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ABSTRACT 
In this work, a feature-based system for the automatic 
classification of stop consonants, in speaker independent 
continuous speech, is reported. The system uses a new auditory- 
based speech processing front-end that is based on the 
biologically rooted property of average localized synchrony 
detection (ALSD). It incorporates new algorithms for the 
extraction and manipulation of the acoustic-phonetic features 
that proved, statistically, to be rich in their information content. 
The experiments are performed on stop consonants extracted 
from the TIMIT database with additive white Gaussian noise at 
various signal-to-noise ratios. The obtained classification 
accuracy compares favorably with previous work. The results 
also showed a consistent improvement of 3% in the place 
detection over the Generalized Synchrony Detector (GSD) 
system under identical circumstances on clean and noisy speech. 
This illustrates the superior ability of the ALSD to suppress the 
spurious peaks and produce a consistent and robust formant 
(peak) representation. 

1. INTRODUCTION 
Despite the long history of research on the acoustic 
characteristics of stop consonants, current state-of-the-art 
automatic speech recognition (ASR) systems are still incapable 
of performing accurate fine phoneme distinctions for this class of 
sounds (and for some other classes as well). One of the main 
reasons for this is the dynamic, short, speaker- and context- 
dependent nature of these sounds. The information that exists in 
the literature is not sufficient or consistent enough to be 
integrated in an ASR system. 

In this work, we investigate the automatic classification of stop 
consonants in speaker independent continuous speech using 
auditory-based front-end processing. Due to the superb ability of 
humans to recognize speech in noisy environments, auditory- 
based front-end processing systems were developed to emulate 
some of the processing performed in the human auditory 
periphery. Several speech recognition experiments have 
demonstrated that such auditory-based systems yield better 
performance (in terms of recognition accuracy) compared to the 
traditional LPC and Mel-Frequency Cepstral Coefficients [7][8], 
especially in the presence of noise. The relatively robust 
performance of the auditory-based systems was attributed to the 
Bark-scale filtering, the compressive non-linearity, the short- 
term adaptation, the forward masking and the synchrony 
detection [ 1 O][ 141. 

The front-end processing system used in this work is 
the Average Localized Synchrony Detector (ALSD) 

based on 
for peak 

(formant) extraction. The ALSD i s  an auditory-based system 
developed by the authors [2] as a modification to the well-known 
Generalized Synchrony Detector (GSD) [ 13][ 141 to alleviate 
some of the limitations of the latter. 

The output of the front-end processor goes into a feature- 
extraction and stop classification block. Various static and 
dynamic acoustic-phonetic features are investigated statistically 
for their information content and robustness in the presence of 
noise to decide on a minimal set of robust features for the 
classification task. Those features are combined and manipulated 
using a decision-tree-like algorithm to produce a classification 
decision. 

2. AUDITORY-BASED PROCESSING 

The general structure of the auditory-based processing system 
used in this work is shown in Fig. (1). It consists of a Bark- 
scaled filter bank of 36 filters with a spacing of half a Bark 
between neighboring filters. Besides the critical-band filtering, 
the system includes other auditory effects like compressive non- 
linearity, half-wave rectification, automatic gain control, short- 
term adaptation and forward masking [3]. It gives two outputs: 
the mean-rate output and the synchrony output. The synchrony 
detector block could be a GSD or ALSD depending on which 
system is being tested. 
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Fig. (1) Block diagram of the auditory-based front-end 
processing system. 
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The GSD system is based on the generalized synchrony detector 
developed by Seneff [13][14]. The GSD computes an auto- 
correlation-like output by finding the soft-limited ratio of the 
expected (averaged) value of the sum and difference of the 
output of each filter and a delayed version of it. The delay of 
each GSD must match its correspGmding filter’s center frequency 
(i.e. the delay is equal to the inverse of the center frequency). 
The GSD enhances the formants and improves the spectral 
resolution by detecting the periodicity (temporal structure) in the 
filter outputs instead of the envelope (mean-rate). 

