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ABSTRACT

In this paper, the confidence measure of a hypothesized word
isderived from its posterior probability. In contrast to common ap-
proaches, inwhich N-best lists or word graphs/lattices are used, the
posterior probabilities are derived from a concept graph. The con-
cept graph is obtained from aword graph through a partial parsing
process using semantic grammars. This approach allows us to use
relatively complex and better language models along with acous-
tic models to compute word posterior probabilities. The language
model used is comprised of stochastic context free grammars ( one
for each concept) and an n-gram concept language model. We
show that the posterior probabilities computed on concept graphs
outperform those computed on word graphs when used as confi-
dence measures. Results are presented within the context of Col-
orado University (CU) Communicator System; a telephone-based
dialog system for making travel plans by accessing information
about flights, hotels and car rentals.

1. INTRODUCTION

In several tasks the output of the speech recognizer is far from
perfect. This creates problems in applications that use the tran-
scription directly. For instance, in a dialog system, errors in the
output word sequence can lead to a dialog flow that diverges from
theuser'sgoal. Thisresultsin alonger, or maybe unsuccessful, di-
alog leaving the user confused, frustrated and dissatisfied with the
interaction. So, it is very important for a dialog manager to spot
incorrectly recognized words and act accordingly to achive human-
like performance. Another example isthe unsupervised adaptation
of the acoustic models using maximum likelihood linear regres-
sion (MLLR). Adaptation with an incorrect transcription degrades
the performance. Therefore, one needs a method to spot incorrect
words and exclude them from adaptation.

Confidence measures are used to label the words at the out-
put of the speech recognizer as correct or incorrect. The basic
approach isto select a set of effective features and find a way of
combining them into a confidence measure [1, 2, 3]. Although
the combination of several featuresimproves the performance, itis
usually not much better than that of the best feature.

The word posterior probabilities have been proposed and used
as a confidence measure or as an additional feature [4, 5, 6]. It has
been demonstrated that the word posterior probabilities is one of
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the best features. In those work, those probabilites were calculated
using either N-best lists or word graphg/lattices. The knowledge
sources were acoustic and n-gram word/class based n-gram lan-
guage models. Recently, in dialog systems, it has been observed
that additional features at higher levels, e.g. parsing or understand-
ing levels, improve the performance significantly [7, 8] . However,
those featureswere not probabilistic. Superiority of posterior prob-
abilities to non-probabilistic features have been clearly illustrated
in[9].

In this paper, we incorporate knowledge at understanding
level as arelatively complex and sophisticated statistical language
model (SLM). The SLM has been developed within a flexible
speech understanding framework [10]. It consists of a set of
stochastic context free grammars, one for each concept, and dialog
context conditioned trigram concept LMs. We use SCFGsto parse
the word graph into a concept graph. Then, we compute word
posterior probabilities on the concept graph using acoustic mod-
els, SCFGs, and trigram concept LMsinterpol ated with word/class
based trigram LM. We claim that this method provides a strong
feature that can be used alone or with other features for confidence
annotation. We compare a confidence measure computed on con-
cept graphs to that computed on word graphs. We provide results
that support our claim.

The paper is organized as follows. In section 2, we summa-
rize the posterior probability computation on word graphs using
the forward/backward algorithm. The extension of this method to
concept graphs is explained in section 3. The experimental setup
and results are presented in section 4. The last section includes
concluding remarks and possible future work.

2. WORD PROBABILITIESON WORD GRAPHS

In this section, we present a forward/backward type algorithm for
calculating the word probabilities on word graphs. Let s be the
start frame and e be the end frame of a word w in a sequence of
words w{v that spansatimeinterval of length T frames. We define
aword event as[w, s, e]. We areinterested in the probability of this
event given the acoustic observation o . This probability should
be calculated over all possible word sequences that contain w at
theinterval [s, €]. However, it isa common practice to restrict the
computation to aword graph, as it is a compact representation of
the most probable word sequences.

We first explain the word graph generated by our speech rec-
ognizer. Itisadirected weighted acyclic graph. It isbuilt from the



word |attice created during frame synchronous tree lexicon Viterbi
beam search. Its nodes represent unique (w, s) pairs. Edges are la-
beled with end frames and acoustic model scores, p(of/w). They
point to nodes (e + 1,ws), where e is the end frame of the word
w and ws isits successor. Note that each unique node can link to
more than one nodes, thanks to the possibility of more than one
end times and successors of a particular word that starts at frame
s. Each path through the word graph is aword sequence that spans
the time interval of length 7. The set of all paths defines the en-
semble on which we calculate the posterior probabilities.

