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ABSTRACT

The rate of occurrence of words is not uniform but varies from
document to document. Despite this observation, paraméder
conventionaln-gram language models are usually derived using
the assumption of a constant word rate. In this paper we tinves
gate the use of variable word rate assumption, modelled lnysa P
son distribution or a continuous mixture of Poissons. Weegmée
an approach to estimating the relative frequencies of words
grams taking prior information of their occurrences intcamt.
Discounting and smoothing schemes are also considereagUsi
the Broadcast News task, the approach demonstrates aimeduct
of perplexity up to 10%.

1. INTRODUCTION

In both spoken and written language, word occurrences are no

random but vary greatly from document to document. Inderesl, t
field of information retrieval (IR) relies on the degree ofpde
ture from randomness as a discriminative indicator. IResyst
are typically based on unigram statistics (often refereag a
“bag-of-words” model), coupled with sophisticated termigte-
ing schemes and similarity measurﬂs [1]. In an attempt theaat
matically realise the intuition that an occurrence of aaiertvord
may increase the chance that the same word is observedskater,
eral probabilistic models of word occurrence have beengseg.
Much of this work has evolved around the use of (a mixture of)
the Poisson distributior]|[4] § 4]. Recently, Church andeGwive
demonstrated that a continuous mixture of Poisson digioibsi
can produce accurate estimates of variable word ﬂate [5WeLo
has introduced a beta-binomial mixture model which wasiegpl
to topic tracking and detectioﬂ [6].

Although a constant word rate is an unlikely premise, it is
nevertheless adopted in many areas includingram language
modelling. In order to address the problem of variable waite,r
several adaptive language modelling approaches have been p
posed with a moderate degree of success. Typically, soni@nnot
of “topic” is inferred from the text according to the “bag-abrds”
model. Information from different language model statsig.g.,

a general model and/or models specific to each topic) are then
methods such as mixture modellﬂg [7] or max-

combined usin
imum entropy [B]. Thedynamic cache model [E] is a related ap-
proach, based on an observation that recently appearingsveoe
more likely to re-appear than those predicted by a statizam

model. It blends cached unigram statistics for recent warids

the baselinex-grams using an interpolation scheme.
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Theoretically, it should not be necessary to rely oredmoc
device such as a cache in order to model variable word occur-
rences. All the parameters of a language model may be coshplet
determined according to probabilistic model of word rateshsas
a Poisson mixture.

In this paper, we outline the theoretical background for mod
elling the variable word rate, and illustrate a key obséovathat
word rates are not static using spoken data transcripts.cdhe
stant word rate assumption is then eliminated, and we intred
a variable word rate-gram language model. An approach to es-
timating relative frequencies using prior information abngt oc-
currences is presented. It is integrated with standagdam mod-
elling that naturally involves discounting and smoothichemes
for practical use. Using the DARPA/NISAlub—4ENorth Ameri-
can Broadcast News task, the approach demonstrates theioedu
of perplexity up to 10%.

2. MODELLING VARIABLE WORD RATES

In this section, we illustrate how the assumption of a cartsterd
rate fails to capture the statistics of word occurrence ioksp
(or written) documents. We show that the word rate is vaeiabl
and may be modelled using a Poisson distribution or a contisiu
mixture of Poissons.

2.1. Poisson Model

The Poisson distribution is one of the most commonly obskrve
distributions in both natural and social environmentss fLinda-
mental to the queueing theory: under certain conditioresntim-
ber of occurrences of a certain event during a given perioth a
specified region of space, follows a Poisson distributioPofason
process [fLQ]).

By assuming randomness in a Poisson process, word rate is no
longer uniform. Firstly, we provide a loose definition of acdo
ument as a unit of spoken (or written) data of a certain length
that contains some topic(s), or content(s). We consider deino
in which a word occurs at random in a fixed length document. For
a set of documents we assume that each document produces this
word independently and that the underlying process is tiesBo
with a single parametex > 0.

Formally, a Poisson distribution is a discrete distribat{of a
random variableX) which is defined forr = 0, 1, - - - such that

Ay
6 (2) = P(X =5 \) = &2 @)
xT:
whose expectation and variance are givenyX] = A and

V[X] = A, respectively|[[21].
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Figure 1: The occurrence of words (unigrams) varies between
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Figure 2: Variable bigram occurrence rates. Histogramsvshe
number of bigram occurrences (in normalised 1000-word docu
ments) for FOR YOU’ and ‘OF CHURCH’, combinations of uni-
grams used in figurg 1. They are fitted by negative binomiatidis
butions (solid lines).

2.3. Word Occurrences in Documents

The histograms in figurE 1 show the number of word (unigram)
occurrences in spoken news broadcast, taken from tratsafp
the Hub—4E Broadcast News acoustic training data (1996-97).
These transcripts were separated into documents accdodésg-

uments. Histograms show the number of word occurrences fortion markers and those with less than 100 words were remOVed,

‘FOR’, 'YOU’, ‘OF’, and ‘CHURCH’ from a set of 2583 docu-
ments, each containing at least 100 words (average: 497%&)vakd
negative binomial distribution (solid line) was used to @pimate
each histogram. The number of word occurrences were n@eadali
to 1000-word length documents.

