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ABSTRACT 

Of increasing importance is estimation of intemal link parameters 
in communications networks. Multicast probes are a way to gather 
statistics about intemal links from edge node measurements. The 
problem of estimating link loss probabilities for a multicast dis- 
tribution tree is examined here. Our model assumes loss statistics 
are distributed to session participants by a network protocol such 
as RTCP. We propose a decentralized algorithm for ML estimation 
of the link loss probabilities in a chain of nodes rooted at the source 
node of the multicast distribution tree and terminating at a given 
leaf. An expression for the Cramer-Rao bound and an approxi- 
mate form for the probability distribution function of the estimator 
are given. The performance of the algorithm is evaluated using 
computer simulations for a bottleneck detection application. 

1. INTRODUCTION 

One of the most fundamental problems in operating a computer 
network is measuring/predicting the traffic intensity and the prob- 
abilities of successful transmission of a packet in the network over 
a certain time interval. Knowledge of this information is useful 
for a large number of applications that are related to areas such 
as network design, management, access control, monitoring and 
pricing. The problem of estimating the traffic intensity in net- 
work links based on repeated measurements of edge node traffic 
has been studied recently [I] .  The corresponding area of study is 
called ”Network Tomography”. A problem area closely related to 
the one of Network Tomography is estimating intemal link loss 
probabilities in a network given summary statistics of all nodes 
in the tree. This problem is examined here using a method based 
on loss statistics gathered by independent transmissions of probe 
packets in a multicast distribution tree, where loss statistics are 
gathered at the leaves of the tree using the RTCP protocol. 

2. NETWORK TOMOGRAPHY 

The problem of Network Tomography was first proposed in [ 11.  
The name comes from the fact that the intemal link traffic rates 
are estimated based only on estimates of total originating and ter- 
minating traffic rates. Recent work has focused on Network To- 
mography using end-to-end measurements [3,2,4]. The practical 
implementation of tomography has been hampered for several rea- 
sons. The first has to do with the scalability of tomography meth- 
ods. In a continuously expanding network with densely connected 
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nodes, such as the Internet, the number of internal nodes grows 
with a rate that makes solving the inverse problem by tomography 
methods virtually impossible for more than a few dozen nodes. 
The second reason has to do with the fact that the Internet is a 
complex heterogeneous network with unknown structure which is 
administratively diverse. Finally most tomography methods have 
relied on statistical independence between link loss rates, the so- 
called spatial independence assumption. This assumption is vio- 
lated in actual networks due to factors such as “slow restart” after 
packet loss [5] and multiuser interference in wireless links. 
From the references mentioned previously the one that is closest 
in spirit to this paper is [3]. In [3] a method to infer the intemal 
single-link packet loss characteristics using end-to-end multicast 
probe measurements is presented. The multicast method of [3] is 
derived under the assumption that the transmission losses are in- 
dependent for different links and different probe packets. Only 
leaf nodes communicate their loss rates and computations are per- 
formed at all leaf nodes of the tree to reconstruct the loss rates at 
intemal nodes of the tree. The computational complexity of the al- 
gorithm in [3] increases proportionally to 2k where k is the depth 
of the tree. 
In contrast our multicast method focuses on chains of nodes rooted 
at the source node of the tree and ending at each leaf node. Com- 
putation sare performed at each chain independently of the other 
chains, thus the complexity of our method increases only linearly 
with respect to the depth of the tree. Independence assumptions 
are made among the transmission of different probes but no spatial 
independence assumption is required regarding the transmission of 
a single probe across subsequent links in the chain. The method 
described here is based on availability of statistical data on inter- 
nal link loss rates. Such data is provided by the well known RTCP 
protocol. RTCP is the current standard for real-time multicast ap- 
plications [6]. Among other data the protocol provides to the ses- 
sion participants is the measured loss rate for each pair of nodes 
in a session. A task of interest in many applications is estimation 
of a bottleneck link in a chain of links. The bottleneck link is de- 
fined as the link with maximum loss probability and is frequently 
where degradation of performance in the network begins. Identifi- 
cation of this link allows a protocol to use this information to take 
administrative measures, e.g to force rerouting of data around the 
bottleneck. 

