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ABSTRACT 
In this paper, a new auditory-based speech processing system 
based on the biologically rooted property of average localized 
synchrony detection (ALSD) is proposed. The system detects 
periodicity in the speech signal at Bark-scaled frequencies while 
reducing the response’s spurious peaks and sensitivity to 
implementation mismatches, and hence presents a consistent and 
robust representation of the formants. The system is evaluated 
for its formant extraction ability while reducing spurious peaks. 
It is compared with other auditory-based front-end processing 
systems in the task of vowel recognition on clean speech from 
the TlMlT database and in the presence of noise. The results 
illustrate the advantage of the ALSD system in extracting the 
formants and reducing the spurious peaks. They also indicate the 
superiority of the synchrony measures over the mean-rate in the 
presence of noise. 

1. INTRODUCTION 

Due to the superb ability of humans to recognize speech in noisy 
environments, auditory-based front-end processing systems were 
developed to emulate some of the processing performed in the 
human auditory periphery. Several speech recognition 
experiments have demonstrated that such auditory-based systems 
yield better performance (in terms of recognition accuracy), in 
the presence of noise, compared to the traditional LPC and the 
Mel-Frequency Cepstral Coefficients (MFCC) [5][6]. The 
relatively robust performance of the auditory-based systems was 
attributed to the Bark-scale filtering, the compressive non- 
linearity, the short-term adaptation, the forward masking and the 
synchrony detection [5][ 91. 

Despite their superior performance, most auditory-based systems 
are characterized by a relatively long processing time. This 
makes real-time software implementation of ASR systems, 
which use such front-ends, difficult with the present computation 
power. Hardware implementation of the front-end system, using 
parallel analog processing, is more economic for real-time 
operation to be achieved. 

In this work, we investigate some of the auditory-based systems 
that proved to yield relatively good and robust performance, and 
are readily implementable in analog VLSl technology. Those 
include the Bark-scaled filter bank mean-rate output, the Lateral 
lnhibitory Network (LlN) output [ 121, and the Generalized 
Synchrony Detector (GSD) output [lO][l I]. A new system is 
developed by the authors as a modification to the GSD. It is 
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called the Average Localized Synchrony Detector (ALSD) [4] 
and is designed to alleviate some of the limitations of the GSD. 
These four systems are compared in their formant extraction 
ability as indicated by vowel recognition experiments for 
multiple speakers with 7 different dialects of American English 
from the TlMIT database using the first two formants. 

2. AUDITORY-BASED PROCESSING 

The general structure of the auditory-based processing systems 
tested in this work is shown in Fig. (1) .  It consists of a Bark- 
scaled filter bank of 36 filters with a spacing of half a Bark 
between neighboring filters. The filter-bank used here is a 
simulation of an actual analog cochlea that was implemented in 
VLSl [7][8]. This choice of the filter-bank is made in order to 
ensure its practicality from the hardware implementation 
standpoint. Besides the critical-band filtering, the system 
includes other auditory effects like compressive non-linearity, 
half-wave rectification, automatic gain control, short-term 
adaptation and forward masking [4]. It gives two outputs: the 
mean-rate output and the synchrony output. The synchrony 
detector block could be a LIN, GSD or ALSD depending on 
which system is being tested. 

The LlN system is based on inhibiting the output of each filter 
by neighboring filters [12]. This could be as simple as 
subtracting the neighboring filter output, or it could be more 
involved like using a feedforward or feedback inhibitory 
network. The approach used in this work is using a feedforward 
lateral inhibitory network similar to that used by Shamma and 
described in [12]. The output of each unit is computed by 
subtracting a weighted sum of its neighbors, followed by a 
threshold operation and a time-window average. In this way, the 
peaks (formants) are enhanced by detecting the filters that have 
strong phase differences with their neighbors. This is a simple, 
fast and effective approach for detecting the peaks and 
producing a robust formant representation. 

