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ABSTRACT 

Partial updating of LMS filter coefficients is an effective method 
for reducing the computational load and the power consumption 
in adaptive filter implementations. The Sequential Partial Update 
LMS algorithm is one popular algorithm in this category. In [5] 
a first order stability analysis of this algorithm was performed on 
wide sense stationary signals under the restrictive assumption of 
small step size parameter p .  The necessary and sufficient condi- 
tion derived on p for convergence in the mean was identical to the 
one for guaranteeing stability in the mean of LMS. In [7] first order 
sufficient conditions were derived for stability without the afore- 
mentioned small p assumption. The sufficient region of conver- 
gence derived was smaller than that of regular LMS. In this paper, 
we establish that for stationary signals the sequential algorithm 
converges in mean for the same values of the step size parameter p 
for which the regular LMS does. In other words, we show that the 
conclusion drawn in [5] holds without the restrictive assumption 
of small p .  We also derive sufficient conditions for stability on p 
for cyclo-stationary signals. 

1. INTRODUCTION 

Partial updating of the LMS adaptive filter has been proposed to re- 
duce computational costs and power consumption [2,3,4] which is 
quite attractive.in the area of of mobile computing and communi- 
cations. Partial update algorithms have application in many fields 
including adaptive beamforming, channel equalization in commu- 
nications and space-time modulatiodcoding. Sequential Partial 
Update LMS algorithm is one such algorithm. However, for this 
algorithm theoretical performance predictions on convergence rate 
and steady state tracking error are more difficult to derive than for 
standard full update LMS. Accurate theoretical predictions are im- 
portant as it has been observed that for the non-stationary signal 
scenario the standard LMS conditions on the step size parameter 
fail to ensure convergence of S-LMS. 

In [5], conditions were derived under the assumption of small 
step-size parameter ( p )  which tumed out to be the same as those 
for the standard LMS algorithm. We were interested in investi- 
gating the Sequential Partial Update LMS Algorithm (S-LMS) un- 
der large p conditions for which faster convergence rates could be 
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achieved. In [7], we derived a less restrictive sufficient condition 
on p for stationary signals. However, we were unable to find an ex- 
ample of a stationary signal for which regular LMS was stable but 
S-LMS unstable. We also point out that the motivating example in 
Section 2 of [7] is incorrect. 

This has led us to look for more accurate bounds on p which 
hold for stationary signals and arbitrary fixed sequence of partial 
updates. Here, we prove conclusively that for stationary signals 
first order stability of LMS implies first order stability of S-LMS 
without any assumptions on p (Theorem 2). We also extend the 
analysis in [7] to cyclo-stationary signals. We show that for the 
cyclo-stationary case there exists some p such that use of it in S- 
LMS could lead to divergence even if full update LMS converges 
for this p .  

The organization ofthe paper is as follows. First in Section 2, a 
brief description ofthe sequential partial update algorithm is given. 
The algorithm with arbitrary sequence of updates is analyzed for 
the case of stationary signals in Section 3. This is followed by the 
analysis of algorithm with the special case of alternate even and 
odd coefficient updates for cyclo-stationary signals in Section 4. 
In Section 5 an example is given to illustrate the usefulness of the 
bounds on step-size derived in Section 4. Finally, conclusions and 
directions for future work are indicated in Section 6.  

2. ALGORITHM DESCRIPTION 

The block diagram of S-LMS for a N-tap LMS filter with alternat- 
ing even and odd coefficient updates is shown in Figure 1 

It is assumed that the LMS filter is a standard FIR filter of even 
length, N .  For convenience, we start with some definitions. Let 
{ X k }  be the input sequence and let { w i , k }  denote the coefficients 
of the adaptive filter. Define 

w k  = [ W l , k  W 2 , k  . . . W N , k I T  

X k  = [Zk 2k-1 z k - 2  . . . X k - N f l ]  
T 

where the terms defined above are for the instant I C .  In addition, 
Let d k  denote the desired response. In typical applications d k  is 
a known training signal which is transmitted over a noisy channel 
with unknown FIR transfer function. 

In this paper we assume that d k  itself obeys an FIR model 
given by d k  = w & t x k  + nk where W,,t are the coefficients of 
an FIR model given by Wept = ( w l , o p t  . . . W N , o p t I T .  Here { n k }  
is assumed to be a zero mean i.i.d sequence that is independent of 
the input sequence { ~ k } .  

