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ABSTRACT 
Vector rotation is the key operation employed extensively in many 
digital signal processing applications. In this paper, we intro- 
duce a new design concept called Angle Quantization (AQ). It can 
be used as a design index for vector rotational operation, where 
the rotational angle is known in advance. Based on the AQ pro- 
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Rotational Cirait cess, we establish a unified design framework for cost-effective 
low-latency rotational algorithms and architectures. Several exist- 
ing works, such as conventional CORDIC, AR-CORDIC, MVR- 
CORDIC, and EEAS-based CORDIC, can be fitted into the design 
framework, forming a Vector Rotational CORDIC Family. Based 
on the new design framework, we can realize high-speed / low- 
complexity rotational VLSI circuits, whereas without degrading 
the precision performance in fixed-point implementations. 

Figure 1 : Direct implementation of rotational circuit. mym 
1. INTRODUCTION 

(4 
Vector rotation plays an important role in many digital signal pro- 
cessing (DSP) applications. It is extensively employed as the pro- 
cessing kemel in discrete orthogonal transformations (DCT, DST, 
and DFT), lattice-based (rotation-based) digital filtering, sinewave 
generation, and digital modulatioddemodulation in communica- 
tion systems. Let [ z , ~  y,,IT and [zout y,,tIT denote the input 
and output vectors, respectively. Vector rotation of [xin yinIT by 
a rotational angle 6 can be formulated as 

Figure 1 shows the direct implementation of Eq. (1). As one can 
see, the direct implementation is very area-consuming and low- 
speed when rotational operations are heavily utilized in VLSI cir- 
cuits. 

In this paper, we propose a novel framework to design high- 
speed/low-cost vector rotational VLSI circuits. Instead of per- 
forming quantization on the coefficient parameters (cos 0 and sin e)  
in fixed-point implementation, the proposed design framework orig- 
inates from the concept of Angle Quantization (AQ). The AQ de- 
rives the name from the fact that we perform the quantization pro- 
cess on the rotational angle, 0, directly. That is, we decompose the 
original rotational angle 6' into several sub-angles, 0;'s. Then, we 
try to sum up those sub-angles to approximate the original angle 
as close as possible; or equivalently, we try to minimize the angle 
quantization error 

N A - I  

tm 2 e - e i ,  
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where NA denotes the number of sub-angles. The AQ process is 
demonstrated in Fig. 2(a). Based on the AQ process, The vector 

e=e,+e,+ ...+ e,_, 

module # 4-1 
of subangle 

Figure 2:  (a) Concept of Angle Quantization, where 0 = 
(Bo  + 01 + . . . + O N ,  - 1) + Em, (b)Realization of fast vector ro- 
tation operation based on the AQ process. 

rotation operation can be realized as shown in Fig. 2(b). Each 
rotation module is dedicated to performing a particular rotation 
of sub-angle B i .  Then, the rotation of 0 can be accomplished by 
cascading these NA rotation modules. 

In the AQ process, there are two key design issues: 

1. Firstly, we need to determine (or construct) the sub-angles, 
and each Bi needs to be easy-to-implement in practical VLSI 
circuits. 

2 .  Secondly, we have to find out how to select and combine 
these sub-angles such that the angle quantization error Em 
can be suppressed. 

In fact, the well-known Coordinate Rotational DIgital Computer 
(CORLIIC) algorithm [ 11 can be considered as an approach to per- 
form the AQ process. Recall that in the CORDIC algorithm, the 
rotation of angle 0 is performed by sequentially rotating elemen- 
tary angle of a( i )  = tan-'(2-')), for 0 5 i 5 W - 1, where 
W denotes the wordlength. The advantageous feature of the ele- 
mentary angle is that rotation of a ( i )  requires only two shift-and- 
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add operators. The easy-to-implement feature of a(  i) conforms 
to the requirements of aforementioned AQ process. In addition, 
the sequential rotating operation of a( i ) ' s  is the way to select and 
combine those sub-angles in conventional CORDIC. 

Next, we can link the AQ process with several existing vec- 
tor rotation schemes such as Angle Recoding (AR) technique [2], 
Modified Vector Rotational CORDIC (MVR-CORDIC) algorithm 
[3] and Extended Elementary Angle Set (EEAS) scheme [4]. We 
explore their relationship with the proposed AQ process. Then we 
will derive a unified framework for all these vector rotational oper- 
ations. That is, all previous schemes can be considered as subsets 
of the proposed framework. The unified operations and AQ pro- 
cess of these algorithm suggest a family of rotation algorithms. We 
call it Vector Rotational CORDIC Family. 