Despite its advantage over the mean-rate response in enhancing 
and extracting the formants and its better performance in the 
presence of noise, the GSD has some serious limitations. Mainly, 
it suffers from significant spurious peaks due to individual 
harmonics of the fundamental frequency and various artifacts. 
Those peaks could be so strong in the low frequency filter 
responses for female speakers that they affect the detection of the 
first formant. Trying to reduce those peaks by using wider-band 
filters or averaging, usually results in significant deterioration in 
the resolution that defeats the system’s original purpose. 

To alleviate the previously mentioned problems, without 
sacrificing the resolution, the authors developed the ALSD 
system [2]. The output of each ALSD is the average of several 
(say n )  GSD’s tuned to the same frequency but applied to n 
filters in the neighborhood of the filter corresponding to that 
frequency. The ALSD provides an extra degree of freedom that 
enables the suppression of individual harmonics while 
preserving the formants. It showed better ability to provide a 
robust and consistent representation of the formants in both 
clean and noisy speech [2]. The ALSD is used in our 
experiments and compared against the GSD as explained below. 

3. CLASSIFICATION OF STOPS 

The classification of the stop consonants, which involves the 
detection of the voicing and the place of articulation, is one of 
the most challenging tasks in speech recognition. Due to their 
dynamic, variable, context- and speaker-dependent nature, stops 
were always quite elusive in their features. In our experiments, 
we made use of the wealth of information that exist in the 
literature and our own spectrogram reading and statistical 
analysis experiments in order to extract a set of features, from the 
mean-rate and the synchrony outputs, that achieve a good 
classification performance using a feature-based decision-tree- 
like algorithm [1][3]. The system was tested using 1200 stops 
(not used in the desigdtraining phase) for 60 speakers from 7 
different dialects of the TIMIT database with additive white 
Gaussian noise at various signal-to-noise ratios (SNRs). 

3.1 Voicing Detection 

Three features were needed for the voicing detection of stop 
consonants: 

1. Voicing during closure (prevoicing). 
2. Voicing onset time (VOT). 
3. Closure duration. 

Prevoicing is found to be a sufficient, yet not necessary, 
condition for voicing. If closure phonation exists, then the stop is 
detected as voiced. Otherwise, we use the VOT to discriminate 
between voiced and unvoiced stops. The VOT is known to be 
larger for the voiceless stops relative to the voiced ones. 
Unfortunately, we found that the threshold depends on the 
position of the stop. Therefore, another feature is used, namely 
the closure duration, as a cue to flag which VOT threshold to 
use. If the closure duration is long (above a certain threshold), 
then a certain VOT threshold (found statistically to be 40 ms) is 
used, either because the stop is in initial position, or it is in 
medial position but its closure was long enough that it behaves 
like an initial stop. If the closure duration is short, then the stop 
is assumed to be in a medial position and smaller VOT threshold 
is used (found statistically to be 10 ms). This technique is only 
valid for stops in initial and medial positions. Stops in absolute 
final positions (i.e. followed by a silence) and stops followed by 
fricatives do not follow the above rules. In those cases, the only 
reliable voicing feature is the closure phonation. If the stop is 
prevoiced, it is detected as voiced, otherwise it is unvoiced. 

Using the above algorithm [3] for voicing detection on 1200 stop 
consonants extracted from continuous speech of 60 speakers of 7 
different dialects yielded an accuracy of 96% as shown in the 
confusion matrix of table 1 .  

Table 1. Confusion matrix for voicing detection on 1200 
stops from 60 speakers. Accuracy is 96%. 

I Detected as I Detected as I I 
voiced unvoiced 

Voiced 
Unvoiced 

3.2 Place of Articulation Detection 

Before discussing the acoustic features used in the place 
detection, we need to discuss how to extract the flaps. The flap 
/dx/ is an allophone of /t/ and /d/ that is used in some dialects in 
certain contexts (like “matter”, “better”, etc.). It exists between 
two sonorants (usually vowels) and it has unique characteristics 
that make its detection fairly simple. Flaps are characterized by a 
very short drop in the total energy, which may even be detected 
as silence, followed by no release burst and has phonation in it. 
The duration of the flaps has to be less than or equal to 32 ms. 
Using these criteria, flaps were recognized correctly with an 
accuracy of 94% in 1200 stop consonants spoken by 60 speakers. 
The following discussion of the place detection is concerned 
with the remaining stops (/t,k,p,d,g,b/). 

