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ABSTRACT

Understanding and simplified modeling of the Head Related Trans-
fer Function (HRTF) holds the key to many applications in spatial
audio. We develop an analytical solution to the problem of scat-
tering of sound from a sphere in the vicinity of an infinite plane.
Using this solution we study the influence of a nearby scattering
rigid surface, on a spherical model for the HRTF.

1. INTRODUCTION
Humans have the remarkable ability to localize a sound source us-
ing the sound received at just two receivers (ears), even in the pres-
ence of noise and other sources. Future spatial audio applications
that wish to exploit this ability, such as those in virtual and aug-
mented reality, will require a great degree of fidelity in rendering
the sound localization cues to be perceptually convincing [1]. A
key block to developing such fidelity is the present lack of under-
standing of the cues that arise from the scattering of sound off the
external ears, head, and bodies of the person, and by scattering
off surfaces in the environment. All of the acoustic cues result-
ing from scattering off the person are captured by a frequency re-
sponse function called the head-related transfer function (HRTF).
For a particular source location, the HRTF is defined as the ratio
of the complex sound pressure level (SPL) at the eardrum to the
SPL at a specified location when the listener is absent [2]. Thus, a
primary goal of current research is to determine how complicated
models that achieve perceptual fidelity have to be [3], and develop
simple models and an understanding of the human HRTF [4].

The HRTF depends on many factors including the shape of
the head and pinnae, spatial orientation of the head relative to
the source of sound, the room environment, proportions of the
body, and others. Such a multiparametric dependence of the HRTF
makes the study and modeling of the HRTF extremely complex.
There is need for simple modeling and experiments to elucidate its
structure.

To use the HRTF in applications the influence of nearby bound-
aries on it must be determined. In all applications a wall is present,
at least in the form of a ground plane. Similarly, many experiments
performed to measure the HRTF often have a nearby surface or
boundary, and its influence on the results must be assessed.

Recently Duda & Martens [2] performed mathematical mod-
eling for sound scattering from a sphere, and the HRTF induced
including its close-range behavior. They verified their results with
experimental data. This simple treatment allowed for insight, and
resulted in a simple model for approximating the HRTF for ap-
plications [4]. The purpose of this paper is to study the influence
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of a nearby rigid wall (or floor) using an analytical technique we
develop, that permits one to clearly distinguish the influence of
any introduced parameters. We present our model problem and its
solution in §2, assess its properties for a few interesting configura-
tions in §3, and conclude in §4 with a few remarks based on these
solutions.

2. PROBLEM DEFINITION AND SOLUTION
PROBLEM STATEMENT: The geometry of the problem is
shown in Fig. 1. There is a monochromatic point source at A
and a sphere of radius a, with center at O. These are respectively
located at distances h and H from a rigid wall at z = H in a
half-space z < H, with d the distance between the source and the
sphere center. Note that the case of a non-monochromatic source
can be treated using Fourier analysis with our results. The com-
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Fig. 1. Problem definition and notation.

plex pressure amplitude, Ψ, satisfies:

∇2Ψ+ k2Ψ = Qδ (r− rr) , (1)

where k = ω/c is the wavenumber, ω the circular frequency, c
the sound speed, and Q the source intensity. Ψ is subject to the
following boundary conditions on the rigid surfaces of the sphere,
S, and the wall, z = H ,

∂Ψ

∂n

¯̄̄̄
S

= 0,
∂Ψ

∂z

¯̄̄̄
z=H

= 0. (2)



Near the monopole source Ψ satisfies

Ψ|M→A ∼ QGk (rs) , Gk (rs) =
eikrs

4πrs
, (3)

where rs is the distance between the source and a field point M,
Gk the free space Green’s function. Far from the source and the
sphere the Sommerfeld radiation condition applies:

lim
r→∞

r

µ
∂Ψ

∂r
− ikΨ

¶
= 0. (4)

Consider now two solutions to the problem at a field point M : in
the presence of the sphere,Ψ(M), and absence of the sphere,Ψ0(M).
We define the HRTF, H, at any pointM on S as the ratio:

H(M) = Ψ(M)

Ψ0(M)
, M ∈ S. (5)

Note that this definition of the HRTF differs from that in [2]. That
definition can be recovered by multiplying H by Ψ0(M) /Ψ0(O).