2. DESIGN FRAMEWORK FOR VECTOR ROTATIONAL 
OPERATIONS 

2.1. Conventional CORDIC Algorithm 

In conventional CORDIC algorithm, the elementary angles, a( i ) ,  

is defined as a ( i )  = tan-'(2-i) [I] .  Based on the elementary 
angles, the conventional CORDIC algorithm can be rewritten as 

A 

N-1 

where N denotes thenumber ofelementary angles, p ( i )  E (1, -1} 
is the rotation sequence which determines the ith rotational angle 
~ ( i ) .  In general, for data of W-bit wordlength, the iteration num- 
ber is less than W ,  i.e., N 5 W. Basically, the CORDIC tries to 
decompose the rotation angle, 8, into the combination of u ( i ) ,  for 
i = 0, 1,  . . . , N - 1. The angle quantization error of the CORDIC 
algorithm 

TN-1 1 

represents the residue angle beyond the resolution of CORDIC al- 
gorithm. 

2.1.1. Link AQprocess with conventional CORDIC algorithm 

Next, we would like to deiine Elementary Angle Set (EAS) for the 
derivation of the proposed vector rotational framework. Basically, 
EAS consists of all elementary angles used in the rotation algo- 
rithms. In the conventional CORDIC algorithm, the EAS com- 
prises of all a( i ) ,  for 0 5 i 5 N - 1, and can be defined as 

s = ( a ( i )  : 0 5 i 5 N -  1). (5) 

With the help of EAS, we can say that the CORDIC algorithm 
essentially performs the angle quantization. This can be observed 
from Eq. (3). Given a target rotation angle 8, CORDIC algorithm 
determines the first rotation sequence p(0) for the most significant 
elementary angle a(O), followed by the determination of p(1)  for 
a(1). The process is repeated until the last elementary angle is 
applied. That is, the CORDIC algorithm tries to perform the rota- 
tion through sequentially applying micro-rotations of all elemen- 
tary angles. 

Referring to Fig. 2, now we can relate AQ to CORDIC algo- 
rithm as follows: I )  The sub-angle 8, in AQ now becomes 8, = 
p ( i ) a ( i )  in CORDIC algorithm, 2) The number of sub-angles of 
N A  in AQ I S  set to be N in CORDIC algorithm, 3) CORDIC 
algorithm sequentially apply all e,, for i = 0, 1, . . . , N - 1, to 
approximate the target angle 19. 

2.2. AR Technique [2] 

In conventional CORDIC algorithm, the micro-rotations of all ele- 
mentary angles are performed in a sequential way. On the contrary, 
in the Angle Recoding (AR) technique proposed by Hu and Na- 
ganathan [2], certain micro-rotations can be skipped depending on 
the target rotational angle. Specifically, the modification is done by 
extendingthesetofp(i) from (1, -1) to(1,  - 1 , O ) .  Onecanskip 
the micro-rotation of the elementary angle a ( i )  = tan-'(2-') by 
setting p( i )  = 0. Now, the angle quantization error of the AR 
technique, t m , ~ ~ ,  can be represented as 

N-1 

( 6 )  
a 

Basically, Eq. (6) is identical to Eq. (4), except for the extended 
Ai) E (1 ,  -LO>. 

2..?.1. LinkAQprocess with AR technique 

To make AR technique fit into our design framework, we reformu- 
late Eq. (6) in a compact form as 

"-1 

= e -  tan-' ( a ( j ) .  2 4 J ) )  2 e -  e ( j )  , (7) 

where: N' = E,";' Ip(i)l, denotes the effective iteration num- 
ber, s ( j )  E (0,1, .  . . , N - 1) is the rotational sequence that 
determines the micro-rotation angle in the j t h  iteration, a ( j )  E 
{-1, 0 , l )  is the directional sequence that controls the direction 
of the j t h  micro-rotation of a ( s ( j ) ) ,  and i(j) is the j t h  micro- 

rotation angle, defined as e ( j )  = tan-'  (cr( j )  . 2-'(j)). 
As we can see from Eq. (7), the AR technique essentially tries 

to approximate 0 with the combination of selected angle elements 
from a pre-defined elemefltary angle set (EAS). The EAS consists 
of all JJOSSibk values of 8 ( j )  's, and the EAS SI used in AR tech- 
nique can be represented as 

r j = O  -' 1 [ j = o  1 
a 

A 

SI = {tan-' (a' 2-"')  : a* E { - l , O ,  l}, s* E { 0 , 1 , .  ' .  , N - l}} . 
(8) 

The use of the subscript 1 will become apparent later in this sec- 
tion. With the EAS SI in hand, now we can easily link AR tech- 
nique to the AQ process. By comparing Eq. (7) with the AQ ap- 
proximation equation of Eq. (2), we find that AR technique indeed 
performs the angle quaFtization of target angle 8: The sub-angle 
8; now corresponds to B ( i )  = tan-'  (a( i )  . 2-"(')) and NA is 
set to be N' .  

