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ABSTRACT

We derive a Kalman filter based on data from a sliding win-
dow. This is used for a new approach to fault detection and
diagnosis, where the state estimate from past data is com-
pared to the state estimate of some of the future data. We
suggest a method to judge the quality of diagnosis in a sim-
ple way. For fault estimation in the diagnosis, the general
concept ofstochastic observabilityin linear systems is in-
troduced. Its role on the design step is illustrated on a prob-
lem of estimating the true velocity of a car.

1. INTRODUCTION

A standard approach to change detection in parametric mod-
els is based on model validation. Assume the measurement
is produced by a linear systemyt = G(q, θ)ut +H(q, θ)et,
whereut is a measured input,et is noise,q is the shift op-
erator andθ a parameter vector. Many algorithms are based
on the assumption that we have estimated nominal model
parametersθ0 based on a large amount of measurements,
and would like to know if a current estimated valueθ̂ based
on data for a sliding window is consistent with the nominal
model. See [1] or [2] for details.

However, many signal processing problems, in particu-
lar in navigation related areas, are expressed in state space
models. Typical faults include sensor and actuator offsets
and drifts, which may all be modeled as additive changes.
Change detection, or fault detection as we call it from now
on, on state space models are either based on an innovation
whiteness test or filter banks, see [2] (Chapters 8,9). The
former approach is numerically simple, but not very pow-
erful and not useful for diagnosis. The latter approach is
numerically complex.

Here we derive the Kalman filter over a sliding window
(Section 3) and suggest a detection and diagnosis algorithm
(Section 4) based on this. Section 5 describes a framework
for analysing fault diagnosis problems, whose practical im-
plementation is illustrated in Section 6.

2. MODELS AND PROBLEM FORMULATION

The state space model under consideration is

xt+1 = Atxt + vt, Qt = Cov(vt) (1a)

yt = Ctxt + et, Rt = Cov(et). (1b)

The covaraince matrixRt is positive definite andQt posi-
tive semi-definite. No known input is included in the model,
since it would not affect the results or complicate the deriva-
tions.

Additive state changes can be used for modelling actu-
ator faults and sensor faults, as offsets and drifts, as well as
disturbances. The first fault model is

xt+1 = Atxt + vt + σt−kBtf, Qt = Cov(vt) (2a)

yt = Ctxt + et + σt−kDtf, Rt = Cov(et). (2b)

Heref denotes the fault magnitude andσt is the step func-
tion, which is one after timek and zero before. An alter-
native state space model for fault estimation is based on the
augmented state vectorx̄t = (xt, f)T which becomes

xt+1 =
(
At Bt
0 I

)
xt +

(
vt
0

)
+
(

0
δt−k−1f

)
(3a)

yt =
(
Ct Dt

)
xt + et (3b)

Both (2) and (3) are identical, but the latter will be analysed
with respect to observability (is the fault observable from
the measurements?) and the former is used in the proposed
algorithm. For a discussion and more information about the
models (2) and (3), see [2] (Appendix A and Chapters 8,9).

3. KALMAN FILTER OVER SLIDING WINDOW

Standard references in the field describe how the Kalman
filter estimatesxt based on past measurementsyt, yt−1, . . . ,
see [3, 4, 2]. Assuming Gaussian noise distributions, we get
the conditional distribution

x̂t|t−1 = N(xt, Pt|t−1), (4)

from the Kalman filter as one-step predictor.
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Now we derive an algebraic expression for the state es-
timate over a sliding window. That is, estimatext from
yt, yt+1, . . . , yt+L assuming that the window looks forward
in time. The standard model (1) gives

yt
yt+1

yt+2

...
yt+L


︸ ︷︷ ︸

Y Lt

=


Ct

Ct+1At
Ct+2At+1At

...
Ct+2At+L−1 . . . At


︸ ︷︷ ︸

OLt

xt +


et
et+1

et+2

...
et+L


︸ ︷︷ ︸

ELt

+


0

Ct+1vt
Ct+2(vt+1 +At+1vt)

...
Ct+L(vt+L−1 +At+L−1vt−L−2 + . . . )

 ,

︸ ︷︷ ︸
V Lt

(5)

or shorter

Y Lt = OLt xt + ELt + V Lt . (6)

The noise terms have covariance matrices (forL = 2 here)

CovEt
∆= R̄t =

Rt 0 0
0 Rt+1 0
0 0 Rt+2


CovVt

∆= Q̄t =0 0 0
0 Ct+1QtC

T
t+1 Ct+1QtA

T
t+1Ct+2

0 Ct+2At+1QtCt+1 Q̄33
t

 ,

Q̄33
t = Ct+2Qt+1C

T
t+2 + Ct+2At+1QtA

T
t+1Ct+2.

