to Pss(f) when the signal and noise are
uncorrelated. In general obtaining Pss(f)  from a clean signal
source is difficult, however, Pss(f) can be estimated from Pyy(f)
by subtracting the noise portion Pnn(f) if available.

3B) GWIN FILTERING

The glottal windowing (GWIN) filter is obtained by making use of
the glottal excitation function as measured by the GEMS sensor.
Since the audio signal s(t) is generated by the excitation function,
then only harmonics within the window pass band of the
excitation function are desirable. Background noise outside of the
GWIN window will be suppressed. Of course, noise within the
GWIN pass band will be retained. However GWIN is easy to
construct and implement from the glottal signal. The GWIN filter
is constructed by converting the glottal motion measurement to
glottal air pressure (2). The air pressure signal is spectrally flatter,
than the glottal signal as shown in Fig. 6.

3C) GCOR FILTERING

The glottal correlation filter can be constructed by making
maximum use of information available.  Since the measured audio
signal can be written in the frequency domain as:
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where T(f) is the vocal tract transfer function.  Multiplying both
sides of Eq. (2) by G*(f), the complex conjugate, and taking the
expectation, one obtains an estimate of the vocal tract transfer
function as:
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and the cleaned audio signal can be generated from the equation:

)f(G)f(T~)f(S~ =                                           (4)

Thus the concept of GCOR is to extract signal components that
are correlated with the excitation function. Note that if the noise is
uncorrelated with the glottal signal, i.e. Pgn(f) =0, the cleaned
signal contains no noise at all.  On the other hand, if Pgn(f) is not
zero, then that component will be subtracted from Pgy(f) and
again the cleaned signal contains no noise.  Therefore the degree
of knowledge of Pgn(f) directly determines the quality of the
cleaned audio signal.  However, when Pgn(f) is small compared to
Pgy(f), it can be ignored without significantly affecting the quality
of the reproduced audio signal.

The effectiveness of the three filters was compared using the
simple open tube utterance /eh/ corrupted by  additive noise
(SNR~ -3dB). Fig. 7 shows the results as expected. The GCOR
spectrum nearly matches the original signal, the Wiener filter is
the worst since at low SNR, the Wiener filter is functioning
principally to ÒwhitenÓ rather than reject noise.  The GWIN
quality lies in the middle, rejecting most noise outside the pass
band.

Figure 6.  Glottal windowing (i.e., GWIN)
windowing filter
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Figure 7.  Original and 3 filtersÕ noise
suppression performances.  PSD vs Hz
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4.  SPEECH DENOISING PROCESSING

Using the sentence Òrecognize speechÓ as a test example,
background noise suppression is illustrated in Fig. 8.  First the
GEMS signal energy is used with a threshold to resolve the
transition boundary between voiced and unvoiced period. For the
voiced speech, a cleaned audio signal is constructed using either
the GWIN or GCOR filter, over a two-glottal-cycle time period.
The beginning and end times of the 2-glottal cycle period are used
to process both the speech and GEMS signals to eliminate
transient numerical effects. For the unvoiced speech, the Wiener
filter is applied. The signal power spectrum, in the periods
identified as likely for unvoiced speech, is estimated by removing
the noise spectrum obtained from the no-speech time period. Fig.
8 shows example of the result of the reconstructed voiced and
unvoiced speech segments which were corrupted by additive white
noise. The cleaned speech essentially reproduces the original
audio waveform, and sounds almost noise-free to a listener.

5. CONCLUSION

Low power EM radar-like sensors can measure the internal
properties of the human glottal regions safely and non-invasively.
These data, together with the userÕs speech signal, and reliable
sampling of the acoustic noise signals enable several denoising
algorithms to be employed that enable very understandable speech
to be reconstructed, under conditions of S/N as low as 3dB.
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Figure 8.  Example of background denoising from  spoken
word Òrecognize speech.Ó  First graph is original acoustic

signal, second graph is with Ð3dB white noise, third is
denoised acoustic result, and fourth is GEMS signal.
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