Each word event [w, s,e] corresponds to a set of edges in
the word graph. So, the probability of a word event is the total
probability of all edges associated with it. In developing the for-
ward/backward type agorithm, we consider the edges as HMM
like states . The emission probabilities are the acoustic scores kept
at the edges. The transition probabilities are provided by the lan-
guage model in use. To derive the algorithm we need to define
edges uniquely. So, the edge from node (w;, s) t0 (w;11,e+ 1) is
defined as E((“’?tl 1) \We define the forward probability of an
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edge as a(E((z“g ’e+1)). The following recursion can be used to
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(wi+1 ,8+1)
P E(s,5)

). The recursion for the backward probabilitiesis
E(wi+2 ,8I+1)

(wip1,et+1)| _
By )= 2 (wit1.e+1)

’
(w;,5) ) ~P(Og+1‘wi+1)

(wit2,e/+1)
p(wiyo/wiwiq 1)

@

Once we have computed the forward-backward probabilities

we can calculate the edge posterior probabilities, and in turn, the

word posteriors. The posterior probability of an edge can be ob-
tained as
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where p(o{) can be obtained as the summation of the forward
probabilities of the edges that end at frame 7. Equivaently, it
can be calculated as the summation of the backward probabilities
of the edges that start at the initial frame.

In fact, the probability in (3) is the posterior probability of
the word that starts at frame s, ends at frame e and precedes the
word w; 1. In[9)], it has been demonstrated that the use of this
probability as a confidence measure on a hypothesized word does
not give satisfactory results. Instead, we use
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Fig. 1. (a) word graph ,(b) concept graph

This amounts to the summation of the probabilities of the
edges outgoing from node (w;, s). For other possibilities of con-
fidence measures derived from posterior probabilities the reader is
referred to [9)].

3. CONCEPT/WORD PROBABILITIESON CONCEPT
GRAPHS

The structure of the concept graph is same as the word graph. The
nodes are associated with (e, ts) pairs. The concept ¢ can span a
number of words. An example of a concept graph derived from
aword graph by partial parsing using a semantic grammar is de-
picted in Figure 1.

The concepts are classes of phrases with the same meaning.
That is, a concept class is a set of phrases that can be used to ex-
press that concept (e.g. [date], [yes]). Each concept (except degen-
erate single word concepts) is written as a context free grammar
(CFG) and compiled into a recursive transition network (RTN).
The arcs of RTNs are populated with probabilities using atraining
method based on simple counting and smoothing. So, the multi-
plication of the arc probabilities that traverse a phrase gives the
probability of that phrase. The concept patterns are modeled by
n-gram LM conditioned on the dialog context. The dialog context
has been taken as the system’s last prompt. A detailed discussion
of these LMs can be found in [10].

Similar to the word event defined in the preceding section, we
define a concept event, [c, s, €], which can aso be associated with
a set of edges outgoing from node (c, s). Here, the start frame is
the start frame of the the first word and the end frame is the end
frame of the last word covered by the concept. On each edge, we
have an acoustic score , which is the multiplication of the acoustic
scores of the words spanned by the concept, and the phrase prob-



ability (determined from the concept’'s SCFG) . One can compute
the concept posterior probabilities using the forward backward al-
gorithm described above. On a concept graph, the emmision prob-
ability is the acoustic probability multiplied by the phrase proba-
bility. The transition probabilities are computed using the trigram
concept LM. The corresponding forward backward equations are
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where pg(.) isthe probability conditioned on the dialog context,

p(o§le;) = p(o§lwy 1, wy p)p(w; g,
L; e
= T2, ploshlw; pwlry g /e;)

» 1y is the arc of ¢;'s RTN labeled by the word w;; and
w; 1, wy 1. isthe L;-word phrase covered by the concept ;.

For the sake of simplicity we excluded two things in the
derivation of the forward/backward expressions. One is the down-
scaling of acoustic scores and the other is the interpolation of
concept-based SLM with a word/class based SLM. The former is
required due to the fact that acoustic scores and LM probabilities
have entirely different dynamic ranges. To avoid the domination
of summations by a small number of terms, the downscaling of
the acoustic scores has been found very useful [9]. Our observa-
tions during experiments were on the same line. The interpolation
is required to take the advantage of the complementary nature of
two different SLMs. We believe that the interpolation partially re-
covers the loss from context free assumption. The interpolation is
performed at the concept/phrase level. That is, the term

sw; 1,;1¢)

©)

p(w; 1,5 w; gle;) - ps(ejle;_g,¢,1)

in the expressions above is replaced by
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where w; o and w; _y are taken from preceding concepts. That
IS wig=wjyp;, a@dw _y=w_yp, . 1,ifLi>1
Otherwise, w; 1 = w; 9, ,. Notethat the interpolation is
log-linear and X is the interpolation weight. This interpolation
method is selected for two reasons. Firgt, it is easier to imple-
ment since the actual implementation deals with the logarithm of
probabilities. Second, its performance has been found better than
the linear interpolation [11, 12].
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Fig. 2. Relative CER improvement with respect to threshold

Let Cy,; be the set of concepts that include the word event
[w;, s, e]. Using the concept posteriors we cal cul ate the confidence
of w; as
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4. EXPERIMENTAL RESULTS

We present experimental results on CU Communicator data. The
CU communicator system is a dialog system used for flight, hotel
and rental car reservations [13]. The data that we experimented
with was collected during National Institute of Standards (NIST)
2000 evaluation. It is from a total of 72 calls. The number of
female and male callersare 44 and 28, respectively. A total of 1264
sentences were used in the experiments. Of these, 450 sentences
were used to optimize scaling, interpolation factors and tagging
thresholds. Thefinal results are on the rest of the data.