In our experiments, we found the following features to be useful 
in the place detection [3]: 

1. The burst frequency (BF). 
2. 
3. 
4. The burst frequency prominence. 
5. 
6. 

The second formant of the following vowel. 
The maximum normalized spectral slope (MNSS). 

Formant transitiotls before and after the stop. 
The voicing decision (using the previous section 
algorithm). 
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These features describe efficiently the various distinctive 
properties of the stop consonants as represented by the auditory- 
based processor, while being relatively robust in the presence of 
noise. The burst frequency was statistically found to be the single 
most important feature for the place detection from the 
information content standpoint. It is defined as the most 
prominent peak in the synchrony output during the stop release. 
This is the peak with the largest amplitude or largest spectral 
slope. Using the spectral slope results in better immunity to noise 
as will be shown later. The synchrony output is used, as opposed 
to the mean-rate output, for peak extraction because of its 
superior ability to extract formants and dominant peaks 
accurately and its less sensitivity to noise. A comparison showed 
a clear improvement when using the synchrony compared to the 
mean-rate. This improvement is 5% in clean speech and becomes 
more significant in the presence of noise. 

It was found, however, that the burst frequency alone is not 
consistent or invariant enough to rely upon in the place 
detection. The BF value was highly dependent on the next vowel 
in a way that could not be ignored. This variability of the BF 
could be significantly reduced if we take the next vowel identity 
(more specifically: the next vowel height) into consideration. 
This relational invariance is detected by using the second 
formant of the neighboring vowel as represented by the ALSD. 

Other features were also found to be important in the place 
detection. The MNSS (obtained from the mean-rate output) and 
burst frequency prominence [3] describe respectively the spectral 
flatness and compactness; properties that characterize labials and 
velars respectively. Formant transitions are crucial for the place 
detection in the absence of release bursts. If a burst exists, their 
role becomes secondary and highly dependent on their salience 
[3][6]. Finally, the voicing decision was helpful in deciding the 
thresholds for various features, as it was found that variable 
thresholds yield better results than fixed and voicing- 
independent ones [3]. 

Table 2. Confusion matrix for the place of articulation 
detection. 'X' denotes a "don't care", since a flap could 
be either a It/ or a I&. Accuracy is 90%. 

Ipl 
Ibl 
Idxl 

Alveolar 
Velar 3% 88% 9% 0% 
Labial 6% 86% 2% 
Fla 2% 4% 94% 

Details of the extraction and manipulation of those features are 
given in [3]. A decision-tree-like algorithm was developed to use 
the above features to perform place of articulation detection. The 
result of such detection for 1200 stops from 60 speakers with 7 
different dialects from the TIMIT database is given in table 2. 

7%- 0% 7% 0% 83.5% 1% 1.5% 
0% 5% 0% 5% 2.5% 85.5% 2% 
x x 0% 2% 0% 4% 94% 

4. DISCUSSION 

Combining the voicing and place detection to perform detailed 
stop classification yielded the results given in table 3. 
Performing the same experiments in the presence of white 
Gaussian noise at various signal-to-noise ratios, results in the 

curves shown in Fig. (2). The voicing detection was hardly 
affected by the presence of noise. The place detection accuracy, 
on the other hand, deteriorates as the signal-to-noise ratio 
decreases. The deterioration depends strongly on the features 
used. For example, extracting the BF using the spectral peak 
instead of the spectral slope yields the same accuracy on clean 
speech, but results in a significant deterioration in the presence 
of noise as shown in Fig. (2). Therefore, the spectral slope was 
the feature used in our system to extract the BF. 

Table 3 Confusion matrix for the overall classification. 
Overall accuracy is 86%. 

