
UC San Diego
UC San Diego Previously Published Works

Title
Fast and Memory Efficient JBIG2 Encoder

Permalink
https://escholarship.org/uc/item/5wh613k7

Journal
Acoustics, Speech, and Signal Processing, 2001. Proceedings. (ICASSP '01). 2001 IEEE
International Conference on, 3

Authors
Ye, Y
Cosman, P

Publication Date
2001

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5wh613k7
https://escholarship.org
http://www.cdlib.org/

FAST AND MEMORY EFFICIENT JBIG2 ENCODER

Yan Ye and Pamela Cosman

University of California at San Diego
Electrical and Computer Engineering Department

9500 Gilman Drive, La Jolla, CA 92093-0407
E-mail: {yye, pcosman}@ucsd.edu

ABSTRACT

In this paper we propose a fast and memory efficient en-
coding strategy for text image compression with the JBIG2
standard. The encoder splits up the input image into hori-
zontal stripes and encodes one stripe at a time. Construc-
tion of the current dictionary is based on updating dictio-
naries from previous stripes. We describe separate updat-
ing processes for the singleton exclusion dictionary and for
the modified-class dictionary. Experiments show that, for
both dictionaries, splitting the page into two stripes can save
30% of encoding time and 40% of physical memory with
a small loss of about 1.5% in compression. Further gains
can be obtained by using more stripes but with diminish-
ing returns. The same updating processes are also applied
to compressing multi-page document images and shown to
improve compression by 8-10% over coding a multi-page
document as a collection of single-page documents.

1. INTRODUCTION

The JBIG2 standard [1,2] is the new international standard
for lossless and lossy compression of bi-level images. It is
meant for both text and halftone data; a JBIG2 encoder is
expected to segment an image into different regions [3] and
use different coding mechanisms for text and for halftones.
We only consider coding text images with JBIG2.

On a typical page of text, there are many repeated char-
acters. We call the bitmap of a text character instance a
“symbol.” To code all the symbols in the image, we first
select a group of representatives and put them into the dic-
tionary. We then code all the symbols by reference to their
closest match in the dictionary. In our work we use the
Hamming distance based matching criterion.

In JBIG2, coding of text is based on either of two modes:
pattern matching and substitution (PM&S) [4] or soft pat-
tern matching (SPM) [5]. We focus on SPM-based JBIG2

This research was supported by NSF grant MIP-9624729 (CAREER),
and by the Center for Wireless Communications at UCSD.

O-7803-7041-4/01/$10.00 02001 IEEE

encoder design. Choosing a proper set of dictionary sym-
bols is essential to coding efficiency. Previously we pro-
posed two symbol dictionary design techniques called class-
based design [6] and tree-based design [7]. In this paper we
combine these two techniques to form a new technique: the
modified-class design. This is more efficient than the class-
based technique and simpler than the tree-based technique.

To save physical memory,JB IG2 allows the encoder to
split a whole page image into horizontal stripes and process
one stripe at a time. Since there is strong correlation be-
tween symbols on the same page, when coding the current
stripe, the encoder can reuse some of the previous dictionary
symbols from previous stripes. For this purpose, in JBIG2,
at the end of each dictionary, the encoder sends a 1-bit flag
for each dictionary symbol to tell the decoder if this sym-
bol is to be retained or discarded after the current stripe is
decoded. In this paper we propose a dynamic dictionary up-
date procedure to retain useful dictionary symbols and dis-
card obsolete ones. Because the encoder deals with fewer
symbols at a time, this dynamic procedure is more memory’
efficient and faster. Furthermore, this procedure can be di-
rectly applied to compressing multi-page document images.
We will show that using dictionaries from previous pages
leads to 8-10% improvement in compression compared to
treating the pages as single-page documents.

This paper is arranged as follows. In Section 2, we first
propose the modified-class dictionary design. We then ex-
plain how to construct the current dictionary by dynamically
updating previous dictionaries. In Section 3, we present our
experimental results. In Section 4, we draw conclusions.

2. STATIC AND DYNAMIC DICTIONARY DESIGN

In this section we first briefly review the class-based and
tree-based symbol dictionary design for JBIG2 encoders [6,
71. Compared with simpler dictionary formation methods
such as one-pass and singleton exclusion dictionaries, these
two techniques can improve compression by up to 8% for
lossless and 17% for lossy compression, respectively.