2.2.2. Optimization Problem 

We can consider the optimization problem of AR technique from 
EAS SI point of view. It can be re-stated as: Given 8, find the 
combination of elementary angles from EAS SI, such that the an- 
gle quantization error I [ , , , , A R I  < a ( N  - 1) and N' is minimized. 
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In [ 2 ] ,  the Greedy algorithm is proposed to solve the optimiza- 
tion problem. 

2.3. MVR-CORDIC Algorithm [3] 

Based on the AR technique, in the Modified Vector Rotational 
CORDIC (MVR-CORDIC) algorithm [3], two more modifications 
are proposed. 

1. Repeat of elementary angles: 
Referring to Eq. (6),  in the AR technique, each micro-rotation an- 
gle of a ( i )  = tan-'(2-') is allowed to be used only once. How- 
ever, in the MVR-CORDIC algorithm, each micro-rotation of el- 
ementary angle can be performed repeatedly. The relaxed oper- 
ation can result in more possible combinations of elementary an- 
gles, hence, smaller <, can be expected. 

2. Confines of total micro-rotation number: 
From Eq. (7), we can see that the effective iteration number N' in 
the AR technique is not fixed. For certain cases, N' is large and 
very close to the upper bound of N / 2  [ 2 ] .  In the MVR-CORDIC 
algorithm, we confine the iteration number in the micro-rotation 
phase to R,,, (R,  << W).  The role of R, is quite similar to the 
number of non-zero digits, NO, used in CSD recoding scheme; it 
will dominate the precision performance and the complexity. 

2.3.1. Link AQ Process with MVR-CORDIC algorithm 

Putting all the aforementioned modifications together and ignoring 
the null operations, we scan represent the angle quantization error 
of the MVR-CORDIC'algorithm as 

where s ( i )  E { 0 , 1 , .  . . , W - l} is the rotational sequence that 
determines the micro-rotation angle in the i th iteration, a(i)  E 
{ - 1 , O ,  l} is the directional sequence that controls the direction 
of the i th  micro-rotation of a ( s ( i ) ) .  As one can find that the sub- 
angle of ( a ( i ) u ( s ( i ) ) )  in Eq. (9) is exactly the same as the defini- 
tion of e( j )  in Eq. (7). Hence, the EAS formed by MVR-CORDIC 
algorithm is the same as AR technique. 

Based on the Eq. (9), it is obvious that MVR-CORDIC algo- 
rithm also performs the AQ process as well. The major difference 
is: 1) The total number of sub-angles NA in Fig. 2 (i.e., the to- 
tal iteration number in the micro-rotation phase) is now kept fixed 
to a pre-defined value of ( N A  = R,), 2) The sub-angle 
6'i corresponds to a ( i ) a ( s ( i ) )  in MVR-CORDIC algorithm, i.e., 
et = a(i)a(s( i ) )  = d ( i ) .  

2.3.2. Optimization Problem 

In the application of MVR-CORDIC algorithm, the optimization 
problem can be stated. from EAS point of view as: Given 8, find 
the combination of& elementary angles from EAS SI, such that 
the angle quantization error I { , , M V R I  is minimized. 

In [3], Semi-greedy algorithm, which can provide tradeoffs be- 
tween computational complexity and performance, is proposed to 
solve the optimization problem. 

2.4. Extended EAS-based CORDIC Algorithm [4] 

In Extended Elementary Angle Set (EEAS)-based CORDIC algo- 
rithm [4], in addition to applying the relaxation on p ( i ) ,  we also 
relax the constraint of elementary angles by extending EAS SI. 
Then, we can have more choices (elementary angles) in approxi- 
mating the target angle 6'. It is expectable that the angle quantiza- 
tion error &,, can be reduced correspondingly. 

2.4.1. Extended EAS 

By observing Eq. (8), we can see that the EAS SI are comprised 
of arctangent of single signed-power-oftwo (SPT) term. In the 
problem of SPT-based digital filter design, one effective way to 
increase the coefficient resolution (hence the filter performance) is 
to employ more SPT terms to represent the filter coefficients [5]. 
Motivated by this, we can easily extend the set by representing the 
elementary angles as the arctangent of the sum of two SPT terms 
[4]. That is, 

sz = {tan-' (a; . 2 - 4  + a ;  . 2 4 )  : 

a ; , a ; € { - l , o , l } ,  s ; , s ;E{O, l ;~~,W-1}}(10)  

We call it Extended Elementary-Angle Set SZ (EEAS Sz) .  The 
subscript is used to denote the number of SPT terms. 