For description purposes we will assume that the filter coeffi- 
cients can be divided into P mutually exclusive subsets of equal 
size, i.e. the filter length N is a multiple of P. For convenience, 
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define the index set S = {1,2, . . . , N}. Partition S into P mu- 
tually exclusive subsets of equal size, S1 , SZ, . . . , SP. Define Ii 
by zeroing out the j t h  row of the identity matrix I if j $! Si. In 
that case, &xk will have precisely $ non-zero entries. Let the 
sentence "choosing S; at iteration k" stand to mean "choosing the 
weights with their indices in S, for update at iteration k". 

The S-LMS algorithm is described as follows. At a given it- 
eration, k, one of the sets Si, z = 1,. . . , P, is chosen in a pre- 
determined fashion and the update is performed. 

where ek = dk - w,"xk. The above update equation can be 
written in a more compact form in the following manner 

wk+l = wk + PeiIiXk (2 )  

In the special case of even and odd updates, P = 2 and S1 
consists of all even indices and SZ of all odd indices as shown in 
Figure 1. 

We also define the coefficient error vector as 

v k  = wk - wopt 

which leads to the following coefficient error vector update for S- 
LMS when k is odd 

vk+2 - - ( I  - /IIZXk+lx&l)(I - P I l x k x ? ) v k  -k (3) 

p ( I  - /1I2Xk+lXkH+1)nkIlXk -k Pnk+llZXk+l 

and the following when k is even 

vk+2 = ( I  - /.hIlXk+lxf+l)(I - PIZXkXkH)vk -k (4) 

/ l (I  - pIlXk+lXkH+l)nkIZXk -k /lnk+lIlXk+l 

3. ANALYSIS: STATIONARY SIGNALS 

Assuming that { Z k }  is a WSS random sequence, we analyze the 
convergence of the mean coefficient error vector E [ v k ] .  We make 
the standard assumptions that v k  and XI, are mutually uncorre- 
lated and that Xk is independent of Xk-1 [I]. These assumptions 
are somewhat restrictive but greatly simplify the analysis. For reg- 
ular full update LMS algorithm the recursion for E [Vk] is given 
by 

E [I/k+i] (I - @ ) E  [ v k ]  ( 5 )  

where I is the N-dimensional identity matrix and R = E [ X k X f ]  
is the input signal correlation matrix. The necessary and sufficient 
condition for stability of the recursion is given by 

0 < /.L < 2/Xmaz (6) 

where Xmaz is the maxirnum eigen-value of the input signal cor- 
relation matrix R.  

Taking expectations under the same assumptions as above, us- 
ing the independence assumption on the sequences Xk , nk, the 
mutual independence assumption on Xk and v k ,  and simplifying 
we obtain for odd k when S-LMS is operating under the special 
case of alternate even and odd updates 

E[l/k+z] = ( I  -- pIzR)(I  - pIiR)E[vk]  (7) 

and for even k 

E[Vk+2] = ( I  - ,d lR)(I  - plzR)E[Vk] (8) 

It can be shown that under the above assumptions on xk , v k  and 
dk, the convergence conditions for even and odd update equations 
are identical. We therefore focus on (7). Now to ensure stability of 
(S), theeigenvaluesof ( I - p I z R ) ( I - - p I l R )  shouldlieinside the 
unit circle. We will show that if the eigenvalues of I - p R  lie inside 
the unit circle then so do the eigenvalues of (I-pI&)(I-pIlR).  

Now, if instead of just two partitions of even and odd coeffi- 
cients ( P  = 2) we have any number of arbitrary partitions ( P  2 2) 
then the update equations can be similarly written as above with 
P > 2. Namely, 

P 

E[Vk+p] = n ( I  - pIiR)E[Vk] (9) 

We will show that for any arbitrary partition of any size ( P  2 
i=l 

2); S-LMS converges in the mean if LMS converges in the mean(Theorem 
2). The case P = 2 follows as a special case. 

We will show that if R is a positive definite matrix of dimen- 
sion N x N with eigenvalues lying in the open interval (0,2) 
then n L l ( I  - IiR) has eigenvalues inside the unit circle. I ; ,  
i = 1, . . . , P is obtained from I ,  the identity matrix of dimen- 
sion N x N ,  by zeroing out some rows in I such that I; is 
positive definite. 

The following theorem is used in proving the main result in 
Theorem 2. 