To form the one-pass dictionary, the encoder matches

1753

mailto:pcosman}@ucsd.edu

the current symbol with all previous symbols and encodes it
by reference to its best match. Then it adds the new symbol
to the dictionary. One-pass dictionaries contain many sin-
gletons which are symbols never referenced by any subse-
quent symbol [8] . They are detrimental to coding efficiency
because dictionary indices are assigned to them unneces-
sarily, thus increasing the average length of all indices. By
excluding singletons from the dictionary, we obtain the sin-
gleton exclusion (SE) dictionary. Bitmaps of the singletons
are coded by reference to their best dictionary match when
they occur on the page; this is referred to as embedded cod-
ing in text regions [11.

To design the class-based (CLASS) dictionary [6] we
follow two steps. First we group all the symbols into classes
by pointing them to their closest matches. For each class
we choose one representative to go into the dictionary; all
other symbols will be coded with embedded coding. Then
we follow a recursive procedure to group all the dictionary
symbols into super-classes. We put all super-class leaders
into the direct dictionary (bitmaps coded without reference
to any other dictionary symbol) and other dictionary sym-
bols into the refinement dictionary (bitmaps coded with ref-
erence to another dictionary symbol) [1].

To design the tree-based (TREE) dictionary [7] we first
compute the matching graphs between all extracted sym-
bols. From these graphs we construct minimum spanning
trees (MSTs) using Kruskal’s algorithm [9]. We put all root
nodes into the direct dictionary,all intermediate nodes into
the refinement dictionary, and all leaf nodes into embedded
coding. We can almost arbitrarily change the TREE dictio-
nary’s size to obtain the best compression. We do this by
increasing the number of leaf nodes by relocating certain
nodes’ children to their new parents.

In this paper we consider a new dictionary design which
combines the CLASS and TREE design ideas. We call it
the modified-class (MC) design. First we group all symbols
into classes and choose the representatives as in the CLASS
design. Then we construct MSTs for all the representa-
tives. This improves over the CLASS design because MSTs
give better reference relationships among dictionary sym-
bols than those given by super-classes [7]. The MC design
is also computationally less complex than the TREE design.
Our experiments on twelve test images show that, for loss-
less compression, the MC design is basically the same as the
CLASS design while slightly worse than the TREE design.
However, in the TREE design the encoder has to exhaus-
tively search for the optimal dictionary size to achieve the
best compression. For lossy compression, the MC design
achieves the best compression.

Dynamic dictionary update: The fonts and sizes of
text characters in one input page are usually very similar.
Therefore, in page striping, we dynamically update the cur-
rent dictionary from previous ones.

Updating a SE dictionary is straightforward. For each
new symbol in the current stripe, the encoder matches it
with all dictionary symbols from previous stripes and with
all previous symbols in the current stripe. The encoder then
points it to its closest match and adds it to the dictionary. Af-
ter the current stripe is processed, the encoder examines the
new dictionary and excludes all singletons from it. Those
dictionary entries from previous stripes, if not used by any
symbol in the current stripe, are expunged. This way new
symbols useful for the current stripe get included in the new
dictionary, and old symbols that are obsolete are removed.

a 3\

(a) classic Kruskal’s @) modified Kruskal’s

Fig. 1. Modified Kruskal’s algorithm.

For the MC design, the first step is to form classes and
choose representatives. This step is carried out on all new
symbols and all existing dictionary symbols. This way if a
pre-existing dictionary symbol is selected as the class rep-
resentative, we do not need to encode its bitmap again. At
the next step we use the modified Kruskal’s algorithm to
construct MSTs. In Fig. 1 we illustrate the classic and the
modified Kruskal’s algorithms. We show previous dictio-
nary symbols in gray and newly added ones in black. The
problem with the classic algorithm is that the MST in Fig.
l(a) includes the four gray nodes; but in fact the reference
relationship among pre-existing symbols is meaningless be-
cause the decoder has those bitmaps already. We modify it
as in Fig. l(b). We first assume each pair of existing sym-
bols has zero mismatch and is therefore connected by the
dash-dotted gray edges. We then go on and apply the clas-
sic Kruskal’s algorithm. With the modified algorithm each
resulting MST is guaranteed to have at most one gray node
representing a previous dictionary symbol; some MSTs may
have no gray nodes if they contain symbols only from the
current stripe. If a gray node exists in an MST,we use it as
the root; otherwise we decide the root as in [7].

