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ABSTRACT

Large vocabulary automatic speechrecognition systems model words
as sequences of a small set of basic sub-word units (thephoneset),
which the systems are trained to classify. All words in the system’s
vocabulary are transcribed in terms of this set in adictionary. The
phoneset and dictionary are specific to a language and are typi-
cally designed manually. The system’s performance is critically
dependent on the quality of the phoneset and the accuracy of the
dictionary.

In this paper we attempt to generate the phoneset and dic-
tionary automatically, using only the training data and their tran-
scriptions. We treat this as a joint optimization problem with a
maximuma posteriori solution for the dictionary and a maximum
likelihood solution for the phoneset and its acoustic models. Ex-
periments with the DARPA Resource Management corpus show
that the automatically generated phoneset and dictionary result in
recognition accuracies close to those obtained using manually de-
signed ones.

1. INTRODUCTION

Medium and large vocabulary speech recognition systems model a
small number of sub-word units rather than entire words as the ba-
sic units of speech. These are usually phonetically motivated and
represented as a set of symbols in the ASR system. Words are rep-
resented as sequencesof these subword units in the dictionary used
by the system. Traditionally, both the sub-word units and the dic-
tionary are hand crafted and the same phoneset is used for alltasks
within a given language with minor manually effected variations.
While this is an adequate approach, a fixed phoneset may not be
optimal under different acoustic conditions and for different task
domains, even within the same language. It may be therefore be
advantageous to derive the optimal sub-word units automatically
from the training corpus.

Automatic derivation of pronunciations of words for a given
set of predefined sub-word units has been attempted by several re-
searchers in the past (e.g.[1], [3]). In this paper we address the
problem of automatic derivation of the sub-word units themselves,
as well as the dictionary. The phoneset and the dictionary are
jointly optimized over the acoustic training data using likelihood
of the training data as an optimization criterion. The following
section outlines the problems involved. In Section 3 we present
our solutions. We present our experimental results in Section 4.

2. PROBLEM DESCRIPTION

The simultaneous generation of a phoneset and dictionary isa
highly unconstrained joint optimization problem. The optimal num-
ber of phones needed to represent the language, as represented by
the training data is unknown. Independently of this, the number of

phones in any of the words is unknown. The word boundaries in
the training data are also unknown.

For an ASR system, ideally the objective function to be opti-
mized should be the recognition performance. However, the recog-
nition performance is obtainable only at the end of a tedioustrain-
ing and testing process and it would be extremely time consuming
to optimize over it. We therefore use the likelihood of the training
data as an optimization criterion as follows: Let� be phoneset of
sizen�. Let the dictionary transcribing the words in terms of�
be denoted asD�. Let the parameters of the statistical models for�, i.e. the acoustic models, be denoted as��. Let the acoustic
training data and their transcriptions be jointly denoted byT. We
note here that the knowledge of the acoustic models of the sub-
word units,�� implies that the sub-word units,�, are also known.
If we have a statistical, or rule based model,�P , that places con-
straints on how phones can follow each other, this can be usedto
constrain the problem. For non-ideographic languages, it may be
possible to obtain a statistical or rule-based model,�S, that re-
lates the spellings of words to their pronunciations, this can also
be used to constrain the problem. We incorporate these constraints
and formulate our problem as :��;D� = sup�;f}gfP (T;f}gj�;n�;�P;�S)g (1)

The equation above results in a Maximuma posteriori (MAP)
estimate ofD� and a Maximum Likelihood (ML) estimate of��.

3. SOLVING THE PROBLEM

The solution for the optimal lexical representation as given by
Equation (1) requires the joint estimation ofD�, �� andn�. We
attempt to solve the problem by decomposing it into two parts:
estimating the size of the optimal phone setn�, andjointly esti-
matingD� and��.

In the following paragraphs, for notational simplicity, weomit
the subscript inD� and�� and write these asD and� instead.

