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ABSTRACT

Exploiting the residual redundancy in a source coder output stream
during the decoding process has been proven to be a bandwidth
efficient way to combat the noisy channel degradations. In this
paper, we consider soft reconstruction of LSF parameters in IS-
641 CELP coder transmitted over a noisy channel. We propose
two schemes. The first scheme attempts to exploit the interframe
residual redundancies in the sequence of received parameters. The
second approach exploits both interframe and intraframe residual
redundancies. Simulation results are provided which demonstrates
the efficiency of the algorithms. Another issue addressed here, is
a methodology to efficiently approximate and store the residual
redundancies or the a priori transition probabilities. For quantiz-
ers with high rates calculating these probabilities require a huge
number of source samples. As well, storing them require a large
amount of memory. These issues can well make the decoder design
process an impractical task. The proposed method is based on the
classification of the signal domain. The presented schemes provide
high quality error concealment solutions for CELP coders.

1. INTRODUCTION

An important result of the Shannon’s celebrated paper [1], is that
the source and channel coding operations can be separated without
any loss of optimality. This has been the basic idea of enormous
research endeavors in separate treatment of source and channel
coders. However, Shannon’s work does not put any constraints
on the complexity of the systems involved. In practise, there is re-
dundancy in the output of the source coders which is due to their
suboptimality caused by e.g. a constraint on complexity or delay.
As Shannon stated, this redundancy can be used at the receiver
to enhance the performance of the system [1]. Sayood and Bro-
kenhagen [2], showed that there is always a residual redundancy
in the output of a DPCM source coder. It was demonstrated that,
this is due to certain assumptions need to be made about the data
source for system design as well as the structure of the coder it-
self. They proposed a MAP decoder which showed substantial
gains can be achieved when this redundancy is exploited at the re-
ceiver. Phamdo and Farvardin [3], suggested MAP decoders as
well as an instantaneous MMSE decoder which uses the residual
redundancy. Along the same direction, Miller and Park, proposed
a sequence-based approximate MMSE decoder [4]. Alajaji et al.,
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[5] also studied exploiting the residual redundancies in FS-1016
LSF coder for improved reconstruction over a noisy channel.

The recent literature clearly demonstrated the benefit of ex-
ploiting the residual redundancies in the sequence of noisy data at
the receiver. However, beside the redundancy in the sequence of
data (in time), the redundancy can exist between different param-
eters representing a source as well. For example, in speech coding
applications using CELP, each frame of speech is represented by
a number of parameters. The residual redundancy can both ex-
ist in the sequence of certain parameter in time (interframe) and
among different parameters representing the speech in one frame
(intraframe). In this work, we propose two schemes to exploit the
residual redundancies for efficient reconstruction of LSF parame-
ters in 1S-641 CELP coder [6] over a noisy channel. The proposed
schemes attempt to exploit both intraframe and interframe residual
redundancies.

Another issue, for decoders that exploit the residual redun-
dancies is the calculation of a priori transition probabilities. As
indicated in [4], specifically for higher quantizer bitrates this will
require huge amounts of data. As well, storing them require a large
amount of memory.In fact, for practical applications like speech
and image coding this can well make the decoder design process
an impractical task. In this work, we suggest a method to approx-
imate and store these transition probabilities. Our simulation re-
sults prove the accuracy of these approximations.

The organization of this paper is as follows. In section 2, an
overview of the system and the channel model used is described.
In section 3, the MMSE decoding schemes exploiting the residual
redundancies are presented. Also, a methodology to approximate
the a priori transition probabilities is proposed. In Section 4, the
reconstruction of LSF parameters in 1S-641 CELP coder over a
noisy channel is studied and numerical results are presented.

2. SYSTEM OVERVIEW

The block diagram of the system is shown in Figure 1. The source
encoder £ is a mapping from an N-dimensional Euclidean space,
R™, into a finite index set J of M elements. It is composed of
two components: the quantizer ¢ and the index generator Z. The
quantizer maps the input sample X € R™ to one of the recon-
struction points or codewords from the same space 1. The index

1Capital letters (e.g. I) represent random variables, while small letters
(e.g. ) is arealization. Vectors are shown bold faced (e.g. X). Lower
index indicate time instant and upper index indicate component of avector
or bit positions representing an integer value.



generator is a mapping from the code-book € to the index set 7.
The bitrate of the quantizer r is given by [(log, M)] bits/symbol
(or [(log., M)]/N bits/dimension). At the receiver, for each trans-

Channel

Fig. 1. Overview of the system

mitted r-bit index (symbol) 7 = ¢, a vector .J with » components
is received, which depending on the channel model provide in-
formation about 7 in different ways.The reconstructor maps this
information to an output sample X.