I Det. I Det. 1 Det. 1 Det. 1 Det. I Det. 1 Det. 1 
as It/ as/& aslW as&/ aslpl as Ibl as Idxl 

It/ 87.5% 3.5% 5% 0.5% 3% 0.5% X 
I& 3% 88% 0.5% 7% 0.5% 1% x 
/k/ I 2.5% I 0.5% 187.5% I 1 %  I 8% I 0.5% I 0% 
l g l  1 2% I 2% I 10% I 76% I 0% I 10% 1 0% 
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Fig. (2) Accuracy of the stop place detection in the 
presence of additive white Gaussian noise using either 
spectral slopes (0) or spectral peaks (x) to extract the BF. 

Most of the extra errors in the presence of noise were labials 
erroneously detected as alveolars. Alveolars were seldom 
affected. Velars, on the other hand, were wrongly detected as 
alveolars when using the spectral peak to locate the burst 
frequency (BF). This is due to the high frequency energy that 
shifts the BF location toward high frequency. Using the 
maximum spectral slope instead to locate the BF preserves its 
correct location, despite the presence of noise, and significantly 
reduces such error. In fact, most of the improvement in 
robustness when using the spectral slope is actually due to 
eliminating such errors. 

From Fig. (2), i t  is also clear that the system demonstrates a 
relatively good immunity to noise as evidenced by the negligible 
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deterioration in performance even at SNRs as low as 20 dB. In 
fact, the accuracy at SNR = 10 dB (72%) is still considered 
acceptable [4][9]. This robustness is mainly due to the auditory- 
based processing and the robust acoustic-phonetic features used. 

Repeating the above experiments using the GSD (instead of the 
ALSD) showed a consistent deterioration of 3% in the place 
detection on clean and noisy speech. This is attributed to the 
ALSD’s superior ability to robustly extract the formants while 
suppressing the spurious peaks. 

There are several stop classification experiments in the literature. 
Searle et al. [12] achieved an accuracy of 77% for 148 stops 
(including detection errors). In our experiments, we obtained 
90% accuracy, which shows a clear improvement over their 
results. Bush, Kopec and Zue [4] obtained recognition results 
ranging between 72% and 81% on 216 stops, compared to 86% 
in this work. De Mori and Flammia [ 5 ]  performed phoneme 
recognition experiments on stops using back propagation neural 
networks as classifiers. Their performance was about 82%, 
which is comparable to the 86% obtained in this work. Nathan 
and Silverman [9] used time-varying features in a statistical 
framework to perform place of articulation detection. Their 
results ranged between 72.3% to 89.1%, which i3 comparable tu 
the 90% obtained in our work. Samuelian [ 1 I]  obtained 83%- 
90% accuracy for recognition of stops from 3 speakers. This is 
comparable to the 86% obtained in this work on a larger number 
of speakers. His approach is similar in spirit to the work 
described here since he used statistical tools to build a 
knowledge-based system. His system however suffered from the 
inherent traditional limitations of the decision tree algorithms. 
Moreover, his frame-level recognition did not make use of the 
context information as was performed in this work. 

5. CONCLUSION 
In this work, we investigated a feature-based approach to the 
classification of stop consonants in clean and noisy speech using 
an auditory-based front end processing system. Based on the 
previous research and our own statistical analysis and 
spectrogram reading experiments, we extracted a minimal set of 
features that are robust and rich in their information content for 
the specified tasks. New algorithms were developed to extract 
the articulatory gestures from these features. Using the obtained 
features to perform classification of stops yielded 96% and 90% 
for the voicing and place of articulation detection respectively. 
The overall stop classification had an accuracy of 86% for 
continuous speech of 60 speakers from the TIMIT database. The 
performance compares favorably with previous work and was 
relatively robust in the presence of additive white Gaussian 
noise. Our results demonstrate the importance of using multiple 
features (static and dynamic) whose roles in the decision process 
depend on their salience; context dependence and relational 
invariance of features (as opposed to absolute invariance); and 
the promise of feature-based approaches in phoneme recognition. 
The results emphasized the differences among various features in 
their roles and robustness in the presence or̂  noise. They also 
demonstrated the effectiveness of the newly developed ALSD 
system in alleviating the GSD drawbacks and its ability to 

robustly extract the formants while suppressing the spurious 
peaks in clean and noisy speech. 
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