SOLUTION: To solve the problem we replace the plane of sym-
metry by an image source and image sphere. We introduce two ref-
erence frames – at the sphere center,O, and at the center of the im-
age sphere, O∗. The 2nd frame is a mirror image of the 1st frame,
and all coordinates in it are marked with a * superscript. The axis
z is directed along OO∗. The coordinates of the source and its im-
age in the frame at O are rr = (d, θr,φr) and ri = (di, θi,φi).
The solution to (1) can be written as:

Ψ = Q [Gk (|r− rr|) +Gk (|r− ri|) + ψ(r) + ψ(r∗)] .(6)

ψ is regular for r ≥ a, and has the multipole expansion:

ψ =
∞X
n=0

m=nX
m=−n

Amn S
m
n (r) , S

m
n (r)= hn(kr)Y

m
n (θ,φ).(7)

Here Amn are coefficients, Smn (r) is a multipole of order n and
degree m, hn are spherical Hankel functions of the 1st kind that
satisfy the Sommerfeld condition, and Y m

n (θ,φ) are orthonormal
spherical harmonics. From now on, to conserve space, we will
suppress the argument for the Ym

n , except when necessary to in-
dicate the reference frame for θ &φ, e.g., we indicate Ym

n (θi,φi)
as Y m

n [i]. For |r| 6 d the 1st term in Eq. (6) can be expanded as:

Gk (|r− rr|) = ik
∞X
n=0

jn(kr)hn(kd)

m=nX
m=−n

Ȳ m
n [r]Y

m
n ,

where jn are spherical Bessel functions of the 1st kind and Ȳ m
n are

complex conjugate to Y m
n . The same equation holds forGk (|r− ri|)

but with di, θi, and φi instead. To expand the latter term in Eq. (6),
we use the following representation valid for |r| 6 2H :

Smn (r
∗) = hn(kr

∗)Y m
n [∗] =

∞X
l=|m|

νmlnjl(kr)Y
m
l , (8)

where the order of spherical harmonics, m, does not change due
to the selection of the reference frames (φ∗ = φ); νmnl are the
coefficients of the re-expansion depending on kH alone. Their
computation is key to the solution [7]. Using Eq. (7) and (8) we
have

ψ (r∗) =
∞X
n=0

m=nX
m=−n

Amn

∞X
l=|m|

νmlnjl(kr)Y
m
l . (9)

Using the fact that Y m
l = 0 for |m| > l we can regroup the

summation and represent Ψ (r) as:

Ψ (r) = Q

∞X
n=0

m=nX
m=−n

{Bmn jn(kr) +Amn hn(kr)}Y m
n (10)

Bmn = ik
¡
hn(kd)Ȳ

m
n [r] + hn(kdi)Ȳ

m
n [i]

¢
+

∞X
l=0

νmnlA
m
l .

Satisfying (2) on the sphere and using the orthogonality/completeness
of the Ym

n we get a linear system for the Amn . Writing the Amn as
a column vectorAm = {Amn } we can write this system as:

MmAm=Bm, Mm= I+Nm, m = 0,±1, ... (11)

where I = {δnl} is the identity, andNm ={Nm
nl} and the compo-

nents of the r.h.s. vectorBm = {Bm
n } are:

Nm
nl =

j0n(ka)
h0n(ka)

νmnl,

Bm
n = −ik j

0
n(ka)

h0n(ka)

£
hn(kd)Ȳ

m
n [r] + hn(kdi)Ȳ

m
n [i]

¤
.

Note that for the mth degree system, Bm
n = 0, νmnl = 0 for n <

|m| and l < |m| . Therefore Amn = 0 for n < |m| and equation
(11) applies only for n > |m| . The system of equations can be
solved by truncating the infinite matricesNm and vectorsAm and
Bm by their initial L components. This results in an approximate
solution. However the series converge rapidly, and the choice of L
is made by determining when additional terms make no difference.

An approximation can be made in the case the influence of
the field scattered by the image sphere is small compared to the
incident fields generated by the source and its image. In this case
solution of Eq. (11) can be represented as:

Am=(I+Nm)−1Bm=(I−Nm + ...)Bm.