2.2. Poisson Mixture — Negative Binomial Model

A less constrained model of variable word rate is offered ué
tiple of Poissons, rather than a single Poisson.

Suppose the parametkeof the pdf ﬂ.) is distributed according
to some functionp(A), then we define a continuous mixture of
Poisson distributions by

o(x) = / " 0P (@)o(A)dx @)
0
In particular, if¢(A) is a gamma distribution,e.,
xo—le™ B
AN =G\ o, 8) = Bor(a) (3)

for a > 0 andg > 0, then the integraﬂZ) is reduced to a discrete
distribution forz = 0, 1, - - - such that

0" (z) = NB(X = z; a, §)

_f at+z—-1
- x
This 6% (z) is a negative binomial distributidrand its expec-

tation and variance are respectively given ByX] = «f and
VI[X] =aB(B+1).

LLetg(\) beG(\; a,B) in (H). This integration is straightforward

/81'

(14 p)ats " @

resulting 2583 documents containing slightly less thamdilBon
words in total. In the following, the number of word occurcen
were normalised to 1000-word length documents.

‘FOR’ and ‘YOU' appeared approximately the same number
of times across all the transcripts. Using a constant wael as-
sumption, they would have been assigned a probability afrato
0.0086. However their occurrence rates varied from doctiteen
document; about 11% and 33% of all documents did not contain
‘FOR’ and ‘'YOU’ (respectively), while 1% and 3% contained these
words more than 30 times. This seems to indicate that ocureee
of ‘FOR’ is less dependent on the content of the document. A neg-
ative binomial distribution was used to model the variablardv
rate in each case (the solid line in figlﬂe 1).

The negative binomial seems to model word occurrence rate
relatively well for most vocabulary items, regardless efjfnency.
Figure|1 illustrates this for one of the most frequent words’
(probability of 0.023 according to the constant word rate as
sumption) and the less frequently occurri@HURCH’ (less than
0.00029). In particular, CHURCH' appeared only in 93 out of
2583 documents, but 28 of them contained more than 10 iressanc
suggesting strong correlation with document content.

We also collected statistics of bigrams appearing in th@a&ro
cast News transcripts. Figuﬂe 2 show histograms and their ne
ative binomial fits for bigramsFOR YOU’ and ‘OF CHURCH'.
Although very sparsee(g., they appeared in 127 and 6 documents,
respectively), this suggests that variable bigram rateatsm be
modelled using a continuous mixture of Poissons.

oo

using the definition of the gamma functioh(a) = t* e tdt,

and the recursiori; (e + 1) = aI'(«). The resultant pdjl4) has a slightly

unconventional form in comparison to that in most of staddextbooks
1

—— with

(eg., [E]), but is identical by setting a new parameter= 15

0<y <1



3. VARIABLE WORD RATE LANGUAGE MODELS

Taking word occurrence rate into account changes a prasiédil
language model from a situation akin to playing a lottergdme-
thing closer to betting on a horse race: the odds for a centaid
improve if it has come up in the past. In this section, we elate
the constant word rate assumption and present a variabterate
n-gram language model.

3.1. Relative Frequencies with Prior Word Occurrences

Let f(w > n.) denote a relative frequency after we obsenve
occurrences of word. It is calculated by

My — Z J- O’W(j)
P> ) = o —0 5)

1= 0u())
=0

The function is defined for,, = 0,1, ---, N, whereN is a fixed
document lengthe(g., IV is normalised to 1000 in figurgk 1 afjd 2).
6., (7) is the occurrence rate for woed in an N-length document
(e.g., Poisson, negative binomial), satisfying

Yo bul)=mu, D Ou()=1.

In particular,

Moy

(6)

which corresponds to the case with no prior information ofdvo
occurrence. For the conventional approach with the cohatard
rate assumption, thig(w > 0) is not modified regardless of any
word occurrences. Further, functicﬁh (5) satisfies our fitnj the
value of f(w > n,) increases monotonically as the number of

observatiom,, accumulates (easy to verify), and it reaches a unity

(‘1) whenn,, = N.

The characteristics of functionﬂ(s) are illustrated in fi@@.
The right hand figure shows relative frequencies foF" and
‘CHURCH’ after a certain number of previous observations of the
word. It indicates that the first few instances of the freqweord
(‘OF’) do not modify its relative frequency very much, but have
a substantial effect on the relative frequency of the lessngon
word (‘CHURCH’). As the number of observations increases, the
former is caught up by the latter.

Finally, in order to convert this relative frequency modeahy
type of probabilistic model for language, normalisatioreiguired.

