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ABSTRACT

Large vocabulary automatic speechrecognition systememartds
as sequences of a small set of basic sub-word unitpfibeeset),
which the systems are trained to classify. All words in th&tegn’s
vocabulary are transcribed in terms of this set gicionary. The
phoneset and dictionary are specific to a language and are typ
cally designed manually. The system’s performance iscetlti
dependent on the quality of the phoneset and the accuratyeof t
dictionary.

In this paper we attempt to generate the phoneset and dic

tionary automatically, using only the training data andrttr@n-
scriptions. We treat this as a joint optimization problenthwa
maximuma posteriori solution for the dictionary and a maximum
likelihood solution for the phoneset and its acoustic medé&ix-

periments with the DARPA Resource Management corpus show

that the automatically generated phoneset and dictioreltrin
recognition accuracies close to those obtained using niigiries
signed ones.

1. INTRODUCTION

Medium and large vocabulary speech recognition system&haod
small number of sub-word units rather than entire words ab#?

sic units of speech. These are usually phonetically mativand
represented as a set of symbols in the ASR system. Wordsgare re
resented as sequences of these subword units in the distiosed

by the system. Traditionally, both the sub-word units areldtec-
tionary are hand crafted and the same phonesetis used fasld
within a given language with minor manually effected vaoias.

phones in any of the words is unknown. The word boundaries in
the training data are also unknown.

For an ASR system, ideally the objective function to be opti-
mized should be the recognition performance. Howevergbeg-
nition performance is obtainable only at the end of a tedimis-
ing and testing process and it would be extremely time coirsgim
to optimize over it. We therefore use the likelihood of trerting
data as an optimization criterion as follows: ldebe phoneset of
sizeng. Let the dictionary transcribing the words in termsdof
be denoted aB . Let the parameters of the statistical models for

“®, i.e. the acoustic models, be denoted ad,. Let the acoustic

training data and their transcriptions be jointly denotgdb We
note here that the knowledge of the acoustic models of the sub
word units,\, implies that the sub-word unit$, are also known.

If we have a statistical, or rule based modes, that places con-
straints on how phones can follow each other, this can be tased
constrain the problem. For non-ideographic languagesait be
possible to obtain a statistical or rule-based modiel, that re-
lates the spellings of words to their pronunciations, tfzis also

be used to constrain the problem. We incorporate theseredmtst
and formulate our problem as :

)‘¢7D¢ = Slg-p}{P(T7{p}|)‘7 n¢7FP7FS)} (1)
Adp

The equation above results in a Maximarposteriori (MAP)
estimate oD, and a Maximum Likelihood (ML) estimate of.

3. SOLVING THE PROBLEM

While this is an adequate approach, a fixed phoneset may not bel e solution for the optimal lexical representation as iy

optimal under different acoustic conditions and for difierr task
domains, even within the same language. It may be therefore b
advantageous to derive the optimal sub-word units autcalbti
from the training corpus.

Automatic derivation of pronunciations of words for a given
set of predefined sub-word units has been attempted by $exera
searchers in the pastd.[1], [3]). In this paper we address the
problem of automatic derivation of the sub-word units thelwess,
as well as the dictionary. The phoneset and the dictionagy ar
jointly optimized over the acoustic training data usingelikood
of the training data as an optimization criterion. The failog
section outlines the problems involved. In Section 3 we gmées
our solutions. We present our experimental results in Sedti

2. PROBLEM DESCRIPTION

The simultaneous generation of a phoneset and dictionaay is
highly unconstrainedjoint optimization problem. The apl num-
ber of phones needed to represent the language, as repebgnt
the training data is unknown. Independently of this, the benof

Equation (1) requires the joint estimationBf;, Ay andn,. We
attempt to solve the problem by decomposing it into two parts
estimating the size of the optimal phone agt andjointly esti-
matingD g, andAs.