The zeroth-order approximate solution is Am = Bm. Knowing
Am, Ψ (r) can be determined on the sphere. Eq (10) at r = a
can be substantially simplified if the Bmn terms in (10) are ex-
pressed via coefficients Amn according to (11) using the Wron-
skianW {jn(ka), hn(ka)} = jn(ka)h0n(ka)−j0n(ka)hn(ka) =
i(ka)−2. This results in:

Ψ|r=a (θ,φ)=
Q

ik2a2

∞X
n=0

m=nX
m=−n

Amn
Y m
n

j0n(ka)
.

COMPUTATIONAL PROCEDURE: For rapid computation
of the coefficients of the multipole reexpansion, νmnl (2kH) , we
derived several recurrence and symmetry relations, that are omit-
ted for reasons of space, and will be presented elsewhere [7]. Com-
putation of the matrix Nm as well as H requires computation of
Hankel, Bessel and associated Legendre functions. This is per-
formed using standard recurrence relations (e.g. see [5, 6]). Note
thatMm depends on kH & ka only, and can be decomposed once
for fixed kH & ka.



3. NUMERICAL STUDY OF THE WALL INFLUENCE
The pressure on the sphere surfaceΨ (θ,φ) depends on the ratio of
the sphere size to the characteristic wavelength, ka, and the three
length ratios, d/a, h/a, and H/a, characterizing the geometry.
These form a 4 dimensional parameter space. We present results
obtained by varying these parameters to illustrate the major effects.

The definition of the HRTF requires comparison of the scat-
tered sound signal to a standard signal (in the absence of the head),
Ψ0 in (5). In the present problem, if we choose the same Ψ0 as in
[2] the HRTF exhibits features which, while explainable, can be
hard to understand intuitively. Thus, to aid physical understand-
ing we introduce several different transfer function definitions. In
the form written in (5), where Ψ0 is taken at the same point in the
presence and in the absence of the head,H(M) shows the effect of
the head on the acoustic field. We can decompose the influence of
all factors on this composite HRTF. For example we can normal-
ize the HRTF with the free space solution, QGk (d) , to show the
influence of the head width and the wall as

H00 (M) =
Ψ(M)

QGk (d)
=
Ψ(M)

Ψ0(M)

Ψ0(M)

Ψ0(O)

Ψ0(O)

QGk (d)
(12)

= H (M)HMO HO00 = H (M)HM00 .

Here HMO = Ψ0(M)/Ψ0(O) is the ratio of the pressure at
the two points M and O in the absence of the head, HO00 =
Ψ0(O)/QGk (d) is the ratio of the pressure at the head center
in the presence and absence of the wall (without the head). These
two effects can be combined in one factor HM00 = HMO HO00, which
can be interpreted as the effect of the scattering not related to the
head. The amplitude of the HRTF are usually is measured in dBs.
Thus when expressed logarithmically these contributions sum up.

The effect of the wall on the acoustic field can be decomposed
into two effects. The first effect is the effect of the image source,
and the second effect is that of scattering from the image sphere.
Mathematically, if the second effect is negligible, we can replace
the matrixMm with the identity I.
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Fig. 2.
¯̄
H00

¯̄
in dB for incidence angles θin = 0◦ & 150◦. The

dashed line is for the theory of [2] (without a wall), while the
solid line is for the present theory (with a wall). H/a = h/a =
10, d/a = 100, φ = 0, a = 8.25 cm.

Figs. 2 and 3 show the modulus of functions H00 (M) and
H (M) , computed for relatively far sphere locations from the
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Fig. 3. |H| for the same conditions as in Fig. 2.

plane (H/a = 10) and a distant source (d/a = 100), for two
incidence angles θin = 0◦ and 150◦, measured from the line con-
necting the center of the sphere and the source. For comparison,
the results of [2] are also shown. Our computations show that the
effect of the acoustic field scattered by the image sphere in this
case does not produce any visible differences in the graphs, so the
effect of wall is primarily due to the image source.

At low frequencies |H (M)|→ 1, which corresponds to 0 dB.
This is natural for waves much larger than the head. At the same
time, at low frequencies and large ranges,

¯̄
H00 (M)

¯̄→ 2, which
corresponds to a 6 dB difference. This doubling is clearly due to
addition of the intensities of the source and its image. From Eq.
(12) we have HO00(O) = [Gk (di) /Gk (d) + 1]→ 2.