The GSD system is based on the generalized synchrony detector 
developed by Seneff [lO][l I]. The GSD computes an auto- 
correlation-like output by finding the soft-limited ratio of the 
expected (averaged) value of the sum and difference of the 
output of each filter and a delayed version of it. The delay of 
each GSD must match its corresponding filter’s center frequency 
(i.e. the delay is equal to the inverse of the center frequency). 
The GSD enhances the formants and improves the spectral 
resolution by detecting the periodicity (temporal structure) in the 
filter outputs instead of the envelope (mean-rate). 
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Despite its advantage over the mean-rate response in enhancing 
and extracting the formants and its better performance in the 
presence of noise, the GSD has some limitations. First, i t  is 
relatively slow. Second, it suffers significant spurious peaks due 
to individual harmonics of the fundamental frequency and other 
artifacts. Those peaks could be so strong in the low frequency 
filter responses for female speakers that they affect the detection 
of the first formant [ I  I ] .  Third, i t  requires accurate matching 
between the delay time used in the GSD and the center 
frequency of the corresponding filter. This matching, which 
needs to be as tight as 0.1%, is so critical that i t  necessitates 
oversampling for the high frequency filters otherwise significant 
spurious peaks appear [ I  I]. Although such accurate matching is 
possible in software, it is difficult to achieve i n  hardware due to 
the inevitable. component and dimension tolerances in VLSl 
technology. Such a limitation becomes increasingly important 
for a system like the GSD whose software implementation is too 
slow for practical applications. 

The way to reduce the spurious peaks and relax the sensitivity to 
matching is to increase the filter bandwidth [ I  I ] .  This however 
will significantly deteriorate the resolution and performance of 
the system in a way that defeats its original purpose. In  other 
words, in the absence of exact matching, there is an accuracy- 
resolution trade-off that can not be solved. To get rid of spurious 
peaks that affect the formant extraction accuracy we need to 
smooth the spectrum by using wider-band filters, which 
deteriorates the resolution. 

To alleviate the previously mentioned problems, we modified 
the GSD in order to represent the average localized synchrony 
[13]. The output of each ALSD is the average of n GSD’s tuned 
to the same frequency but applied to several filters in the 
neighborhood of the filter corresponding to that frequency. The 
number n depends on the resolution and bandwidth of the filters 
used. This can be expressed as follows: 

1 i+n2 
ALSD, = - CSD, ( y k  ) 

k=i -n l  

where ALSD, is the ALSD output of the ith channel (filter); GSD, 
is the output of the GSD which is tuned to the ith filter; yL is the 
output of the kth filter (after the AGC stage); GSD,(yL) is the 
output of the ith GSD (i.e. the GSD tuned to the ith filter) when 
applied to the kth filter. The constants nl and n2 add up to n. 
(i.e. n=nl +n2). We chose n to be equal to 3, with one filter on 
each side of the center filter. (i.e. nI=n2=1 and k ranges from i-1 
to i+l). We need to emphasize that the operation mentioned in 
equation ( 1 )  is not equivalent to simply averaging the inputs of 
neighboring filters and applying them to the same GSD. I t  is also 
different from averaging the outputs of neighboring GSD’s. The 
non-linearity of the GSD and its tuning characteristics make the 
ALSD output significantly different from those two averaging 
operations [4]. This is shown in Fig. (2). 

The ALSD provides an extra degree of freedom, which enables 
us to achieve smoothing while preserving resolution. I t  also 
decreases the system response to individual harmonics 
(compared to formants) because the harmonics are usually 
limited to one filter, while formants extend to neighboring 

filters. By averaging the GSD responses in the vicinity of the 
filter, responses to individual harmonics will be relatively 
attenuated. 

Detailed description, illustration, and verification of the ALSD 
operation are found in [4]. The system demonstrated that i t  was 
capable of achieving the same resolution as the GSD (as 
evidenced by its ability to resolve three sinusoidal signals that 
are spaced approximately one Bark apart) while considerably 
smoothing the spectrum [4]. An example of the system’s 
response to speech is shown i n  Fig. (2). The spurious peaks in 
the GSD, LIN and Mean-Kate responses have been significantly 
reduced by thc ALSD, while preserving the formants. On the 
other hand, the wider-filter system in Fig. (2e) destroyed the 
formants while rctaining the harmonic that is below FI.  The 
averaged-output system in Fig. (20 also failed to reduce the 
harmonic and yielded a distorted formant structure. Therefore, 
we can see that the ASLD system is capable of achieving 
selective smoothing whereby i t  reduces the spurious peaks while 
preserving the formants. 