2.1. Channel Model

The noisy channel together with the channel encoder and decoder
is replaced by a channel model. We assume that the equivalent
channel between 7 and J is memoryless, i.e.,

P(J =l = i) = oy P(571iT), @

where ™, 3™ m = 1,...,r are the bit components of i and
J respectively. For a sequence of transmitted symbols, [, =
[I1, I2, ..., I,] over a memoryless channel, we have,

P(L, =j L, =1i,) = Wioi P(Jk = jk|lk = ix).  (2)

The Binary Symmetric Channel Model is based on a hard de-
cision on the transmitted bits resulting in a bit error probability of
e. In this case, the relationship between the transmitted and the
received symbols is given by,

P(J =4l =i)= ()" (1 — )" 7id), ®3)

where j is the received binary codewordin [ and k; ; is the Ham-
ming distance between indices 7 and j.

In a system with soft output channel decoding, the channel de-
coder produces a reliability information vector .J = j composed
of r Log Likelihood Ratio (LLR) values [5*, 52, ...,5"] (see e.g.
[7]). In the same direction, the Soft Output Channel Model is char-
acterized by using the instantaneous value of p(j™|i™) calculated
for each bit and equation (1). In this work we use a soft output
channel model for an AWGN channel with BPSK modulation.

3. MMSE DECODING EXPLOITING THE RESIDUAL
REDUNDANCIES

Based on the fundamental theorem of Estimation Theory, the Min-
imum Mean Squared Estimate (MMSE) of source sample X, given
the received sequence J,, = J = (1,72, .-, Jn], IS given by,

%n = E[Xa|L, =] ] (4)

which minimizes the expected squared error of estimation,

EX,X,] ()

13

where, X,, = X,, — X,,. The equation (4), is simplified to

%= Y EXn|ln=in]P(In=inl, =35 ) (6)
in€J

which describes the MMSE estimate in terms of the weighted aver-
age of LBG codewords. The weights are the probability of receiv-
ing the corresponding index given the received sequence 5 . If we
assume that the only element in J,, which provides information
about 7, is J,, i.e., there is no residual redundancy, the equation
(6) collapses to the basic MMSE reconstruction rule,

%= Y EXnp|ly=in]P(In = inlJn=jn)  (7)
in€J

where the probability P(i,|j») contain information about channel
condition and the source a priori probabilities P(i,). We refer to
this reconstruction method as MS1 in the following sections. If we
assume that the source coder produces equally probable symbols,
the term P(i,|j») in equation (7) will be replaced with P(j,|i.).
We refer to this scenario as MSO.

Assuming the encoded sequence contain residual redundancy
[2] in the form of a first order Markov model and a memoryless
channel (see Equations (1) and (2)), the probabilities in equation
(6) are recursively calculated by,

P(In=inll, =j )= C.P(Jn = julln = in).

S Pl = inllacs = inet) Plins L) ®
in_1€T

where C' is a normalizing constantand P (in|in—1) isthe M x M
a priori transition probability characterizing the first order Markov
residual redundancy. The last term in the above equation is calcu-
lated from the same equation in the previous time instant. We refer
to this technique as MS2 in the following sections.

The MS2 reconstruction technique, reconstructs a parameter,
X while it exploits the residual redundancy in the sequence of this
parameter received over time. However, it neglects any other infor-
mation that might be available in other received parameters about
X. Consider the scenario where the source coder produces two
output symbols 7 and [ at a time. Let’s assume that due to com-
plexity constraints, there is some level of correlation between the
two symbols. At the receiver, this information can be exploited to
enhance the reconstruction performance. The MMSE reconstruc-
tion (4) is now given by,

Xn = E[XnlL, =] ,J,=j

“n

] ©)

which can be approximated to

S0 = 3 EXulln = in)P(In = inl L, =j 1, =] )
in€J
(10)

The probabilities in this equation can be calculated using the for-
ward/backward algorithm [8] (see also [4]). The forward recur-
sions, here is from .J; to .J,, and the backward recursions from .J,,



to .J,, and from there to .J;. To keep the complexity at a manage-
able level, we approximate these probabilities with the following,

P(I, =in|J, = in,Jn =7n)) = C.P(jnlin).
Z P(]n = in|[n—1 = Z.n—l)]D(]n—l = in—l |in_1) .
in_1€T
> P(Jn = Jalln = in)P(In = in| L = in) (11)
in€J
which can be calculated with only one round of backward recur-

sion. We refer to this technique as MS3 in the following sections.
Employing the derived equations to calculate the instantaneous

MMSE estimate require the a priori transition probabilities P(,,|ir—1)

and P(in|i,). These are matrices of size M x M and M x M. For
the encoders with high rates, this can be a challenging task since
a very large source database is required. In the next section, we
propose a method to approximate these transition probabilities.