It follows immediately from the property of Gaussian vec-
tors and least squares theory that the minimum variance
state estimate (or Kalman filter over sliding window) is

Yt ∈N(OLt xt, R̄Lt + Q̄Lt )⇒ (7a)

x̂t|t+L =
(
(OLt )T (R̄Lt + Q̄Lt )−1 · OLt

)−1
(7b)

· (OLt )T (R̄Lt + Q̄Lt )−1Y Lt (7c)

∈N

xt, ((OLt )T (R̄Lt + Q̄Lt )−1OLt
)−1︸ ︷︷ ︸

Pt|t+L

 (7d)

x̂obst|t+L =(OLt )†Y Lt (7e)

∈N(xt, (OLt )†(R̄Lt + Q̄Lt )((OLt )†)T ). (7f)

Here we have for comparison also included the observer es-
timate (not involving any stochastic considerations)x̂obst|t+L.
However, it isx̂t|t+L which is the minimum variance es-
timate and thus the Kalman filter estimate over the sliding
window.

4. A TWO-FILTER APPROACH TO FAULT
DETECTION

The following algorithm is suggested to estimate the fault
f in (1). In the sequel, we make the simplifying assump-
tion thatBt = I andDt = 0 so the fault affects all of the
state vector but not the sensors signals. The generalization
includes more projections that might blur the picture.

4.1. Filter computations

Compute the following estimates:

1. Run a standard Kalman filter for (1) up to timet, not
including the measurementyt. It provides

x̂t|t−1 ∈ N(xt, Pt|t−1).

2. Run the sliding window Kalman filter on the mea-
surements from timet to time t + L This provides,
according to (7),

x̂t|t+L ∈ N(xt + f, Pt|t+L).

If a fault occured at timet, thenf 6= 0. That is,
this is a generalization of the well-known approach
of two parallel filters, used for parametric models (see
Chapter 6 in [2]), to state space models.

3. Compute an estimate of the fault as

f̂t
∆= x̂t|t+L − x̂t|t−1 ∈ N(f, Pt|t−1 + Pt|t+L). (8)

Here we have used the fact that the two state estimates
are independent, since they are based on independent
data sets.

4.2. Fault detection

Given (8), the obvious test is to monitor

gt
∆= f̂Tt (Pt|t−1 + Pt|t+L)−1f̂t ∈ χ2(dim(f)) (9)

which isχ2 distributed under the no-fault hypothesis. Ifgt
exceeds a thresholdgt > h, then the next diagnosis step
is applied. The expected value of the test statistic after a
change isE(gt) = fT (Pt|t−1 +Pt|t+L)−1f + dim(f). We
can define thefault to noise ratio(FNR) as

FNR =
(E(gt))2

Var(gt)
,

which yields here

FNR =
(fT (Pt|t−1 + Pt|t+L)−1f + dim(f))2

(2 dim(f))
.

It should be clear that the weighting matrix in this expres-
sion contains much information about which changes are
detectable.

In many cases, detection is an easier task than diagnosis,
so it might be worthwhile to collect more data, by increasing
L, before applying diagnosis.
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4.3. Fault diagnosis

Suppose there arem different fault directionsf1, f2, . . . fm.
After detection, we want to isolate the fault, that is, decide
whichfi occurred. Normalize the faults as

f̄i =(Pt|t−1 + Pt|t+L)−1/2fi. (10)

The scaling of the nominal fault vectorsfi is immaterial,
but preferably scaled appropriately. The size of the fault
(the norms of the vectors) is unknown, so the actual fault
is f = σfi for someσ andi. Define the fault correlation
matrixT with

T
(i,j)
t = f̄Ti f̄j . (11)

The off-diagonal elements show the correlation between dif-
ferent faults after the spatial decorrelation (10). SinceTt
changes in time, it might be a diagonal matrix at one time
instant and a fault entering the system at that time is easy to
diagnose, but in another situation this might be impossible.

For diagnosis, the following test statistics can be com-
puted:

git
∆= f̄Ti (Pt|t−1 + Pt|t+L)−1/2f̂t (12)

Now if the true fault isf = σfj , then we can expresŝft =
σfj + w, wherew ∈ N(0, Pt|t−1 + Pt|t+L) from (8). The
distributions of the test statistics are

git ∈ N
(
f̄Ti σf̄j , f̄

T
i f̄i
)

(13)

∈ N
(
σT

(i,j)
t , T

(i,i)
t

)
(14)

under hypothesisHj of a faultf = σfj . Here the role of
the diagnosibility matrixTt is clear. Any large off-diagonal
element can cause an incorrect diagnosis decision by the
randomness of the estimated̂ft. More specifically, we can
define the FNR as

FNR = σ2

(
T

(i,j)
t

)2

T
(i,i)
t

.

A good practical procedure would be as follows: After
a fault is detected, compute the normalized fault directions
f̄i, and the correlation matrixTt. Then, compute the test
statisticsgit and maximize for diagnosis. Check the risk of
incorrect decision. This can be done sinceTt contains all
information about the risk of incorrect decisions. If the risk
is too large, try to increaseL.