Theorem 1 [6, Prob. 16, page 4101 Let B be an arbitrary N x N 
matrix. Then p( B )  < 1 if and only if there exists some pos- 
itive definite N x N matrix A such that A - B H A B  is pos- 
itive definite. p (B)  denotes the spectral radius of B (p (B)  = 
maX1, ..., N IX i (9)Y.  

Theorem 2 Let R be apositive definite matrix of dimension N x 
N with p ( R )  = XmaZ(R) < 2 then p ( n L 3 = , ( I  - LR))  < 1 
where I; ,  i = 1, . . . , P are obtained by zeroing out some rows in 
the identity matrix I such that I; is positive dejnite. Thus 
S-LMS converges in the mean ifLMS converges in the mean. 

ProoJ Let xo E C N  be an arbitrary non-zero vector of length N. 
Let X i  = ( I  - IiR)xi- i .  Also, let P = n r Z l ( I  - IiR). 

wherea = i(2 - Amaz(R)) > 0. 
First we will show that x r  Rxi 5 X: Rxi- 1 -ax: Rli Rxi- 1, 

xFRx; = XEl(I  - RIi)R(I - IiR)x;-1 
- - x E I R x , - l  - C Y X E ~ R I , R X ~ - ~  - 

+ X : ~ R I ~ R A R X ~ - ~  

where P = 2 - a. If we can show PRIi R - RIi RIi R is positive 
semi-definite then we are done. Now 

1 
PRIiR- RIiRIiR= PRIi(I - -R)IiR 

P 
Since P = (1 + Xmaz(R)/2) > Xm,,(R) it is easy to see that 
I - $R is positive definite. Therefore, PRI1R - RIlRIIR is 
positive semi-definite and 

XfRXi 5 XE1RXi-1 - (~~E1RRliRxi-1 
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We have analyzed the altemating oddeven partial update LMS al- 
gorithm and we have derived stability bounds on step-size param- 
eter p for wide sense stationary and cyclo-stationary signals based 
on extrema1 properties of the matrix 2-nonn. For the case of wide 
sense stationary signals we have shown that if the regular LMS 
algorithm converges in mean then so does the sequential LMS al- 
gorithm for the general case of arbitrary but fixed ordering of the 
sequence of partial coefficient updates. For cyclo-stationary sig- 
nals the bounds derived may not be the weakest possible bounds 
but they do provide the user with a useful sufficient condition on p 
which ensures convergence in the mean. We believe the analysis 
undertaken in this paper is the first step towards deriving concrete 
bounds on step-size without making small p assumptions. The 
analysis also leads directly to an estimate of mean convergence 
rate. 

In the future, it would be useful to analyze partial update algo- 
rithm, without the assumption of independent snapshots and also, 
if possible, perform a second order analysis (mean square con- 
vergence). Furthermore, ass-LMS exhibits poor convergence in 
non-stationary signal scenarios [8] it is of interest to develop new 
partial update algorithms with better convergence properties. One 
such algorithm based on randomized partial updating of filter co- 
efficients is described in [8]. 
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Combining the above inequality for i = 1 , .  . . , P ,  we note 
that xFRxp < xfRxo  if xE1RIiRx-1 > 0 for at least one 
i, i = 1, . . . , P.  We will show by contradiction that is indeed the 
case. 

Suppose not, then x: RI; Rxi- 1 = 0 for all i, i = 1, . . . , P .  
Since, xfRI1Rxo = 0 this implies I I R X O  = 0 .  Therefore, X I  = 
( I  - I1R)xo = X O .  Similarly, xi = x o  for all i, i = 1,. . . , P. 
This in tum implies that x ~ R I ~ R x o  = 0 for all i, i = 1,. . . , P 
which is a contradiction since R(E:, Ii )R is a positive-definite 
matrix and 0 = ELl xf RIiRxo = x f R ( E L l  Ii)Rxo # 0. 

Finally, we conclude that 

x f P H R P x o  = x F R x ~  
< X f R X O  

Since xo is arbitrary we have R - PH RP to be positive defi- 
nite so that applying Theorem 1 we conclude that p ( P )  < 1. 