3. EXPERIMENTAL RESULTS

3.1. Fast and memory-efficient encoder

In this section we show the savings in encoding time and
memory usage when page striping is applied. Our test im-

1754

ages are from two sources: two 200-dpi CCITT standard
images (fol and fo4); and ten 300-dpi images (IGOH, 5000,
N03F, N03H, N03M, N046, N04D, N04H, NO57 and SO 12)
selected from University of Washington Document Image
Database I [IO]. We compare coding results using the pro-
posed updating procedures for SE and MC dictionaries. Our
experiments are done on a Pentium Pro 200MHz, running
Red Hat Linux 6.0, with 64MB physical memory. Execu-
tion time (in sec) is measured with Unix “time” and peak
memory usage (in % total system memory) with Unix “top”.
Our code was not optimized for speed or memory efficiency.
Fig. 2 plots coded file size, encoding time, and peak mem-
ory usage as functions of the number of stripes into which
a page is split. The results shown are for image fD4; very
similar results are obtained for all other test images. As
the number of stripes increases, the compressed file size
goes up at a slow and relatively constant pace. The slope
of each line segment in Fig. 2 (a) represents coding loss per
stripe added. The mean value of all the slopes stands for the
speed at which the coding loss is being incurred; the vari-
ance stands for how steadily the loss is being incurred. For
all test images, the mean value of the slopes is 1.6% for the
MC dictionary and 1.3% for the SE dictionary; hence the
coding loss per stripe is small. The SE dictionary has very
low variances (on the order of lo-’ or percent) for
all twelve images. The MC dictionary shows the same re-
sults on all images but one. For encoding time,o n average
29% of encoding time is saved when we treat the page as
two stripes instead of one; and returns diminish with more
stripes. For peak memory usage, the average saving with 2
stripes is 40% compared to no striping. After 6 stripes, the
curves flatten out because each stripe becomes small enough
that the memory used to buffer it no longer dominates the
total memory usage. In Fig. 2, we see that the “MC dict+3
stripes” scheme (33543 bytes) achieves the same compres-
sion as the “SE dict+l stripe” scheme (33545 bytes) while
the former scheme encodes 53% faster and uses 54% less
memory. In general, MC dictionaries with n + 1 or n + 2
stripes achieve approximately the same compression as SE
dictionaries with n stripes.

SE+A
SE+B
SE+C
MC+A
MC+B

3.2. Multi-page document compression

Multi-page document images are a set of images scanned
from the same source, preferably from consecutive pages.
The issues of compressing multi-page document images are
addressed in [1 I]. In this section we try the proposed dic-
tionary updating strategy on multi-page document compres-
sion. We use three test sets. Two are from University of
Washington Document Image Database I, one of 4 pages
(N04H, N041, N04L and N04M) and the other of 5 pages
(NOIF, NOIG, NOlH, NO11 and NOlJ). They are from the
same source, but not from consecutive pages. The third set
is an 11-page document we scanned in from [12], at 300

126056 72237 222430
5.3% 3.7% 5.4%
3.9% 4.2% 10.3%

121842 70420 214506
1.8% 0.3% 0.4%

dpi. In Table 1 we show compression results for all three
sets using three coding strategies combined with SE or MC
dictionaries. Strategy A encodes the images as an uncorre-
lated set of single-page documents. Strategy B uses the dic-
tionary designed from the first page to encode all the pages.
Strategy C uses the proposed dictionary updating techniques
from page to page, taking in new symbols in the current
page and discarding useless symbols from previous pages.
For both dictionaries, we see the biggest improvement from
strategy C over strategy A is obtained with our 1 I-page set,
amounting to 8% for the MC dictionary and 10% for the SE
dictionary, respectively. This is because this set is scanned
in under the same conditions and from consecutive pages,
therefore the page correlation is the strongest. For the other
two test sets, the scanning conditions are unknown. Another
interesting phenomenon is, when using the SE dictionary,
strategy B also achieves 4-5% of improvement over strategy
A. In [6] we showed that SE dictionaries are usually twice
as big as CLASS dictionaries. While this is a disadvantage
when coding a single-page document (because index coding
is too costly), it is advantageous to use a bigger static dictio-
nary throughout all the pages (because all the symbols from
later pages have a broader range of choices). On the con-
trary,we hardly see any improvement from strategy B over
strategy A using MC dictionaries because they are too small
and too specific for the first page. Note that the complexity
of option SE+B is very low because the dictionary is de-
signed only once. In Figure 3 we show the dictionary size
growth from page to page. For our 1 1-page test set, from
the fourth page on, the dictionary no longer grows, meaning
that the encoder has gathered most useful bitmap informa-
tion contained in this document set. The other two test sets
do not contain enough pages to show this trend.