In the following paragraphs, for notational simplicity, wenit
the subscript i 4 andA, and write these aB and instead.

3.1. Joint estimation of D and A

We reduce the joint estimation in Equation (1) to an itemaelu-
tion:

Ai

@)
®)

sup P(T|Di,ng, A, Tp,I's)
A

D1 sup P({p}|T,n¢, i, I'p,T's)

{p}

where the subscript represents the iteration number. It can be

easily shown that each step of the iterations describedseiesults

in an increase in the likelihood of the data as given by Equdti).
The size of the phone set; is implicit in the dictionaryD .

Similarly, the likelihood of the datd’, given the dictionarnyD 4 is



independent of any constraints on the dictionary. As a tethé
above equations can be modified to

Ai

4)
®)

sup P(T|D;, A)
A

Diy1 = sup PHe}|T, A, T'p, I's)
{p}

We refer to Equations (4) and (5) as thedel update step and
the dictionary update step respectively. The model update step is
clearly the maximum likelihood solution for the statistiosodels

for the phones and can be obtained by the Baum-Welch algorith
when these models are HMMs.

The dictionary update step is more complicated since thadbou
aries of the individual words in the training corpus are nukn.
There are several ways of segmenting each utterance inta@g m
segments as there are words in the utterance. We refer tooéach
these segmentations asvard segmentation w. and to the set of
word segmentations for all utterances in the training cefPlas
the set{w.}. Of the possible word segmentations for an utter-
ance, only one corresponds to the correct word boundaris. |
ally, Equation (5) would have to be optimized over all poksib
word segmentations. However, we simplify this process as

Diy1,{w:} = sup  P({o}, {w:} ©

ProWs

T,A M\ e, T's)

where {w.}’ represents the jointly optimal word segmentation.

there are an infinite number of possible pronunciations énath-
sence of any constraint, this is clearly infeasible. For single
instancaéV;, of a wordW, however, it is straight forward to obtain

P = sup P(Wilp, A:) (12)
£

using the Viterbi algorithm. We therefore obtgiff"** for every
instance of the word in the training d&i, resulting in a set of
pronunciationg o™ }w for the wordW. This set of pronunci-
ations can be collapsed into a graph [5] as shown in Figuresl. A
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Figure 1: In this figure four hypothetical pronunciationsdovord
(left) have been collapsed into a single graph. The weigbdeis
ated with any node (shown on top of the node) is proportiomal t
the number of times the node has been visited in this set of fou
pronunciations. On the right of the graph are listed twehkanpn-
ciations which have been generated from the graph.

The dictionary update step can now, once again, be obtaised a We can see from this figure, the graph enables us to generate ma

an iterative solution of the form:

{ws}; = sup P{we}Dig1,;, T, A, Tp,T's) (7)
{ws}
Dij141 = sup P({p}{ws};, T, A, T, I's)  (8)
[
Each step of this iteration can be shown to result in an ireréa
PH{p},{w}T, X, Tp, T's).

Using Bayes’ theorem and assuming that all possible word

segmentations are equally likedypriori, Equation (7) can be mod-
ified to:

{w.}; = sup P(TH{w:},Dit1,5, A, e, I's) 9)
{ws}

This equation can be maximized féw.} very simply, using the
Viterbi algorithm. Note here that if theorrect word segmentation

more possible pronunciations for the word than the origaeglof
pronunciationg p“* } 1w than were used to create the graph. We
generate a list of pronunciatioq$} 4-.p» from this graph, and
restrict our search for the optimal pronunciation in Equma{10)

to this set of pronunciations

max

e = P(p|lW,Xi,I'p,I's) (13)

sup
PE{R Y grapn

Using Bayes’s theorem in conjunction with the fact that the
spelling and phonemic constrairifs andI's only apply to the
pronunciationp of the word, and not t&V or A4, the above equa-
tion can be simplified to

max

e = PWp, \)P(pllp)P(pll's)  (14)

sup
PE{R Y grapn

P(W|p, A:) is the likelihood of the observed acoustic data for the
word, for the phone sequenge If the statistical models for the

{w.}' were given, the above estimation becomes unnecessary. Inphones are HMMsP (W |, A;) can be easily obtained using the

this case it is sufficient to solve for Equation (8) and theatiens
over{w.} can be avoided altogether.