3. ESTIMATION OF LINK LOSS PROBABILITES IN A 
MULTICAST TREE 

In this paper we examine the problem of estimating the probability 
of successful transmission for each link in a multicast distribution 
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Fig. 1. Multicast Distribution Tree. All nodes in tree participate 
in a session during which cummulative multicast link losses are 
reported to all participants, e.g via RTCP. The solid circles denote 
edge nodes to which multicast packets are sent from the source 
node. The path C denotes the particular chain investigated by the 
ML algorithm using loss statistics along chain C only. 

tree, based on loss statistics of the number of probe packets sent 
from the source node (sender) to the leaf nodes(receivers) of the 
tree. Multicast transmission provides efficient delivery of a packet 
to an arbitrary number of receivers by replicating the packet within 
the network at fan-out points along a distribution tree rooted at 
the transmission source. Like previous authors [3,4] we focus our 
attention on multicast transmission of packets because the distri- 
bution of packets across the links of a multicast tree provides us 
with a tractable topology on which we can perform mathemati- 
cal calculations. Note that the abstraction of a multicast distribu- 
tion tree masks the actual (unknown) topology of the underlying 
network and provides us with a set of cooperating nodes that ex- 
change statistics. We restrict our attention to the estimation of 
the set of loss probabilities along the chain of links in the path 
from the source to a leaf node, using each leaf node separately. 
This allows us to develop estimation methods which do not require 
imposition of spatial independence assumptions. Expressions for 
the Maximum Likelihood (ML) estimators of these quantities are 
derived and are shown to be unbiased. Also a lower bound, the 
Cramer-Rao (CR) bound, for the covariance matrix of the estima- 
tors is calculated and it is proved that these estimators attain this 
bound. Finally an asymptotic density for the estimator of the link 
loss probability of every link is given. 

4. STATISTICS OF THE MEASUREMENTS 

Assume that the multicast distribution tree topology is like the one 
depicted in the Figure 1. By the termpath or chain C we will mean 
the series of nodes from the source 0 to a specified leaf node 1. 
Node 0 broadcasts N packets to leaf nodes. The number ofpackets 
that node i in the path successfully receives is Ai. The Ai’s are 
decreasing monotonically with respect to i i.e An > A1 > . . . Ak. 
This information is distributed by RTCP to all session participants. 
The number of packets that go only down to node i and stop idle 
(die) there are N, .  In contrast to the Ai’s the Ni’s are not ordered. 
The reader should carefully note the difference between these two 
quantities because it is crucial for the rest of the derivations. The 
N, packets are a subset of the A, packets. The following relations 

will hold: 

Ni = A i - A 2  
N2 = A z -  AS 

The event that node i receives successfully a packet will be de- 
noted by l i  = l (I stands for the indicator function) , and the event 
that node i does not successfully receive a packet will be denoted 
by li = 0 , .  . . , k. The event { l o  = 1 , l 1  = 1 , .  . . , I i  = 1, = 
0 )  is the event that a packet sent from the source node will die 
at node i. The probabilities { e i }  of these events are parameters 
called the probe survivor probabilities and are related to the indi- 
vidual link loss probabilities of interest.We note that 0; = 1 
so it is sufficient to specify the k parameters 9 = [eo,. . . , e k - - l ]  

T 

For each source-destination path C containing k + 1 nodes 
there are k + 1 possible outcomes whenever a packet is sent from 
the source. Either the packet dies at the first node, or the packet 
dies at the 2nd node . . ., or the packet dies at the kth node, or finally 
it amves successfully at the leaf node. Let Ai = 1011 . . . Ii(1 - 
Ii+l) denote the indicator function ofthe event that the packet dies 
at the i-th node. Then trivially, p(A0 ,  . . . , A k ,  0) = Ofo . . . O f k  
where E:=, A, = 0,  A;e{O, l}, f?k = 1 - Oi .  Under the 
assumption that the N transmitted probe packets are transmitted 
independently the joint probability distribution of the number of 
packets that die at each of the nodes is a multinomial. 

k - I  
N !  e? . . . eF:;1(1- e,)”-%: Ni 

i=O 
p(N’‘) = N o ! ,  . , N k !  