Table 1. Coding multi-page documents using the 3 strate-
gies combined with the 2 dictionaries. Strategy A rows are
compressed file size in bytes; the other rows are % improve-
ment over strategy A.

I MC+C 1 1 2.4% I 3.2% I 8.2% I

4. CONCLUSION

In this paper we first introduced a new dictionary design
technique called the modified-class design. Then we pro-

1755

''h '1 number of stripes 4 ; ; ; ; ; ;7
number of stripes

(a) File size (in bytes) (b) Coding time (in sec)

-._...

0: ; ; ' I "

number of .&pes' '

(c) Peak 'YO system memory used

Fig. 2. File size, encoding time and peak memory usage curves: image fO4.

.- :"I &page \'+ 1

Y I

page number
l o 12

Fig. 3. Dictionary size growth from page to page.

posed separate dictionary updating procedures for the sin-
gleton exclusion and the modified-class dictionary. Using
such procedures we developped a fast and memory efficient
JBIG2 encoding strategy which splits up the input image
into horizontal stripes and encodes one stripe at a time. Ex-
periments show that, for both dictionaries, by using two
stripes, the encoder can encode 30% faster and use 40%
less memory while suffering a small 1.5% penalty in cod-
ing efficiency. Further savings in time and memory usage
can be obtained when more stripes are used. We also ap-
plied the same updating procedures directly to multi-page
document compression. Compared to coding the images as
single-page documents, this can improve compression by up
to %lo%.

5. REFERENCES

[l] ISOIIEC JTCI/SC29/WGI N1359. JBIG2 Final Committee
Draft, July 1999.

[2] P. Howard, F. Kossentini, B. Martins, S. Forchhammer,
W.Ruck lidge, F.Ono . The Emerging JBIG2 Standard. IEEE

Trans. on Circuits and Systems for Kdeo Technology, pages
838-848, Vol. 8, No. 5 , September 1998.

[3] D. Tompkins and F. Kossentini. A Fast Segmentation Algo-
rithm for Bi-level Image Compression Using JBIG2. Proc.
1999 IEEE Intl. Conf: on ImagePr ocessing (KIP)), Kobe,
Japan, October 1999.

[4] R.N. Ascher and G. Nagy. Means for Achieving a High De-
gree of Compaction on Scan-digitized Printed Text. IEEE
Trans. on Computers,Vol. 23, pages 1 174-1 179, Nov. 19 74.

[5] P. Howard. Lossless and Lossy Compression of Text Images
by Soft Pattem Matching. Proc. 1996 IEEE Data Compres-
sion Conj (DCC), pages 210-219, Snowbird, Utah, March
1996.

[6] Y. Ye, D. Schilling, P. Cosman, and H. H. Koh. Symbol dic-
tionary design for the B I G 2 standard. Proc. 2000 IEEE Datu
Compression Conj (DCC), pages 3342, Snowbird, Utah,
March 2000.

[7] Y.Y e and P. Cosman. JBIG2 symbol dictionary design based
on minimum spanning trees. Proc. of the First Intl. Conf:
on Image and Graphics (ICIG), pages 54-57, Tianjin, China,
Aug. 2000.

[SI ISO/IEC JTCI/SC29/WGl N339. Xerox Proposal for JBIGZ
Coding,Jun e 1996.

.

[9] R. Could. Graph Theory. Chap. 3, pages 68-72, The Ben-
jamdcummings Publishing Co., Inc., 1988.

[IO] E. S. Askilsrud, R. M. Haralick and I. T. Phillips. A quick
guide to UW English Document Image Database I, version
1 .O. CD-ROM. Intelligent Systems Lab, Univ. of Washington.
August 1993.

[1 I] S. Inglis. Lossless document image compression. Ph.D. dis-
sertation. Chap. 7. Univ.of Waikato, New Zealand, 1999.

[121 R. Habib. The early T.S. Eliot and westem philosophy. Chap.
1, pages 1 - 1 1, Cambridge University Press, 1999.

1756

