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ABSTRACT

The rate of occurrence of words is not uniform but varies from
document to document. Despite this observation, parameters for
conventionaln-gram language models are usually derived using
the assumption of a constant word rate. In this paper we investi-
gate the use of variable word rate assumption, modelled by a Pois-
son distribution or a continuous mixture of Poissons. We present
an approach to estimating the relative frequencies of wordsor n-
grams taking prior information of their occurrences into account.
Discounting and smoothing schemes are also considered. Using
the Broadcast News task, the approach demonstrates a reduction
of perplexity up to 10%.

1. INTRODUCTION

In both spoken and written language, word occurrences are not
random but vary greatly from document to document. Indeed, the
field of information retrieval (IR) relies on the degree of depar-
ture from randomness as a discriminative indicator. IR systems
are typically based on unigram statistics (often referred to as a
“bag-of-words” model), coupled with sophisticated term weight-
ing schemes and similarity measures [1]. In an attempt to mathe-
matically realise the intuition that an occurrence of a certain word
may increase the chance that the same word is observed later,sev-
eral probabilistic models of word occurrence have been proposed.
Much of this work has evolved around the use of (a mixture of)
the Poisson distribution [2, 3, 4]. Recently, Church and Gale have
demonstrated that a continuous mixture of Poisson distributions
can produce accurate estimates of variable word rate [5]. Lowe
has introduced a beta-binomial mixture model which was applied
to topic tracking and detection [6].

Although a constant word rate is an unlikely premise, it is
nevertheless adopted in many areas includingn-gram language
modelling. In order to address the problem of variable word rate,
several adaptive language modelling approaches have been pro-
posed with a moderate degree of success. Typically, some notion
of “topic” is inferred from the text according to the “bag-of-words”
model. Information from different language model statistics (e.g.,
a general model and/or models specific to each topic) are then
combined using methods such as mixture modelling [7] or max-
imum entropy [8]. Thedynamic cache model [9] is a related ap-
proach, based on an observation that recently appearing words are
more likely to re-appear than those predicted by a staticn-gram
model. It blends cached unigram statistics for recent wordswith
the baselinen-grams using an interpolation scheme.

This work was funded by UK EPSRC grant GR/M36717.

Theoretically, it should not be necessary to rely on anad hoc
device such as a cache in order to model variable word occur-
rences. All the parameters of a language model may be completely
determined according to probabilistic model of word rate, such as
a Poisson mixture.

In this paper, we outline the theoretical background for mod-
elling the variable word rate, and illustrate a key observation that
word rates are not static using spoken data transcripts. Thecon-
stant word rate assumption is then eliminated, and we introduce
a variable word raten-gram language model. An approach to es-
timating relative frequencies using prior information of word oc-
currences is presented. It is integrated with standardn-gram mod-
elling that naturally involves discounting and smoothing schemes
for practical use. Using the DARPA/NISTHub–4ENorth Ameri-
can Broadcast News task, the approach demonstrates the reduction
of perplexity up to 10%.

2. MODELLING VARIABLE WORD RATES

In this section, we illustrate how the assumption of a constant word
rate fails to capture the statistics of word occurrence in spoken
(or written) documents. We show that the word rate is variable
and may be modelled using a Poisson distribution or a continuous
mixture of Poissons.

2.1. Poisson Model

The Poisson distribution is one of the most commonly observed
distributions in both natural and social environments. It is funda-
mental to the queueing theory: under certain conditions, the num-
ber of occurrences of a certain event during a given period, or in a
specified region of space, follows a Poisson distribution (aPoisson
process [10]).

By assuming randomness in a Poisson process, word rate is no
longer uniform. Firstly, we provide a loose definition of a doc-
ument as a unit of spoken (or written) data of a certain length
that contains some topic(s), or content(s). We consider a model
in which a word occurs at random in a fixed length document. For
a set of documents we assume that each document produces this
word independently and that the underlying process is the Poisson
with a single parameterλ > 0.