3.1. Joint estimation ofD and �
We reduce the joint estimation in Equation (1) to an iterative solu-
tion: �i = sup� P (TjDi; n�;�;�P ;�S) (2)Di+1 = supf}g P (f}gjT; n�; �i;�P ;�S) (3)

where the subscripti represents the iteration number. It can be
easily shown that each step of the iterations described above results
in an increase in the likelihood of the data as given by Equation (1).

The size of the phone setn� is implicit in the dictionaryD�.
Similarly, the likelihood of the dataT, given the dictionaryD� is



independent of any constraints on the dictionary. As a result, the
above equations can be modified to�i = sup� P (TjDi;�) (4)Di+1 = supf}g P (f}gjT; �i;�P ;�S) (5)

We refer to Equations (4) and (5) as themodel update step and
the dictionary update step respectively. The model update step is
clearly the maximum likelihood solution for the statistical models
for the phones and can be obtained by the Baum-Welch algorithm
when these models are HMMs.

The dictionary update step is more complicated since the bound-
aries of the individual words in the training corpus are not known.
There are several ways of segmenting each utterance into as many
segments as there are words in the utterance. We refer to eachof
these segmentations as aword segmentation ws and to the set of
word segmentations for all utterances in the training corpusT as
the setfwsg. Of the possible word segmentations for an utter-
ance, only one corresponds to the correct word boundaries. Ide-
ally, Equation (5) would have to be optimized over all possible
word segmentations. However, we simplify this process asDi+1; fwsg0 = supf}g;fwsgP (f}g; fwsgjT;�; �;�P ;�S) (6)

wherefwsg0 represents the jointly optimal word segmentation.
The dictionary update step can now, once again, be obtained as
an iterative solution of the form:fwsgj = supfwsgP (fwsgjDi+1;j ;T; �i;�P ;�S) (7)Di+1;j+1 = supf}g P (f}gjfwsgj;T; �i;�P ;�S) (8)

Each step of this iteration can be shown to result in an increase inP (f}g; fwsgjT; �i;�P ;�S).
Using Bayes’ theorem and assuming that all possible word

segmentations are equally likelya priori, Equation (7) can be mod-
ified to: fwsgj = supfwsgP (Tjfwsg;Di+1;j ; �i;�P ;�S) (9)

This equation can be maximized forfwsg very simply, using the
Viterbi algorithm. Note here that if thecorrect word segmentationfwsg0 were given, the above estimation becomes unnecessary. In
this case it is sufficient to solve for Equation (8) and the iterations
overfwsg can be avoided altogether.

Once a word segmentation is given, the boundaries of the var-
ious words in the training data are also given. Hence the dictio-
nary need not be jointly optimized for Equation (8) - it is sufficient
to optimize the pronunciation of each word in the lexicon. Thus,
Equation (8) reduces to}max = sup} P (}jWdata; �i;�P ;�S) (10)Di+1;j+1 = f}maxg (11)

where} refers to the pronunciation of the wordW in the lexicon.Wdata refers to the set of segmented acoustic realizations for the
wordW .

Equation (10) requires us to search over every possible pro-
nunciation} to identify}max, for each word in the lexicon. Since

there are an infinite number of possible pronunciations in the ab-
sence of any constraint, this is clearly infeasible. For anysingle
instanceWk of a wordW , however, it is straight forward to obtain}maxk = sup} P (Wkj}; �i) (12)

using the Viterbi algorithm. We therefore obtain}maxk for every
instance of the word in the training dataT, resulting in a set of
pronunciationsf}maxgW for the wordW . This set of pronunci-
ations can be collapsed into a graph [5] as shown in Figure 1. As
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Figure 1: In this figure four hypothetical pronunciations for a word
(left) have been collapsed into a single graph. The weight associ-
ated with any node (shown on top of the node) is proportional to
the number of times the node has been visited in this set of four
pronunciations. On the right of the graph are listed twelve pronun-
ciations which have been generated from the graph.

we can see from this figure, the graph enables us to generate many
more possible pronunciations for the word than the originalset of
pronunciationsf}maxgW than were used to create the graph. We
generate a list of pronunciationsf}ggraph from this graph, and
restrict our search for the optimal pronunciation in Equation (10)
to this set of pronunciations1.}max = sup}2f}ggraphP (}jW;�i;�P ;�S) (13)