3.1. Approximatingthe A Priori Transition Probabilities

Consider the codebook of the encoder £ consisting of M elements.
We are interested to find the probability of occurring a certain
codeword 1,, given that the previous codeword is i,,—; . To derive
this, we intend to classify the source (and hence the codebook) to
M’', M’ < M, classes in a way that we can make the assump-
tion that the probability of transition from a codeword to another
codeword only depends on the class they are located in. Should
we have the codebook classified in this manner, we would only
need M’ x M’ transition probabilities to characterize the residual
Markov property of the encoder output sequence. Subsequently,
we can derive the M x M transition probabilities by the following
simple derivations. Let’s assume that the codebook is classified to
M’ classes denoted by 7 = {J1, J=, - - ., Jar }- Eachclass J

has m; members (Ei‘i’l my. = M). We have,

P(In € Tellnr €T) = Y P(In=in|ln1 € Ji)

in€Jg

=Y > Pliallnci =in1)Plinc1|Ino1 € T0)

In€Tk tn_1€T;
=y P(In = in|Ino1 = in_1) (12)

which shows that the codeword transition probabilities can be ap-
proximated as a scaled version of the class transition probabilities.
The last result is derived using the assumption mentioned above,
i.e.

P(]n = z.n|1n—1 = in—l) =
P(Ip=in|ln1 = i;l_l) = P,
Vin, i € Ty Vin—1,in_y € Ji (13)

In order to classify the codebook in a way such that the equation
(13) holds, we propose LBG [11] quantization of the source with
M’ levels and defining the classes as the quantization Voronoi re-
gions. Subsequently, we can classify the codewords of the size M
codebook. Therefore, the problem now collapses to that of deter-
mining a transition probability matrix of size M’ x M’, which can
be found with much less data. As well, since the equation (12)
provides a simple way to calculate these probabilities from class
transition probability, we can store the class transition probabili-
ties instead. This will reduce the memory size needed by a factor

of (%)%, The transition probabilities P(7,|,) in equation (11)
can be approximated in a similar fashion.

4. RECONSTRUCTION OF LSF PARAMETERS

In this section, we study the application of the proposed MMSE
decoding schemes for reconstruction of LSF [9] parameters in IS-
641 CELP coder [6] over a noisy channel. In this coder, first order
Moving Average scalar linear prediction is employed to exploit the
redundancies between the adjacent frames. Although, there exists
interframe dependencies beyond the adjacent frames, the predic-
tion is limited to one frame to keep the propagation of channel er-
rors at a low level of one frame. Therefore, one can see that there
will remain a residual redundancy between the prediction residues
which is mainly due to the low prediction order. We refer to these
dependencies as the interframe residual redundancies.

The LSF prediction residues in 1S-641 is quantized using a
3-split Split-VQ [10] of dimensions [3, 3, 4] with bitrates [8, 9, 9]
with an overall rate of 26 bits/frame. Although the encoder at-
tempts to exploit the intraframe dependencies of LSF parameters,
due to its suboptimality, there will remain some level of depen-
dency between the quantizer’s 3 output symbols. We refer to these
dependencies as the intraframe residual redundancies.

4.1. Experimentation Setup

In this work, we use a training database of 175, 726 LSF vectors
derived from a 58.57 minute long recorded speech (20ms frame).
Another outside test database of 30, 000 LSF vectors is used to test
the performance of the system? The spectral distortion measure
[10] (measured in frequency range of 60 Hz to 3500 Hz) is em-
ployed to measure the objective distortion introduced in the LPC
coefficients reconstructed over a noisy channel.

The required a priori transition probabilities are described with
one 2% x 2® matrix for the first split and two 2° x 2° probability
transition matrices for the other two splits. One can see that find-
ing these values requires a very large speech database which can
make the task impractical. As well, the memory required to store
these matrices is more than 2 Megabytes. Therefore, approxima-
tion of these values is inevitable. Using the method described in
section 3.1 with a class size of M’ = 32 for each of the splits, the
problem is reduced to calculating three 25 x 25 transition probabil-
ity matrices and only 12 kilobytes of memory requirement which
is perfectly manageable.

As well, we use the same technique to approximate the tran-
sition probabilities between splits. In the following sections, we
will use these approximate values wherever the residual redun-
dancy transition probabilities are required and we will study the
performance of the system.