( 2 )  
where (N) = ( N O ,  . . . , Nk) ,  
independence asssumptions are required for the validity of (2). 

multinomial distribution (2) and takes the form: 

Ni = N .  Note that no spatial 

The form of the ML estimator for 0 is well known for the 

(3) 
A No Nk-i o= (-, ...,-) 

N N - 

The ML estimator (3) is unbiased and efficient, i.e it’s covari- 
ance matrix attains the Cramer-Rao bound which is equal to the 
inverse of the k x k Fisher information matrix F;’. The element 
of the FIM F s  in row a and column j is given byThe formula: 

(4) 
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We observe that as N -+ 00 the elements of the inverse Fisher 
Information matrix [Fd, , j  tend to zero. This implies that 0 is 
consistent i.e it’s covariance goes to zero with N. 

5. ESTIMATION OF LINK LOSS PROBABILITES 

The main goal of our effort is to calculate the probability of suc- 
cessful transmission for each link in the network. For example 
if we want to calculate this probability for the link that connects 
node i - 1 in a path with node i we are interested in the quantity 
V,  = Pr(Ii = 111,-1 = l ) , i  = 1,. . . , I C .  Applying the law of 
conditional probability we get: 

A 

Thus using the ML invariance property, the ML estimator for the 
link-loss probability 1 - Vi is specified by the MLE of Vi 

(9) 

Furthermore the CR bound on estimation error for unbiased esti- 
matorsofy = [ V I , .  . . , y k l T  ISF;’ - = [ ~ s g ( ~ ) ] ~ g ’ [ v ~ g ( ~ ) ] ~  
where g ( B )  = [VI (0) . . . Vk (e)] The following recursive for- 
murr will be useful for com uting v V k  : 
Vi = (Vi+l. . . Vk)-’ &, for i = 1 : k - 1 P 

Cj=i-i o j  
The family of binary random variables (rv’s) {Ip)}j are indi- 

cators that the j th  probe has been successfully received by node i 
or not. We have assumed that this family consists of independent 
and identically distributed (iid) rv’s. The assumption of indepen- 
dence indicates that different transmissions of packets in the net- 
work, are independent. This assumption is valid as long as the i-th 
probe is sent only after the (i-1)st probe has been received and the 
network is stable over the N probe transmissions. It is up to the 
protocol to choose the time-separation between subsequent pack- 
ets so as to achieve temporal independence for the transmission 
of packets. The assumption that the {I!j’}j”=l are identically dis- 
tributed implies that the network loss behaviour does not change 
over the probing interval. Although this may not hold for large 
time periods (there are periods of high congestion in the network 
and periods of low traffic) this is a reasonable assumption when 
the multicast transport delays are small and probes are sent in rapid 
succession. 

The mean value of I/J) is &[I,’”] = Pr(I0 = 1,. . . , I ,  = 

1) = p i  and the variance will be var[I,!j)] = pi(1 - p i ) .  By 
applying the Central Limit Theorem (CLT) to the sums of the iid 
rv’s we can approximate the distribution of the numerator and the 
denominator of (9). Applying the CLT we have the approximation 

A 

- E,”=, I?) - N ( a p , , p , ( l  - p i ) ) .  Under the simplify- 
ing assumption that Vi follows the distribution of the ratio of two 
independent Gaussians as N increases to infinity, it is straightfor- 
ward to show that the pdf of the ratio of two indepent Gaussian 
rv’s with means p1 and p2 respectively and variances u1’ and uz2 
respectively, is 

(10) 
where 

w z  
and Q ( x )  is the standard Gaussian integral JZm-&e- rdur .  