Formally, a Poisson distribution is a discrete distribution (of a
random variableX) which is defined forx = 0, 1, · · · such that

θ
[p](x) = P(X = x; λ) =

e−λλx

x!
(1)

whose expectation and variance are given byE[X] = λ and
V [X] = λ, respectively [11].

http://arxiv.org/abs/cs/0003081v1


0 10 20 30 40 50
0

100

200

#d
oc

um
en

ts

FOR

0 10 20 30 40 50
0

100

200 YOU

0 10 20 30 40 50
0

100

200

#word occurrences

#d
oc

um
en

ts

OF

0 10 20 30 40 50
0

100

200

#word occurrences

CHURCH

Figure 1: The occurrence of words (unigrams) varies betweendoc-
uments. Histograms show the number of word occurrences for
‘FOR’, ‘ YOU’, ‘ OF’, and ‘CHURCH’ from a set of 2583 docu-
ments, each containing at least 100 words (average: 497 words). A
negative binomial distribution (solid line) was used to approximate
each histogram. The number of word occurrences were normalised
to 1000-word length documents.

2.2. Poisson Mixture — Negative Binomial Model

A less constrained model of variable word rate is offered by amul-
tiple of Poissons, rather than a single Poisson.

Suppose the parameterλ of the pdf (1) is distributed according
to some functionφ(λ), then we define a continuous mixture of
Poisson distributions by

θ(x) =

∫ ∞

0

θ
[p](x)φ(λ)dλ . (2)

In particular, ifφ(λ) is a gamma distribution,i.e.,

φ(λ) = G(λ; α, β) =
λα−1e

−λ
β

βαΓ(α)
(3)

for α > 0 andβ > 0, then the integral (2) is reduced to a discrete
distribution forx = 0, 1, · · · such that

θ
[nb](x) = NB(X = x; α, β)

=

(

α+ x− 1
x

)

βx

(1 + β)α+x
. (4)

This θ[nb](x) is a negative binomial distribution1 and its expec-
tation and variance are respectively given byE[X] = αβ and
V [X] = αβ(β + 1).

1 Let φ(λ) beG(λ; α, β) in (2). This integration is straightforward
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Figure 2: Variable bigram occurrence rates. Histograms show the
number of bigram occurrences (in normalised 1000-word docu-
ments) for ‘FOR YOU’ and ‘OF CHURCH’, combinations of uni-
grams used in figure 1. They are fitted by negative binomial distri-
butions (solid lines).

2.3. Word Occurrences in Documents

The histograms in figure 1 show the number of word (unigram)
occurrences in spoken news broadcast, taken from transcripts of
the Hub–4E Broadcast News acoustic training data (1996–97).
These transcripts were separated into documents accordingto sec-
tion markers and those with less than 100 words were removed,
resulting 2583 documents containing slightly less than 1.3million
words in total. In the following, the number of word occurrences
were normalised to 1000-word length documents.

‘FOR’ and ‘YOU’ appeared approximately the same number
of times across all the transcripts. Using a constant word rate as-
sumption, they would have been assigned a probability of around
0.0086. However their occurrence rates varied from document to
document; about 11% and 33% of all documents did not contain
‘FOR’ and ‘YOU’ (respectively), while 1% and 3% contained these
words more than 30 times. This seems to indicate that occurrences
of ‘FOR’ is less dependent on the content of the document. A neg-
ative binomial distribution was used to model the variable word
rate in each case (the solid line in figure 1).

The negative binomial seems to model word occurrence rate
relatively well for most vocabulary items, regardless of frequency.
Figure 1 illustrates this for one of the most frequent words ‘OF’
(probability of 0.023 according to the constant word rate as-
sumption) and the less frequently occurring ‘CHURCH’ (less than
0.00029). In particular, ‘CHURCH’ appeared only in 93 out of
2583 documents, but 28 of them contained more than 10 instances,
suggesting strong correlation with document content.