Baum-Welch algorithm.P(p|I"p) is the probability of the phone
sequence given the phonemic constraints. We use a statisti-

Once a word segmentation is given, the boundaries of the var-cal N-gram model derived from a phonetic decoding of theinaj

ious words in the training data are also given. Hence theodict
nary need not be jointly optimized for Equation (8) - it isfeziént
to optimize the pronunciation of each word in the lexiconugh
Equation (8) reduces to

max

© = sup P(p|Wdata7>\i7FP7FS) (10)
&

{™}

wherep refers to the pronunciation of the wobll in the lexicon.

Dit1j1 = (11)

Waata refers to the set of segmented acoustic realizations for the

word W,

nunciatione to identify o™ **, for each word in the lexicon. Since

corpusT.

The spelling constraintE's are also statistical, and are ob-
tained as the probability of phone sequences given theirspel
the word [4].

Using Equation (11) and Equation (14),41,;+1 can now be
obtained as

P(Wlp, Ai)P(ell'p)P(e|l's)}
(15)

Ditiy41 ={ sup

PE{R Y grapn

1if we include the corresponding pronunciation from;y, ; in
©} graph, the most likely pronunciation if o} 44,5 IS guaranteed to

. . ) {
Equation (10) requires us to search over every possible pro-pe at least as likely as the pronunciatiodny ; ;, thereby guaranteeing

a non-decreasing likelihood for every iteration.



For the complete solution for the optim&), for any ng,
Equations (2) and (3) are iterated until Equation (1) cogesr
Within each of these iterations themselves, the solutioiEfpia-
tion (3) is obtained by iterating Equations (7) and (8) uBtjua-
tion (6) converges. In practice we iterate these steps thil
recognition accuracy on a heldout data set converges. Hooraep
set of any given size the Equations (7) and (8) typically ecge
in 3 iterations. Equations (2) and (3) converge in just Zifens.

3.2. Estimating ng

Increasing the number of phones results in an increase in the
number of parameters representing the training data, amelftire

an increase in the likelihood of the training data. The Itkebd of

the training data is, therefore, not a good metric to basehb&e

of the optimal: 4 on. We therefore use the recognition accuracy of
the optimal dictionary and phoneset for any on a set of heldout
data,T zr, which is not part ofT, to estimate:,. In other words,
we attempt to obtain

(16)

ne =

sup R(Tx|n)

whereR(T x|n) is the recognition accuracy of the heldout set on
the acoustic models for the optimal phoneset of siz&lote that
the optimal dictionanDt ,, and the optimal statistical parameters
At,» have been obtained fromand notT #.

We begin with a small value for,, and split the most fre-
quently occurring phones in the dictionary. We do this bystdu
ing the data segments corresponding to the phones into tvgo cl
ters, while ensuring that all data segments belonging tatacpkar
word stay together, and replacing the phone labels with lig ¢
ter labels in the dictionary. We increase the phone set inaagdh
manner until any increase in the number of phones does ndt res
inincrease inR(T g|n).

3.3. Implementation of the algorithm

For any non-ideographic script, we initialize the diction&n a
rule-based manner using the corresponding alphabet. FEon-ex
ple, the word CAT could be transcribed phonetically as “C A T”
Another initialization for the same word that is less depsrticn
the consistency of the script of the language could be “Y Y Y.
This initialization is nhon-committal in assuming only aatbn re-
lation only between the number of characters in the spedind
the length of the pronunciation. The complete algorithmhisven

in the flowchart in Figure 2.