Using Bayes’s theorem in conjunction with the fact that the
spelling and phonemic constraints�P and�S only apply to the
pronunciation} of the word, and not toW or��, the above equa-
tion can be simplified to}max = sup}2f}ggraphP (W j}; �i)P (}j�P )P (}j�S) (14)P (W j}; �i) is the likelihood of the observed acoustic data for the
word, for the phone sequence}. If the statistical models for the
phones are HMMs,P (W j}; �i) can be easily obtained using the
Baum-Welch algorithm.P (}j�P ) is the probability of the phone
sequence} given the phonemic constraints�P . We use a statisti-
cal N-gram model derived from a phonetic decoding of the training
corpusT.

The spelling constraints�S are also statistical, and are ob-
tained as the probability of phone sequences given the spelling of
the word [4].

Using Equation (11) and Equation (14),Di+1;j+1 can now be
obtained asDi+1;j+1 = f sup}2f}ggraphP (W j}; �i)P (}j�P )P (}j�S)g

(15)

1If we include the corresponding pronunciation fromDi+1;j inf}ggraph, the most likely pronunciation inf}ggraph is guaranteed to
be at least as likely as the pronunciation inDi+1;j , thereby guaranteeing
a non-decreasing likelihood for every iteration.



For the complete solution for the optimalD� for any n�,
Equations (2) and (3) are iterated until Equation (1) converges.
Within each of these iterations themselves, the solution for Equa-
tion (3) is obtained by iterating Equations (7) and (8) untilEqua-
tion (6) converges. In practice we iterate these steps untilthe
recognition accuracy on a heldout data set converges. For a phone-
set of any given size the Equations (7) and (8) typically converge
in 3 iterations. Equations (2) and (3) converge in just 2 iterations.

3.2. Estimating n�
Increasing the number of phonesn� results in an increase in the
number of parameters representing the training data, and therefore
an increase in the likelihood of the training data. The likelihood of
the training data is, therefore, not a good metric to base thechoice
of the optimaln� on. We therefore use the recognition accuracy of
the optimal dictionary and phoneset for anyn� on a set of heldout
data,TH , which is not part ofT, to estimaten�. In other words,
we attempt to obtainn� = supn R(TH jn) (16)

whereR(TH jn) is the recognition accuracy of the heldout set on
the acoustic models for the optimal phoneset of sizen. Note that
the optimal dictionaryDT;n and the optimal statistical parameters�T;n have been obtained fromT and notTH .

We begin with a small value forn�, and split the most fre-
quently occurring phones in the dictionary. We do this by cluster-
ing the data segments corresponding to the phones into two clus-
ters, while ensuring that all data segments belonging to a particular
word stay together, and replacing the phone labels with the clus-
ter labels in the dictionary. We increase the phone set in a phased
manner until any increase in the number of phones does not result
in increase inR(THjn).
3.3. Implementation of the algorithm

For any non-ideographic script, we initialize the dictionary in a
rule-based manner using the corresponding alphabet. For exam-
ple, the word CAT could be transcribed phonetically as “C A T”.
Another initialization for the same word that is less dependent on
the consistency of the script of the language could be “Y Y Y”.
This initialization is non-committal in assuming only a relation re-
lation only between the number of characters in the spellingand
the length of the pronunciation. The complete algorithm is shown
in the flowchart in Figure 2.

4. EXPERIMENTAL RESULTS

The phone definition and lexical generation algorithm presented in
this paper was tested on the DARPA Resource Management (RM)
database. A phoneset and dictionary were automatically gener-
ated using 2.7 hours of RM training data, and their correspond-
ing transcriptions. Recognition performance with semi-continuous
HMMs using these components was tested on a held out RM test
set consisting of 1.58 hours of speech. The CMU SPHINX-III
speech recognition system was used for all experiments. Thetrain-
ing set covered a vocabulary of 987 words. The vocabulary of the
held out set was 991 words, four of which were not covered by the
training set.
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Figure 2: Flow chart for Phone definition and Lexical generation

A baseline was established using the CMUdict [6], which uses
a set of 50 manually-designed phonetic units. Although the Re-
source Management task has a very constrained linguistic struc-
ture, the experiments took minimal advantage of it, by usinga very
low language weight for all experiments. The dictionary to be de-
rived was initialized with the 26 symbol alphabet of the English
language.