We also collected statistics of bigrams appearing in the Broad-
cast News transcripts. Figure 2 show histograms and their neg-
ative binomial fits for bigrams ‘FOR YOU’ and ‘OF CHURCH’.
Although very sparse (e.g., they appeared in 127 and 6 documents,
respectively), this suggests that variable bigram rate canalso be
modelled using a continuous mixture of Poissons.

using the definition of the gamma function,Γ(α) =

∫ ∞

0

tα−1e−tdt,

and the recursion,Γ(α+1) = αΓ(α). The resultant pdf (4) has a slightly
unconventional form in comparison to that in most of standard textbooks

(e.g., [11]), but is identical by setting a new parameterγ =
1

1 + β
with

0 < γ < 1.



3. VARIABLE WORD RATE LANGUAGE MODELS

Taking word occurrence rate into account changes a probabilistic
language model from a situation akin to playing a lottery, tosome-
thing closer to betting on a horse race: the odds for a certainword
improve if it has come up in the past. In this section, we eliminate
the constant word rate assumption and present a variable word rate
n-gram language model.

3.1. Relative Frequencies with Prior Word Occurrences

Let f(w ≥ nw) denote a relative frequency after we observenw

occurrences of wordw. It is calculated by

f(w ≥ nw) =
1

N

mw −

nw−1
∑

j=0

j · θw(j)

1−

nw−1
∑

j=0

θw(j)

. (5)

The function is defined fornw = 0, 1, · · · , N , whereN is a fixed
document length (e.g.,N is normalised to 1000 in figures 1 and 2).
θw(j) is the occurrence rate for wordw in anN -length document
(e.g., Poisson, negative binomial), satisfying

N
∑

j=0

j · θw(j) = mw ,

N
∑

j=0

θw(j) = 1 .

In particular,

f(w ≥ 0) =
mw

N
, (6)

which corresponds to the case with no prior information of word
occurrence. For the conventional approach with the constant word
rate assumption, thisf(w ≥ 0) is not modified regardless of any
word occurrences. Further, function (5) satisfies our intuition; the
value off(w ≥ nw) increases monotonically as the number of
observationnw accumulates (easy to verify), and it reaches a unity
(‘1’) when nw = N .

The characteristics of function (5) are illustrated in figure 3.
The right hand figure shows relative frequencies for ‘OF’ and
‘CHURCH’ after a certain number of previous observations of the
word. It indicates that the first few instances of the frequent word
(‘OF’) do not modify its relative frequency very much, but have
a substantial effect on the relative frequency of the less common
word (‘CHURCH’). As the number of observations increases, the
former is caught up by the latter.

Finally, in order to convert this relative frequency model to any
type of probabilistic model for language, normalisation isrequired.

This is achieved by dividingf(w ≥ nw) by
∑

w∈V

f(w ≥ nw),

whereV implies a set of vocabulary. Variable relative frequencies
for bigrams can also be calculated in a similar fashion.

3.2. Discounting and Smoothing Techniques

For any practical application, smoothing of the probability esti-
mates is essential to avoid zero probabilities for events that were
not observed in the training data. LetE(w|v) denote a bigram en-
try (a word v followed by w) in the model. Further,f(w|v ≥
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Figure 3: The left figure shows word occurrence rates for ‘OF’ and
‘CHURCH’ in documents of (normalised to) 1000-word length,
modelled by negative binomial distributions (identical tothose in
figure 1). The right figure demonstrates relative frequencies after
a certain number of word occurrences. Circles (‘o’) correspond
to relative frequencies under the constant word rate assumption
(0.023 for ‘OF’ and 0.00029 for ‘CHURCH’).

nw|v) implies a relative frequency after we observenw|v occur-
rences of the bigram. A bigram probabilityp(w|v ≥ nw|v) may
be smoothed with a unigram probabilityp(w ≥ nw). Using the
interpolation method [12]:

p(w|v ≥ nw|v) = f̂(w|v ≥ nw|v)