4. EXPERIMENTAL RESULTS
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Figure 2: Flow chart for Phone definition and Lexical gerierat

A baseline was established using the CMUdict [6], which uses
a set of 50 manually-designed phonetic units. Although the R
source Management task has a very constrained linguistic-st
ture, the experiments took minimal advantage of it, by uaingry
low language weight for all experiments. The dictionary ¢ode-
rived was initialized with the 26 symbol alphabet of the Esigl
language.

Figures 3 and 4 below show the results obtained during var-
ious stages of the experiment. In these figures the modeltepda
steps are indicated by Roman numerals (1,1,..), and théodic
nary update steps are indicated by Arabic numerals (1,Z;hg
phone set expansions (obtained by splitting phones) areaitedi
asa — b, whereu refers to the size of the phone set prior to split-

this paper was tested on the DARPA Resource Management (RM)ting andb refers to the size of the phone set after splitting. Figure

database. A phoneset and dictionary were automaticallgrgen
ated using 2.7 hours of RM training data, and their corredpon
ing transcriptions. Recognition performance with senmttaious

3 shows that the likelihood of the training data increasesatan-
ically with the model and dictionary updates and becomesilequ
to the baseline (with manually designed dictionary and jetsmt)

HMMs using these components was tested on a held out RM testwith only 34 phones, increasing further over the baselinthas

set consisting of 1.58 hours of speech. The CMU SPHINX-III
speechrecognition system was used for all experimentstraime

ing set covered a vocabulary of 987 words. The vocabularef t
held out set was 991 words, four of which were not covered by th
training set.

number of phones was increased to 42. From Figure 4 and Table
1 we see that the best word error rate obtained is for 34 phones
When the phone set size is increased to 42, the likelihootireon
ues to increase but the word error rate observed for the sk
increases.



The resultant automatically-generated 34-symbol phdaesk
the corresponding dictionary were evaluated by buildingtext
dependentsemi-continuous HMMs with 2000 tied states. &0rc
parison purposes, context-dependent models with 200@ titeds
were also built for the baseline system. States were tietyjLdz-
cision trees. For both the baseline and the automaticaliyestke
phoneset the linguistic questions used in the decisiors e
automatically generated [2]. Table 1 lists the word erreegab-
tained.
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Figure 4: Word error rate as a function of iteration number

5. CONCLUSIONS

We demonstrated that it is possible to build up a completepho
set, including the identities of the sub-word units as wsltteeir
dictionary pronunciations, in a completely automatic faslgiven
only a speech database and its correct orthographic tiptisnr
The speech recognition accuracy obtained with the autoaiiti
generated phoneset in English approached that obtainad asi
phoneset developed manually over many years by expert hone
cians. The performance of the automatically-generatedeéet
was limited by the small size of the graphs used to searchgor o
timal pronunciation. Also, the entire procedure was immeated
using only context-independent phonetic models for ecgnoim
computation.

Type of No. of  WER(%) with  WER(%) with
phoneset phones Cl models CD models
Automatic 26 26.1

Automatic 34 21.2 12.6
Automatic 42 24.0

Manual 50 17.2 9.2

Table 1: Word error rates with context-independent (Cl) and
context-dependent (CD) acoustic models as a function aftinge-
ber of phones

Since the problem of generating a complete lexical represen
tation is highly unconstrained in its current format, adstedrain-
ing data are required to capture the optimal sub-word unitsile
the optimization problem has been formulated in a compaoié-
work, the solution obtained is not optimal, since the oljedtnc-
tion used —the likelihood of the training data— may not béeslio
the problem. This is evidenced by the trend in Figure 3 whese t
likelihoods obtained become higher with the automaticgdiper-
ated phones than those with the hand-crafted ones in justitefe
ations. Nevertheless, the recognition accuracy does fowfthe
same trend. We believe that these encouraging results cam be
proved on through the use of a more appropriate objectivetifum
as well as the use of context-dependent pronunciation rioglel
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