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ABSTRACT 

This paper presents a new method for musical chord 

recognition based on a model of human perception. We 

classify the chords directly from the sound without the 

information of timbres and notes. A wavelet-based 

transform as well as a self-organized map (SOM) neural 

network is adopted to imitate human ears and cerebra, 

respectively. The resultant system can classify chords very 

well even in a noisy environment. 

1. INTRODUCTION 
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Fig.1 (a) Traditional chord recognition scheme. 

(b) Model of human perception to sounds. (c) 

Proposed system diagram. 

Melodies, rhythms, and harmony are three fundamental 

components of music. For harmony in music the chords play 

an important role. Several chord recognition schemes have 

been developed by treating chords as the combination of 

discrete tones and recognizing them from the results of 

polyphonic analysis based on music theory [ I]-[3]. A typical 

model of these scheme is shown in Fig. 1 (a). However, it does 

not fit our daily experience, since human beings often 

perceive chords as a whole with some readily recognized 

characteristics (e.g. major or minor) before they could 

accurately distinguish the individual notes composing the 

sound (Fig. I b). With this in mind, here we propose a model 

for direct chord identification in a multi-timbre environment 

(Fig.lc). The chord characteristics are extracted as a 

time-frequency map through a wavelet transform and then 

directly sent to a neural-network chord-classification unit 

without note identification. In next section, we will 

introduce some basic properties of musical timbres and 

chords. Implementation of the wavelet-transform and 

neural-network units will be introduced in Sections 3 and 4, 

respectively. Section 5 lists simulation results and gives 

related discussions. Finally, in Section 6 we draw some 

conclusions. 

2. MUSICAL TIMBRES AND CHORDS 

Frequency 0 
@I 

F ig2  The first sound of the dh movement 01 
Beethoven's 5'h Symphony. (a) Time domain 
signal. (b) Corresponding frequency spectrum. 
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I I Frequency I Equivalent I Closest 1 

Fundamental 
Freauencv 

3. WAVELET TRANSFORM (Hz) MIDI No. MIDI Note 
65.4064 24.0000 c2 

1“partial 

2”d partial 

3‘d partial 

4‘h partial 

130.8128 36.0000 c3 

196.2192 43.0196 G3 

261.6256 48.0000 c4 

327.0320 5 1.863 1 E4 
1 -  

I I I 8Ihpartial I 588.6575 I 62.0391 I D5 I 
I I 

I 9th~ar t ia l  I 654.0639 I 63.8631 I E5 I 
Table 1. A list of partials and equivalent MIDI numbers 
of c2. 

Figure 2 (a) exhibits the first sound of the dh movement of 

Beethoven’s gh symphony, consisting of 26 notes from 17 

different kinds of instruments. It is hard for both human and 

machine to recognize all composing notes since various 

partials of various timbres overlap disorderly (Fig2(b)). 

However, when a person listens to it, the sound in Fig.:! is 

with clear characteristic of a C major chord even though any 

of its composing notes is hard to detect. 

Let’s elaborate this point further. In frequency domain the 

partials for a specified timbre appear at frequencies 

approximately or equal to integer multiples of its fundamental 

frequency. Table 1 lists frequencies of the partials for note C2. 

Among these partials, some map exactly to octaves of the 

fundamental frequency, while others map to non-integer 

MIDI numbers. Here we let C4 = 262 Hz be the center C 

whose MIDI note number is 48. The closest MIDI notes of 

these partials are also listed. When a note of a timbre is 

played, all of its partials contribute to the time-frequency map 

and more or less hinder the recognition of notes. 

As the number of notes and timbres increases, partials of all 

composing notes overlap disorderly. Most of them, especially 

those with a frequency/fundamental frequency ratio not equal 

to power of 2 will violate the rule of chords in music theory. 

This has been a serious problem in conventional polyphonic 

recognition [4] [5][6]. 

0 0 2  0 4  06 0 8  I 
rime (9) 

Fig.3 The time-frequency map of Figure 2. 

This section shows the part of the system that simulates the 

role of human cochlea of human beings. Vanous schemes can 

be used for this goal, such as Short-time Founer Transform 

(STFT), c0nstant-Q filters, Wigner-Ville distnbution, etc. [7] 

Here we adopt the wavelet transform scheme since it has a 

“zooming” capacity over a logarithmic frequency range, and 

its translation-invanant property can center the sampling 

window properly in the time domain 

Several choices for the mother-wavelet dt) are available. 