4.2. PerformanceEvaluation

Five decoding schemes are considered here. First a basic Maxi-
mum Likelihood (Hard Decision Decoding) algorithm is consid-
ered for reference. The methods MSO and MS1 are the basic
MMSE reconstruction algorithms neglecting all the residual re-
dundancies with MS1 exploiting the symbol a priori information
P(in) (equation (7)). The method MS2 exploit only interframe re-
dundancies for reconstruction (equations (6) and (8)). We employ

2These databases were provided by Nortel Networks.



the method MS3 to exploit both intraframe and interframe resid-
ual redundancies at the receiver (equations (10) and (11)). In this
scheme, to reconstruct the LSF parameters of the first split the in-
formation about the received symbol of the second split is used and
vice versa. To reconstruct the LSF parameters of the third split the
information about the received symbol of the second split is used.
This selection is due to the fact that the intraframe correlations of
LSF parameters are higher between the neighboring parameters.
Tables 1, 2 and 3 depict the performance of the above mentioned
schemes, for reconstruction of 1S-641 encoded LSF parameters in
various channel conditions. It is clear from the tables that employ-
ing the a priori information, interframe and intraframe residual re-
dundancies constantly improves the reconstruction quality. The
method, MS3 is constantly better than MS2, MS2 is constantly
better than MS1 and MS1 is constantly better than MSO0 even in
good channel conditions. In poor channel conditions, the MMSE
decoders, rely more on the source a priori information rather than
the information received from the channel. Therefore, the perfor-
mance advantage of MS1, MS2 and MS3 is higher in these channel
conditions. The advantage of exploiting the intraframe residual re-
dundancies are higher compared to that of interframe redundancies
and this is due to the fact that source encoder contains first order
MA prediction which exploits the interframe correlation and re-
duces the residual information. The provided results validate the
approximate method proposed for calculation of the a priori tran-
sition probabilities.

[SNR ] BER [ ML | MS0 | MSL [ MS2 | MS3

1.00 | 0.0560 || 4.66 | 426 | 3.63 | 3.51 | 3.16
2.00 | 0.0370 || 3.76 | 3.55 | 3.04 | 294 | 2.65
3.00 | 0.0220 || 2.87 | 281 | 244 | 236 | 2.14
400 | 0.0120 || 214 | 213 | 1.89 | 1.84 | 169
5.00 | 0.0059 || 1.58 | 1.60 | 1.47 | 144 | 137
6.00 | 0.0023 | 1.25 | 1.26 | 1.20 | 1.19 | 1.14
7.00 | 0.0008 || 1.08 | 1.09 | 1.08 | 1.07 | 1.06

Table1. Spectral Distortion [dB] of the test LSF database decoded
over noisy channel (SNR 1 to 7) using five decoding schemes.

[SNR] BER [ ML | MSO | MSL | MS2 | MS3
1.00 | 0.0560 || 85.51 | 9058 | 82.60 | 81.27 | 75.63
2.00 | 0.0370 || 71.85 | 78.86 | 68.87 | 67.13 | 60.63
3.00 | 0.0220 || 53.65 | 60.08 | 50.95 | 48.94 | 42.96
400 | 0.0120 || 34.98 | 38.76 | 32.35 | 30.85 | 26.48
5.00 | 0.0059 || 19.39 | 21.12 | 17.65 | 16.91 | 14.48
6.00 | 0.0023 || 9.62 | 1019 | 838 | 812 | 7.15
7.00 | 0.0008 | 444 | 463 | 423 | 413 | 3.70

Table 2. 2dB Outliers [%] of the test LSF database decoded over
noisy channel (SNR 1 to 7) using five decoding schemes.

5. CONCLUSIONS

Different methods were presented for high quality MMSE decod-
ing of signals transmitted over a noisy channel. The residual re-
dundancies in the source coder output stream is exploited at the

[SNR] BER || ML | MS0 [ MSL | M52 | MS3

1.00 | 0.0560 || 52.84 | 46.51 | 33.81 | 31.19 | 23.95
2.00 | 0.0370 || 37.95 | 31.85 | 22.73 | 20.82 | 15.19
3.00 | 0.0220 || 23.84 | 19.26 | 13.48 | 1249 | 8.86
400 | 0.0120 || 1356 | 10.36 | 7.11 6.45 | 4.50
5.00 | 0.0059 | 6.47 | 4.78 3.21 2.85 2.05
6.00 | 0.0023 || 2.60 1.82 1.26 1.12 0.77
7.00 | 0.0008 || 0.75 0.59 0.39 0.37 0.23

Table 3. 4dB Outliers [%] of the test LSF database decoded over
noisy channel (SNR 1 to 7) using five decoding schemes.

receiver. These methods were applied to reconstruction of LSF
parameters in 1S-641 CELP coder transmitted over noisy channel
with soft output decoding. An efficient method for approximation
and storing the residual redundancies based on classification of the
source signal is presented.
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