This is achieved by dividing(w > n.) by Y f(w > ny),

wey
whereV implies a set of vocabulary. Variable relative frequencies
for bigrams can also be calculated in a similar fashion.

3.2. Discounting and Smoothing Techniques

For any practical application, smoothing of the probapibsti-
mates is essential to avoid zero probabilities for everds were
not observed in the training data. L&tw|v) denote a bigram en-
try (a wordv followed by w) in the model. Furtherf(w|v >
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Figure 3: The left figure shows word occurrence rates®st and
‘CHURCH’ in documents of (hormalised to) 1000-word length,
modelled by negative binomial distributions (identicalthose in
figure ﬂ). The right figure demonstrates relative frequenafer

a certain number of word occurrences. Circles)(torrespond
to relative frequencies under the constant word rate assomp
(0.023 for OF' and 0.00029 for CHURCH’).

nwlvy) iMmplies a relative frequency after we obsenvg,, occur-
rences of the bigram. A bigram probabilifw|v > n,,,) may
be smoothed with a unigram probabilitfyw > n.,). Using the
interpolation methoo'ﬂZ]:

P(wlv > 1)) = Fw|v > nyp)
+{1-a(v)} p(w > nw) )

wheref(w|v > n|v) implies a “discounted” relative frequency
(described later) and

a(v) = Z f(w|v > Nylw)

we&(w|v)

8)

is a non-zero probability estimated, the probability that a bi-
gram entry€ (w|v) exists in the model). Alternatively, the back-off
smoothing [18] may be applied:

_ fwlv > nyp)  if E(wlv) exists
plwfy = nup) = { B(v) - p(w g nw) otherwise ©)
In (E), B(v) is a back-off factor and is calculated by
_ 1—a(v) . 10
B(v) =S fwenw (10)
we&(wlv)

A unigram probabilityp(w > n.,) can be obtained similarly by
smoothing with some constant value.

Finally, a number of standard discounting methods exist for
constant word rate models (se=g., [E, ]). Analogous dis-
counting functions for variable word rate models may be

~ C
fabs(w|1) > nw\v) = f(w|v > nw\v) - N (11)
for the absolute discounting, and
Jor(wlo > ny) = d- f(wlo > nyp) (12)

for the Good-Turing discounting. Discounting factors gnd
d) may be obtained using zero prior information casei:e;
f(w|v > 0)’s of all bigrams in the model — and the rest should

be referred toe.g., [[L3] or [L4].
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Figure 4: Unigram and bigram perplexities for the referefhkes)
transcription of 199 Hub—4Eevaluation data. Conventional mod-
els (constant word rate) are compared with models usingsBwis
estimates of variable word rate. Document length for thetatas
normalised to between 200 and 50 000.

3.3. Language Model Perplexities

As noted in sectioﬁlz, we extracted 2583 documents from &me tr
scripts of the Broadcast News acoustic training data, eatthav
minimum of 100 words. A vocabulary of 19885 words was se-
lected and 390000 bhigrams were counted. In these expesment
the absolute discounting schene|(11) was applied, folldvyed-
terpolation smoothind](?). Figuf¢ 4 shows perplexitiestiier ref-
erence (key) transcription of the 19%7ub—4E evaluation data,
containing three hours of speech and approximately 32 006svo
Using conventional modelling with a constant word rate agsu
tion, unigram and bigram perplexities were 936.5 and 2329,
spectively.

For the variable word rate models, the Poisson distributias
adopted because of simplicity in calculation. The numbevaf
occurrences were normalisedA&word length document withV

being between 200 and 50000, and the model parameters were (8l

modified ‘on-line’ during the perplexity calculation. Faaeh oc-
currence of a word (bigram) in the evaluation data, a histogr
of the pastV words (bigrams) was collected and their relative fre-
quencies were modified according to the Poisson estimgipsda
priate normalisation applied), then discounted and snembth

As figureﬂl indicates, the variable word rate models were able
to reduced perplexities from the constant word rate modéls.
unigram perplexity of 843.4 (10% reduction) was achieveenvh
N = 500, and a bigram perplexity of 219.0 (8% reduction) when
N = 50000. The difference was predictable because bigrams
were orders of magnitude more sparse than unigrams.

4. CONCLUSION

In this paper, we have presented a variable wogtam rate lan-
guage model, based upon an approach to estimating relative f
quencies using prior information of word occurrences. &mis
and negative binomial models were used to approximate word o
currences in documents of fixed length. Using the BroadceastsN
task, the approach demonstrated a reduction of perplexitiou
10%, indicating potential although the technique is stitrpa-
ture. Because of the data sparsity problem, it is not cletheaf
approach can be applied to language model components ehturr
state-of-the-art speech recognition systems that tylgicake 3/4-

grams. However, we believe this technique does have afiplica
to problems in the area of information extraction. In pataec, we
are planning to apply these methods to the named entity atioiot
task, along with further theoretical development.
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