+ {1− α(v)} · p(w ≥ nw) (7)

wheref̂(w|v ≥ nw|v) implies a “discounted” relative frequency
(described later) and

α(v) =
∑

w∈E(w|v)

f̂(w|v ≥ nw|v) (8)

is a non-zero probability estimate (i.e., the probability that a bi-
gram entryE(w|v) exists in the model). Alternatively, the back-off
smoothing [13] may be applied:

p(w|v ≥ nw|v) =

{

f̂(w|v ≥ nw|v) if E(w|v) exists,
β(v) · p(w ≥ nw) otherwise.

(9)

In (9),β(v) is a back-off factor and is calculated by

β(v) =
1− α(v)

1−
∑

w∈E(w|v)

f̂(w ≥ nw)
. (10)

A unigram probabilityp(w ≥ nw) can be obtained similarly by
smoothing with some constant value.

Finally, a number of standard discounting methods exist for
constant word rate models (see,e.g., [13, 14]). Analogous dis-
counting functions for variable word rate models may be

f̂abs(w|v ≥ nw|v) = f(w|v ≥ nw|v)−
c

N
(11)

for the absolute discounting, and

f̂gt(w|v ≥ nw|v) = d · f(w|v ≥ nw|v) (12)

for the Good-Turing discounting. Discounting factors (c and
d) may be obtained using zero prior information case —i.e.,
f(w|v ≥ 0)’s of all bigrams in the model — and the rest should
be referred to,e.g., [13] or [14].
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Figure 4: Unigram and bigram perplexities for the reference(key)
transcription of 1997Hub–4Eevaluation data. Conventional mod-
els (constant word rate) are compared with models using Poisson
estimates of variable word rate. Document length for the latter was
normalised to between 200 and 50 000.

3.3. Language Model Perplexities

As noted in section 2, we extracted 2583 documents from the tran-
scripts of the Broadcast News acoustic training data, each with a
minimum of 100 words. A vocabulary of 19 885 words was se-
lected and 390 000 bigrams were counted. In these experiments,
the absolute discounting scheme (11) was applied, followedby in-
terpolation smoothing (7). Figure 4 shows perplexities forthe ref-
erence (key) transcription of the 1997Hub–4E evaluation data,
containing three hours of speech and approximately 32 000 words.
Using conventional modelling with a constant word rate assump-
tion, unigram and bigram perplexities were 936.5 and 237.9,re-
spectively.

For the variable word rate models, the Poisson distributionwas
adopted because of simplicity in calculation. The number ofword
occurrences were normalised toN -word length document withN
being between 200 and 50 000, and the model parameters were
modified ‘on-line’ during the perplexity calculation. For each oc-
currence of a word (bigram) in the evaluation data, a histogram
of the pastN words (bigrams) was collected and their relative fre-
quencies were modified according to the Poisson estimates (appro-
priate normalisation applied), then discounted and smoothed.

As figure 4 indicates, the variable word rate models were able
to reduced perplexities from the constant word rate models.A
unigram perplexity of 843.4 (10% reduction) was achieved when
N = 500, and a bigram perplexity of 219.0 (8% reduction) when
N = 50 000. The difference was predictable because bigrams
were orders of magnitude more sparse than unigrams.

4. CONCLUSION

In this paper, we have presented a variable word/n-gram rate lan-
guage model, based upon an approach to estimating relative fre-
quencies using prior information of word occurrences. Poisson
and negative binomial models were used to approximate word oc-
currences in documents of fixed length. Using the Broadcast News
task, the approach demonstrated a reduction of perplexity up to
10%, indicating potential although the technique is still prema-
ture. Because of the data sparsity problem, it is not clear ifthe
approach can be applied to language model components of current
state-of-the-art speech recognition systems that typically use 3/4-

grams. However, we believe this technique does have application
to problems in the area of information extraction. In particular, we
are planning to apply these methods to the named entity annotation
task, along with further theoretical development.
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