Finally, if LMS converges in the mean we have p(I - p R )  < 1 
or Amaz(pR) < 2. Which from the above proof is sufficient for 
concluding that p( nEl ( I  - PI; R ) )  < 1. Therefore, S-LMS also 
converges in the mean. 0 

4. ANALYSIS: CYCLO-STATIONARY SIGNALS 

Next, we consider the case when {zk} is cyclo-stationary. We 
limit our attention to S-LMS with alternate even and odd updates 
as shown in Figure 1. Let {zk}  be a cyclo-stationary signal with 
period L. i.e, R;+L = Ri. For simplicity, we will assume L is 
even. For the regular LMS algorithm we have the following L 
update equations 

L -  1 

E [V~+L]  = ] I I ( I  - pRi+d)E [vk] (10) 
i = O  

ford = 1, 2, . . . , L, in which case we would obtain the following 
sufficient condition for convergence 

O < p < m,in{2/Xi,max} a (1 1) 

where 

the partial update algorithm the 2L valid update equations are 

is the largest eigenvalue of the matrix I&. 
Define Ak = (I - 1.111 Rk) and B k  = ( I  - pIzRk) then for 

f o r d = l ,  2, . . . ,  Land  

f o r d = 1 ,  2 , . . . , L .  
Let JJAJJ denote the spectral norm Xmax(AAH) of the matrix 

A. Then for ensuring the convergence of the iteration (12) and (13) 
a sufficient condition is 

J J~A+IA;JJ  < 1 and J)Ai+iBill < 1 fori  = 1, 2, ... , L  (14) 

Since we can write Bi+lAi as 

Bi+iAi = (I - pR;)  + pIz(Ri - &+I) + p21~%+iIiRi (15) 

and Ai+lBj as 

Ai+lBi = ( I - & )  + p I l ( R i  - & + 1 ) + p 2 1 ~ R i + l I ~ R i  (16) 

we have the the following expression which upper bounds both 
JJBi+lAiJI and lJAi+~Bill  

(17) 
This tells us that the sufficient condition to ensure convergence of 
both (12) and (13) is 

111 - pall + pIlRi+i - Rill + p211Ri+iIlllRill 

111 - @it (  + plIRi+~ - Rill + p2[[&+~lll[Rill < 1 (18) 
for i  = 1, . . .  , L. 

If we make the assumption that 
2 

/I < min{ 1 
1 Xi,max + Xi,min 

and 

6i = II&+1 - Rill < mm{Xi,min, Xi+l,min} = 8; 
for i  = 1, 2, ... , Lthen(18)translatesto 

1 - p ~ i  + ~ 6 ;  + p2Xi,mazXi+l,maz < 1 (19) 
which gives 

o < p < rplin{ vi 1 (20) Xi,maxXi+l,max 
(20) is the sufficient condition for the convergence of S-LMS. 

5. EXAMPLE 

The usefulness of the bound on step-size for the cyclo-stationary 
case can be gauged from the following example. Consider a 2-tap 
filter and a cyclo-stationary {zk} with period 2 having the follow- 
ing auto-correlation matrices 

5.1354 -0.5733 - 0.63812' 
= [ -0.5733 + 0.6381i 3.8022 ] 

3.8022 1.3533 + 0.32802: ] 
R2 = [ 1.3533 -0.3280i 5.1354 

For this choice of R1 and R2, 81 and 8 2  turn out to be 3.38 and 
we have llR1 - R2ll = 2.5343 < 3.38. Therefore, R1 and Rz 
satisfy the assumption made for analysis. Now, 1.1 = 0.33 satis- 
fies the condition for the regular LMS algorithm but, the eigen- 
values of BZAI for this value of p have magnitudes 1.0481 and 
0.4605. Since one of the eigenvalues lies outside the unit circle 
(12) is unstable for this choice of p. On the other hand (20) gives 
p = 0.0254. For this choice of p the eigenvalues of BzAl turn 
out to have magnitudes 0.8620 and 0.8773. Hence (12) is stable. 

We have plotted the evolution trajectory of the 2-tap filter with 
input signal satisfying the above properties. We chose Wept = 
[0.4 0.51 in Figures 2 and 3. For Figure 2 p was chosen according 
to be 0.33 and for Figure 3 p was chosen to be 0.0254. For simula- 
tion purposes we set d k  = wgtsk + nk where s k  = [sk s k - 1 1 ~  

is a vector composed of the cyclo-stationary process {sk} with 
correlation matrices given as above, and { n k }  is a white sequence, 
with variance equal to 0.01, independent of {sk}. We set {zk} = 
{sk} + {vk} where (vk} is a white sequence, with variance equal 
to 0.01, independent of {sk}. 
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