Figures 3 and 4 below show the results obtained during var-
ious stages of the experiment. In these figures the model update
steps are indicated by Roman numerals (I,II,..), and the dictio-
nary update steps are indicated by Arabic numerals (1,2,..). The
phone set expansions (obtained by splitting phones) are indicated
asa! b, wherea refers to the size of the phone set prior to split-
ting andb refers to the size of the phone set after splitting. Figure
3 shows that the likelihood of the training data increases monoton-
ically with the model and dictionary updates and becomes equal
to the baseline (with manually designed dictionary and phone set)
with only 34 phones, increasing further over the baseline asthe
number of phones was increased to 42. From Figure 4 and Table
1 we see that the best word error rate obtained is for 34 phones.
When the phone set size is increased to 42, the likelihood contin-
ues to increase but the word error rate observed for the held out set
increases.



The resultant automatically-generated 34-symbol phonesetand
the corresponding dictionary were evaluated by building context
dependentsemi-continuous HMMs with 2000 tied states. For com-
parison purposes, context-dependent models with 2000 tiedstates
were also built for the baseline system. States were tied using de-
cision trees. For both the baseline and the automatically derived
phoneset the linguistic questions used in the decision trees were
automatically generated [2]. Table 1 lists the word error rates ob-
tained.

Lo
g 

Li
ke

lih
oo

d 
P

er
 F

ra
m

e

-3.8

-3.6

-3.4

-3.2

-3.0

-2.8

-2.6

-2.4

-4.0

Manual Phones/Dict
Automatic Phones/Dict

1 2 1 2 1 2 1 21 2

26 26 -> 34 34 -> 42
I II III IV V

Figure 3: Likelihood as a function of iteration number

15.0


20.0


25.0


30.0


35.0


40.0


45.0


10.0


Manual Phones/Dict

Automatic Phones/Dict


W
or

d 
E

rr
or

 R
at

e 
(%

) 
w

ith
 C

I m
od

el
s

1
 2
 1
 2 
 1
 2
 1
 2
1
 2


26
 26 -> 34
 34 -> 42

I
 II
 III
 IV
 V


Figure 4: Word error rate as a function of iteration number

5. CONCLUSIONS

We demonstrated that it is possible to build up a complete phone-
set, including the identities of the sub-word units as well as their
dictionary pronunciations, in a completely automatic fashion given
only a speech database and its correct orthographic transcription.
The speech recognition accuracy obtained with the automatically-
generated phoneset in English approached that obtained using a
phoneset developed manually over many years by expert phoneti-
cians. The performance of the automatically-generated phoneset
was limited by the small size of the graphs used to search for op-
timal pronunciation. Also, the entire procedure was implemented
using only context-independent phonetic models for economy of
computation.

Type of No. of WER(%) with WER(%) with
phoneset phones CI models CD models
Automatic 26 26.1
Automatic 34 21.2 12.6
Automatic 42 24.0
Manual 50 17.2 9.2

Table 1: Word error rates with context-independent (CI) and
context-dependent (CD) acoustic models as a function of thenum-
ber of phones

Since the problem of generating a complete lexical represen-
tation is highly unconstrained in its current format, adequate train-
ing data are required to capture the optimal sub-word units.While
the optimization problem has been formulated in a compact frame-
work, the solution obtained is not optimal, since the objective func-
tion used – the likelihood of the training data – may not be suited to
the problem. This is evidenced by the trend in Figure 3 where the
likelihoods obtained become higher with the automaticallygener-
ated phones than those with the hand-crafted ones in just a few iter-
ations. Nevertheless, the recognition accuracy does not follow the
same trend. We believe that these encouraging results can beim-
proved on through the use of a more appropriate objective function
as well as the use of context-dependent pronunciation modelling.
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