Based on the EEAS Sz developed in Eq. ( 1  0), the sub-angle 
6'i in Fig. 2 now can be represented as 

oi = tan-' (a0( j )  . 2 - s o ( j )  + c y l ( j )  . 2-'1(j) ) 7 (11) 

and the number of sub-angles NA is set to be R, 

2.4.2. Optimization Problem 

With the derived EEAS Sz, now the optimization problem of the 
EEAS-based CORDIC algorithm can be stated as: Given 6' and 
R,, find the parameters o fao( j ) ,  a l ( j ) ,  s o ( j )  and sl(j)  (i.e., 
the combination of elementary angles from EEAS Sz), such that 
the angle quantization error 

R,-1 

1 tm,EEASl  = e - tan-' ( a o ( j ) .  2 - ~ 0 ( j )  + a l ( j ) .  2 - ~ 1 ( j )  ) 
a I j = o  

(12) 
can be minimized. 

In [ 6 ] ,  a novel searching algorithm, called Trellis-based Search- 
ing (TSS) algorithm, is proposed to solve the optimization prob- 
lem. 

2.5. Generalized EEAS Scheme 

By following the similar idea of EEAS scheme, it is straightfor- 
ward to insert more SPT terms in the representation of elementary 
angles. Hence, the size of EEAS can be increased. With more 
than two SPT terms, we call such an extension scheme General- 
ized EEASScheme. Specifically, the generalized EEAS with d SPT 
terms can be represented as 

whereat;..,a:-, E { - l , O ,  l}, s;,..., s:-' E {O,..., W - 
1). As one can expect that the size of the EEAS increases ex- 
ponentially as d increases. Consequently, with properly chosen 
design parameters, we can achieve higher precision performance 
in the AQ process. 
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Table 1: Comparisons of members in the Vector Rotational 
CORDIC family. 

Angle Heroding 

MVR-CORDIC 
Al$:orilhm 
wi lh&=4 

P = [ l  0 0 -I 0 0 -I -I 

0 0 0 I 0 0 0 I] 

E = [ l  - I  -I  -I] 

a = [ ]  -I -I  I] 

E=[l  I -1 -11 

F = ~ I  z 4 71 

ollo’lo-’ Greedy Algonhm 2 

5.289l*lO4 
?=[U 3 6 71 

Greedy Algorithm 3 

5.2O33*lO4 
Semi-greedy 

Algonlhm ( D = 2 )  F = [ O  3 5 71 

2.591 I ]U-‘ TBSAlgorithm 5 

EEASScheme 
with R. = 3 TBSAlgorithm &=[I -1 -I]  E , = [ l  -I I] I I F,=[O 3 71 ?,=[ I5  6 1211 32503*10’ 

Table 2: Design example ofrotation angle t9 = 1 3 ~ / 3 2 ,  where the 
wordlength W = 16. 

the optimization problems. The results are summarized in Table 2. 

4. CONCLUSION 

Figure 3: Set diagram of vector rotational CORDIC family. 

2.6. Family of Vector Rotational CORDIC Algorithm 

So far, we have linked the AQ process with several existing vec- 
tor rotation approaches, including CORDIC algorithm, Angle Re- 
coding technique, MVR-CORDIC algorithm, EEAS scheme, and 
Generalized EEAS scheme. All algorithms intend to realize the 
AQ process with various EAS and suitable combinations of sub- 
angles. That is, they hy to decompose the target rotational angle 
into several easy-to-implement sub-angles, while minimizing the 
angle quantization error cm to obtain the best precision perfor- 
mance. 

Based on our discussion, now we can link all these rotation al- 
gorithms together under a unified design framework, from the AQ 
point of view. They form a family of vector rotational CORDIC al- 
gorithm, called Vector Rotational CORDIC Family. They all con- 
form to the AQ process, but each rotational algorithm uses differ- 
ent AQ setting as summarized in Table 1. 

Note that EEAS scheme covers MVR-CORDIC algorithm and 
AR technique due to the fact that MVR-CORDIC and AR employ 
EAS SI as a searching space that is a subset of EEAS &. More- 
over, MVR-CORDIC algorithm can also be treated as a subset of 
AR technique due to the fact that we impose one constraint on the 
total iteration number. Fig. 3 illustrates the relationships among 
members of vector rotational CORDIC family. 

3. DESIGN EXAMPLE 

In this paper, we introduce a new design index, called Angle Quan- 
tization. Following the new index, designers can explore a bigger 
design space in deriving low-costhigh-performance rotational cir- 
cuits. As illustrated in [7], most popular DSP algorithms can be 
realized via rotational circuits. The new framework proposed in 
this paper can be employed to design the processing kemel of the 
DSP engine in [7]. 
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