The frequency dependence of the HRTF is a function of the
incidence angles. In addition, the influence of the wall is differ-
ent on the sides of the sphere that are ipsilateral and contralateral
to it. In both cases

¯̄
H00 (M)

¯̄
has sharp troughs. The physical

explanation of these troughs is that they arise due to exact cance-
lation of the waves arriving with differing phase from the source
and its image. To evaluate the frequencies of these peaks for large
ranges we find that the difference between the distances from the
real and the image source to the point under consideration is ap-
proximately∆ = di − d ∼ 2h2/d. The cancellation occurs when
∆ ∼ (n + 1/2)λ, where λ is the wavelength, and n = 0, 1, 2, ...
This gives the following expression for the cancellation frequen-
cies, and for the trough value of the

¯̄
H00 (M)

¯̄
in dB

fn=
(2n+ 1)cd

4h2
,

¯̄
H00 (M)

¯̄
min
= 6 + 40 lg

h

d
.

In the case shown in Fig.2 & 3 we have c = 343 ms−1, d = 8.25
m, h = 0.825 m, which gives f0 = 1040 Hz , fn = (2n + 1)f0,
and

¯̄
H00 (M)

¯̄
min
= −34dB. This agrees well with the peaks for

θin = 0◦. The cancellation frequencies for θin = 150◦ are a bit
smaller than fn, due to the diffraction of the sound by the sphere.

The function H (M) for θin = 150◦ substantially differs
from the H (M) in the absence of the plane. This is because
the magnitude

¯̄
HM00(M,O)

¯̄
has its minima shifted from those of¯̄

H00 (M)
¯̄
. For normal incidence, θin = 0◦, the presence of the

plane has little effect on H (M). Note also that at high frequen-
cies the maximum increase of the pressure amplitude occurs near
θin = 0◦, which is twice the free-field pressure. For

¯̄
H00 (M)

¯̄
this is 12 dB (see Fig. 2).
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Fig. 4 shows the effect of the acoustic field scattered by the
image sphere on the HRTF. Computations are performed for dif-
ferent frequencies and ratios H/a while keeping all other param-
eters fixed. The value of

¯̄
H00 (M0)

¯̄
was computed for the point

on the sphere closest to the plane using both with the full Mm

and with the approximationMm = I. The size of Mm varies be-
tween 5×5 and 30×30. The size is chosen to obtain results that are
independent of the truncation. For higher frequencies there exist
oscillations of

¯̄
H00 (M)

¯̄
as a function of H/a, which are related

to the ratio of the wavelength and distance between the centers of
the sphere and its image. We found in all computed cases that the
effect of the image sphere on the HRTF is a secondary effect com-
pared to the effect of the image source. If the distance from the
wall is equal to several times the sphere radius the effect of the
image sphere may be neglected. This can be important in justify-
ing the use of simple source imaging models for modeling room
acoustics (e.g. [8]).

Fig. 5 shows a computation of a case that corresponds to the
“bright-spot” calculations that were shown in [2], except that there
is a wall on the contralateral side of the sphere, and the source is
located above the sphere along the axis of symmetry. Instead of a
single bright spot, we now observe several bright bands and/or the
spot, whose location and number depend upon ka.

4. CONCLUSIONS
The obtained results and preliminary study allows one to make the
following conclusions about the effect of a nearby rigid boundary
on the HRTF:

• The presence of a nearby rigid boundary causes a strong
effect on the HRTF.

• The resulting HRTF has new peaks and troughs due to the
difference in the phases of the signals coming from the
source and its image.

• For distances from the wall equal to several sphere radii,
an approximate approach, where one just accounts for the
image source and neglects the effect of the image sphere,
works very well. This may be used to justify simplified
room modeling approaches such as [8].

Fig. 5. Polar plots of the magnitude of H00. Thin lines correspond
to the solution of [2], thicker lines to the approximate solution ne-
glecting the image sphere, and thickest lines to the analytical solu-
tion. H/a = 2, d/a = 98, h/a = 100.

• Much future work is needed to explain the psychoacoustical
implications of these results.
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