5. THE STOCHASTIC OBSERVABILITY
GRAMIAN

This section describes an alternative procedure for diagnosis
based on estimation of the faults. The method is primarily
aimed at analysis and design purposes.

Assume that some fault detection algorithm, for instance
the one in Section 4.2, has shown that a fault has occured. A
Kalman filter is then applied on the augmented state space
model (3). The question now is if the faults are observable.
For notational simplicity, letA,B,C,Q,R denote the state
space matrices of (3).

For time invariant systems,observabilityis equivalent to
full rank of the observability matrix (assumeL ≥ dim(x)−
1)

O ∆=


C
CA
CA2

...
CAL


The straightforward generalization of observability to time-
varying systems follows from (5) as the condition of full
rank of

Ot ∆=


Ct

Ct+1At
Ct+2At+1At

...
Ct+2At+L−1 . . . At

 ,

from which the squareobservability Gramianis defined in
the control literature (see for example [5]):

Gt
∆= (OLt )TOLt . (15)

For stochastic systems, the definition is

Gt
∆= (OLt )T (R̄Lt )−1OLt . (16)

However, in practice these measures are a bit dull, since they
do not say anything about the FNR; they just answer yes or
no.

To answer the question which (fault) states are observ-
ableand distinguishable from noise, the followingstochas-
tic observability Gramianis suggested:

Ḡt
∆= (OLt )T (R̄Lt + Q̄Lt )−1OLt = P−1

t|t+L. (17)

It follows from (7) that it coincides with the inverse covari-
ance matrix of the state estimate from a sliding window
which includesL measurements. The eigenvalues ofḠt
gives important information about the FNR, and in particu-
lar which fault vectorsf are not distinguishable from noise
for a given excitation. In the Kalman filter design, we may
turn off adaptation of the fault states at certain time inter-
vals, if the condition number of̄Gt is poor!

6. EXAMPLE: VELOCITY ESTIMATION

The following example illustrates a case where the Gramian
(15) is well conditioned but the stochastic Gramian (17) is
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ill-conditioned. As expected, the Kalman filter will not pro-
vide useful estimates unless some conditions on excitation
are satisfied. The stochastic Gramian can thus be used as
a design tool to examine which combinations of design pa-
rametersQ,R and excitation (hereCt) are permissible.

The following model describes a very simplified model
for estimating absolute velocity in a car [6]. Two sensors
are used, one that measures angular velocityωt = vt/r0 of
a wheel with nominal radiusrn (true value isr0 = rn − δr)
and one accelerometer that measures accelerationv̇t with an
unknown offsetδa. It is in this study assumed that the ac-
celerometer is mounted on the wheel such that their velocity
vectors are identical. That is, the fault state isf = (δa, δr)T ,
and the state space model (3) becomes:

xt =

v̇tvtδa
δr

 (18a)

xt+1 =

 1 0 0 0
Ts 1 0 0
0 0 1 0
0 0 0 1

xt +

 Ts 0 0
T 2
s /2 0 0
0 1 0
0 0 1

 vt

(18b)

yt =
(
ax
ωtrn

)
=
(
v̇t + δa + e1

t

vt + ωδr + e2
t

)
(18c)

=
(

1 0 1 0
0 1 0 ωt

)
+ et (18d)

The observability matrix is

Ot =


1 0 1 0
0 1 0 ωt
1 0 1 0
Ts 1 0 ωt+1

1 0 1 0
2Ts 1 0 ωt+2


It is easily seen that the observability matrix has full rank
if and only if ωt is not a linear function of time(includ-
ing a constant). The optimistic conclusion would be that
a Kalman filter successfully estimates the fault statesδa
andδr. However, care must be taken such that the process
noise on the fault states does not integrate during periods of
poor excitation. Figure 1 shows a simulated velocity pro-
file and the condition number of the stochastic observabil-
ity GramianG10

t and Kalman covariancePt|t, respectively.
As expected, the excitation is better the higher acceleration.
This has been confirmed experimentally as well in a test car.

7. CONCLUSIONS

The contributions are:

• A method to compute the Kalman filter over a sliding
window, here derived in an algebraic way without the
need to specify initial conditions.
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Fig. 1. Velocity profile and condition numbers.

• An algorithm based on a predictive Kalman filter and
the sliding window Kalman filter. Additive faults are
here detected and diagnosed more or less in a stan-
dard way. For diagnosis, we suggested to analyse a
certain correlation matrix (T ), which contains suffi-
cient information for calculating the risk of false di-
agnosis. FromT , the fault to noise ratio (FNR) can
be computed.

• The generalization of observability using the sliding
window Kalman filter. This approach also provides a
measure of FNR, useful for filter design.

• An example highlighting the need for feedforward ex-
citation measures of fault states to the Kalman gain.
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