Using p1 = d X p , , p z  = f l p i - 1 , ~ :  = pi(1 - p , ) , u ;  = 
p ; - ~ ( l - p , - ~ )  in (IO) and(l1)we obtain themarginaldistribution 

fv: (z) for estimate vi computed from chain C. This can be used 
to compute the estimator bias, variance and threshold excedance 
probability and confidence intervals. 

A 

6. COMBINATION OF SINGLE CHAIN ESTIMATES 

In order to improve the performance of the single chain method it 
will be necessary to fuse the estimates of common link survival 
probabilities (e, ’s) obtained from two different leaves (chains). 
Assume there are two chains C1 and Cz that share a common 
link i with survival probability 0,. The number of packets that 
are transmitted down to a node i and die there for both chains 
NY’, i = 0 . . . k, j = 1 , 2  are dependent in a complicated way 
due to the fact that they share common link information. One ap- 
proach that would enable us to improve our estimates of Vi, would 
be to use the Best Asymptotic Normal (BAN) property of the ML 

estimator ei. Let eCl and ec2 be estimates of 13; obtained from 
chains CI and Cz terminating at leaves 11 and 12 respectively. The 
BAN property asserts that asymptotically the ML estimators are 

jointly Gaussian i.e a[&, - 81, $c2 - e,] - N(Q, Fg:c2) 
where 0 = [0, O I T  and Fc1c2 is the FIM. We can then apply ML 

estimation to estimate 0, from [ecl, ec,] . 
Using this approach we can also compute the Fisher Informa- 

tion matrix for this model and compare it to the results of the single 
chain model. By comparing the CRB for the multiple chains to the 
CRB for a single chain we can estimate the additional number of 
probes needed for the single chain method to achieve the same 
performance as the multiple chain method. 

A A A 

T 

A A T  

7. NUMERICAL RESULTS 

In order to evaluate numerically the performance of our method we 
ran computer simulations in C+t.  Link loss probabilities were as- 
signed at random and the “bottleneck” was defined as the link with 
max loss probability. For each link in the chain the probe packet 
dies or is transmitted successfully to the next node in the node 
chain, according to a stationary probability over the simulation. In 
Fig. 2 the probability distribution function (pdf) of the estimator 
v, given in (10) is plotted for different numbers of probe packets. 
Note that as the number of packets increases the pdf concentrates 

A 
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Fig. 2. pdf of the estimator for different number of probe pkts. 
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Fig. 3. Empirical variance of the proposed estimator vs the CR 
bound for different number of probe packets. 

Table 1. Results of the Smimov-Kolmogorov test for different 
numbers of probe sent. 

1 Number of probes sent 1 Test's Value 1 cy = 0.95 I cy = 0.99 I 
15 I 0.1672 I 0.409 I 0.489 1 

ing in a multicast distribution tree. The assumption that the loss 
behaviour of the network does not change over the probing inter- 
val is central to our calculations. This assumption does not hold 
in general for long time periods, thus it constitutes a limitation to 
the applicability of our method. Our method is suboptimal in per- 
formance, since we restrict our attention to estimates of link loss 
probabilities. However as the method uses consistent estimates, 
for large number of packets, the estimator variances converge to 
zero. The advantage of single chain methods is linear complexity 
with respect to the depth of the tree. In the future we will try to 
quantify the loss in performance (determined by the Fisher Infor- 
mation matrix) induced by applying our approach compared to the 
approach in [3] and to the optimal multichain performance. Due to 
space limitations we have not presented simulations of the multi- 
chain fusion method described in Sec 6. This will be presented in 
a later paper. Another point not taken into consideration is the fact 
that probe packets compete with background traffic for transmis- 
sion. We plan to do more extensive simulations with tools such as 
ns so as to include such phenomena. 
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8. CONCLUSIONS 

In this paper we have presented a method to infer the link loss rates 
in a network using loss statistics gathered from nodes participat- 
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