In this research we apply a complex Gabor mother-wavelet, 

because it achieves the optimuin of time and frequency 

localization [8, Chap 41 

where CL$ is the frequency of the mother-wavelet before it is 

scaled. In compliance with the musical requirement, we 

define the scaled versions of the mother-wavelet as 

Here the index k represents the corresponding MIDI note 

number, U is the sampling time, and v = 12 equals to the 

number of semitones in an octave. In order to relate k to  

MIDI notes, we s e t u ,  = 2 n *  16.352(Hz) for k=O, which 

is MIDI note CO with a fundamental frequency 16.352(Hz). 

Using such wavelets, we can get the time-frequency map of 

Fig.2 as shown in Fig.3. 
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4. CLASSIFICATION AND TRAINING 
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Fig.4 Self-Organized Map (SOM) for the chord 
classification. The horizontal axis refers to the tonality and 
the vertical axis represents the chords style. 

As mentioned in Section 2 a chord is often with disordered 

partials such that the recognition of individual notes is very 

difficult. The neural networks can naturally lever this 

difficulty. Distinct chords present different characteristics in 

the time-frequency map, and the neural network can leam to 

classify them after training. 

The neural network we adopt consists of a self-organized map 

layer. Two kinds of infomiation should be determined to 

facilitate classification. One is the tonality, and the other is the 

chord style. These two kinds of information are chosen as the 

two dimensions of the self-organized map (SOM) shown in 

Fig. 4. In the tonality axis (horizontal), one of adjacent notes 

is dominant and the other is subdominant. In the chord style 

axis (vertical), adjacent styles are with two shared notes 

according to music theory. This configuration makes sure that 

adjacent neurons on the map are with high similarity. 

Before learning, the initial synaptic weights of each neuron on 

the SOM are set according to music theory. Then a large 

number of training data extracted from real sounds are input 

to the network, and it starts to “experience” a chord. Since the 

SOM will leam from training data without any supervised 

information [9, Chap.91, the initial weights set above just give 

the map a pre-knowledge of the chords so that the network 

can converge more rapidly. Figure 5(a) shows a typical set of 

initial weights. 

Three essential processes in training are competition, 

cooperation, and synaptic adaptation [9, Chap.91. In the 
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Fig.5 Weights of the C major’s neuron. The horizontal 
axis is MIDI note numbers. (a) Initial weights assigned 
according to music theory. (b) Final weights after 
training. 

competition process, only one neuron among the 48 ones 

would be activated. In the cooperative process, the winning 

neuron tends to excite the neurons in its immediate 

neighborhood, which has a high similarity to the winning 

neuron. Finally, in the adaptive process, weights of neurons 

are gradually adjusted to fit the input patterns. Figure 5 (b) 

shows a typical trained set of weights. 

5. RESULTS AND DISCUSSIONS 
For training, 480 sound samples of 48 different kinds of 

chords have been used. The system then is ready for tested 

with recorded music segments. The recognition rate is defined 

as 

number of incorrectly classfied 
total number of measures 

Recognitio n rate = 1 - 

The trained network is tested with the d‘ movement of 

Beethoven’s 5 lh Symphony conducted by Herbert von Karajan 

and performed by Berliner Philharmoniker in 1984. Fractional 

staff of the first 8 measures are shown in Fig.6 . According to 

music theory, chords of the eight measures are C major, 

Cmajor, Cmajor, Cmajor, Gmajor, Cmajor, Fmajor, Cmajor, 

respectively. The recognized chords fit all the 8 chords. Hence 

the recognition rate is 1 - 0 / 8 = 100% 
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Fig.6 The staff of Violins I and Basses of the first 8 
measures of the qth mov. of Beethoven’s 5 I h  Symphony. 

Amazingly, this recognition rate remains 100% even when we 

add a while Gaussian noise into the sound signal uith a 0 dB 

signal-to-noise ratio (SNR). A recognition-rate to SNR plot as 

well as the 95% confidence intervals is shown in Fig.7. 

This result shows the robustness of the system. Under a loud 

noise (SNR <I -5dB), the recognition rate is kept at 75%, when 

individual notes are nearly unrecognizable. Since most trained 

humans can still tell such a sound as a faint impression of a 

chord, we may say this system has a “chord hearing’ 

capability, which is similar to what a human being has. 

6. CONCLUSIONS 
We have developed a chord classification system using the 

wavelet transform as the “ear” and an SOM neural network as 

the “cerebrum.” This system is extensible since chords not 

included can be easily added. With the capability of chord 

identification, we can do polyphonic recognition more 

accurately. This work can be an important building block in 

automatic transcription systems in the future. Results show 

that machine can directly “hear” the chords from a sound with 

a high recognition rate even under a noisy situation, as human 

beings do in a similar environment. 
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