3. EXPERIMENTS AND RESULTS 

The four auditory-based systems, namely the mean-rate, the 
LIN, the GSD and the ALSD, arc tested for their formant 
extraction ability from clean speech and in  the presence of noise. 
The test is in the form of a four-vowel recognition experiment 
performed on continuous speech from multiple speakers with 7 
different dialects of American English from the TIMIT database. 
The four vowels are: he/ ,  /iy/, / a d  and /uw/. They are chosen to 
represent the four main tongue positions and hence could be 
classified by the first two formants. The experiments are 
performed on clean speech and on speech distorted by additive 
white Gaussian noise with different signal-to-noise ratios. 

The first two formants are extracted using a relatively simple 
formant tracking algorithm. The algorithm picks the peaks that 
satisfy certain location-, amplitude- and continuity-constraints. 
The same algorithm is used for all the systems. The only 
difference is in the amplitude thresholds, which are optimized 
independently for each system. 

Using the first two formants, the four vowels are classified using 
two threshold values which divide the two dimensional space 
into four regions using Bayesian classification with the 
maximum posterior probability criterion. The system is trained 
using six speakers (3 males and 3 females) and tested on 30 
different speakers with more than 1000 of the above vowels. 
Three measurements are taken in the middle third of each vowel 
and a majority rule is employed. 

The choice of this classification method is motivated by the 
purpose of the experiments. We are interested in evaluating the 
systems’ abilities to accurately extract the formants in the 
presence of noise. Thus i t  is necessary to ensure that the 
classification decision is based on the formant positions and not 
on any other spectral artifacts. Moreover, we need to evaluate 
the ability of the system to reduce spurious peaks and hence 
enable us to use a relatively simple formant tracking algorithm. 
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The results of the experiments are summarized in Fig. (3). For 
clean speech, we see that the ALSD gives the best performance, 
followed by the mean-rate, the LIN and finally the GSD. The 
relatively bad performance of the LlN and the GSD is attributed 
to the presence of spurious peaks that cause errors in  formant 
extraction. The ALSD smoothes the response, while preserving 
the formants, and hence improves the performance. When noise 
is added to the system, the performance deteriorates. The 
deterioration is worst for the mean-rate, which falls sharply. This 
is in agreement with previous findings which demonstrated that 
synchrony measures are usually more robust than the mean-rate. 
We can also see that the deterioration of the ALSD response 
with noise is almost identical to that of the GSD. This indicates 
that the ALSD preserved the robustness of the GSD while 
improving the performance by decreasing thc spurious and 
individual harmonic peaks. This selective smoothing improves 
the performance significantly when using simple formant 
tracking algorithms like the one used in our experiments. 

4. CONCLUSION 

A new auditory-based speech processing system based on thc 
average localized synchrony detection (ALSD) is developed to 
alleviate some of the limitations of the GSD, such as the 
presence of spurious peaks, sensitivity to implementation 
mismatches, and response to individual harmonics. The system 
is compared with several other auditory-based systems in their 
formant extraction ability from clean and noisy speech. l’he 
other systems are the Hark-scaled mean-rate, the lateral 
inhibitory network (LIN) detector, and the generalized 
synchrony detector (GSD). 

The results demonstrate the advantage of the ALSD in extracting 
the formants and reducing the spurious peaks. They also indicate 
the superiority of the synchrony measures, in the presence of 
noise, compared to the mean-rate. In spite of their superb 
formant extraction ability, the LIN and GSD are plagued by 
significant spurious peaks, which complicate the formant- 
tracking task. Such spurious peaks are significantly reduced by 
the ALSD, which yields a better performance with the relatively 
simple formant-tracking algorithm used i n  the experiments. 
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Fig. ( 1 )  Block diagram of the auditory-based front-end 
processing system. 
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Fig. (2) System response for the vowel / a d  spoken by a female speaker. (a) GSD, (b) ALSD, (c) LIN, (d) Mean-Rate, 
(e) GSD with averaged inputs (wider filters), (0 GSD with averaged outputs. 
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Fig. (3) Classification accuracy for the different systems in vowel recognition experiments on 30 speakers with 7 
different dialects of American English from the TIMIT database at various noise levels. The ALSD gives the best 
performance. The mean-rate output deteriorates more sharply with noise than the synchrony measures. 
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