We used confidence error rates (CERS) and receiver operating
characteristics (ROC) curves to evaluate the confidence measures.
The CER is defined as

_ #incorrectly tagged words

CER -
# recognized words

The baseline CER is obtained assuming that all recognized
words are tagged as correct. This is equivalent to the summation
of insertions and substitutions divided by the number of recog-
nized words. The ROC curve is the plot of the correct rejection
with respect to false rejection. The correct rejection istagging the
incorrect word as incorrect and the false rejection is tagging the
correct word as incorrect.

Figure 2 shows relative CER performance improvements over
the baseline CER for both word graph and concept graph based
word posteriors. It is plotted with respect to the threshold, as the
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Fig. 3. Receiver operating characteristics (ROC) curve

Table 1. CER and correct rejection (CR) results at 5% false
rejection (FR)

Method Baseline | CER | Reduction CR
word graph 144% | 11.8% 18.1% 48.9%
concept graph | 11.9% 8.8% 26.1% 63.2%

CER strongly depends on the choice of the tagging threshold. The
performances are compared relative to the baseline since two rec-
ognizers have different operating points. Figure 3 shows the ROC
curve. Both illustrate that the concept graph method performs bet-
ter.

Table 1, gives baseline CERs, the CERs after confidence an-
notation, relative reduction in CERs and correct rejection (CR) re-
sults at 5% false rejection (FR). All figures clearly show the bet-
ter performance of the confidence measure computed on concept

graphs.

5. CONCLUSIONS

We have presented a confidence measure based on concept/word
posterior probabilities computed on concept graphs. We have
shown that it outperforms a similar confidence measure based on
word graphs. We believe that the improvement is due to the in-
corporation of higher level knowledge sources (syntactic and se-
mantic constraints) into the computation of posterior probabilities.
We plan to use this confidence measure for rescoring the concept
graph to improve recognition performance. In addition, the use of
this confidence measure in MLLR adaptation is worthy of future
research.

(1]

(2]

(3]

[4]

(5]

(6]

(8]

(9]

[10]

[11]

[12]

[13]

6. REFERENCES

S. Cox and R. Rose, “Confidence measures for the
switcboard database,” in International Conference of Acous-
tics, Speech, and Sgnal Processing, May 1996, pp. 511-514.

L. Chase, “Word and acoustic confidence annotation for large
vocabulary speech recognition,” in Fifth European Conf.
on Speech Communication and Technology, Rhodes, Greece,
September 1997, pp. 815-818.

M. Weintraub, F. Beaufays, Z. Rivlin, Y. Konig, and A. Stol-
cke, “Neura network based measures of confidence for
word recognition,” in International Conference of Acous-
tics, Speech, and Signal Processing, Munich, Germany, April
1997, pp. 887-990.

T. Kemp and T. Schaaf, “Estimating confidence using word
lattices,” in Fifth European Conf. on Speech Communication
and Technology, Rhodes, Greece, September 1997, pp. 827—
830.

F. Wessel, K. Macherey, and R.Schluter, “Using word proba-
bilities as confidence measures,” in International Conference
of Acoustics, Soeech, and Sgnal Processing, Seattle, WA,
May 1998, pp. 225-228.

F. Wessel, K. Macherey, and H. Ney, “A comparison of word
graph and n-best list based confidence measures,” in Interna-
tional Conference of Acoustics, Speech, and Sgnal Process-
ing, Seattle, WA, May 1998, pp. 225-228.

R. San-Segundo, B. Pellom, K. Hacioglu, W. Ward, and J.M.
Pardo, “ Confidence measuresfor dialogue systems,” in Inter-
national Conference on Acoustics, Speech, and Signal Pro-
cessing, Salt Lake City, Utah, May 2001.

R. Zhang and A. Rudnicky, “Word level confidence anno-
tation using combination of features,” in Seventh European
Conf. on Speech Communication and Technology, Aalborg,
Denmark, September 2001, pp. 2105-2108.

F. Wesse, R. Schluter, K. Macherey, and H. Ney, “ Confidence
measures for large vocabulary continuous speech recogni-
tion,” |EEE Transactions on Speech and Audio Processing,
vol. 9, no. 3, pp. 288-298, March 2001.

K. Hacioglu and W. Ward, “A word graph interface for aflex-
ible concept based speech understanding framework,” in Sev-
enth European Conf. on Speech Communication and Tech-
nology, Aaborg, Denmark, September 2001, pp. 1775-1778.

D. Klakow, “Log-linear interpolation of language models,”
in 5-th International Conference on Spoken Language Pro-
cessing, Sydney, Australia, 1998, pp. 1695-1699.

K. Hacioglu and W. Ward, “On combining language models:
Oracle approach,” in First International Conference on Hu-
man Language Technology Research, San Diego, California,,
March 18-21 2001.

W. Ward and B. Pellom, “The CU communicator system,” in
IEEE Workshop on Automatic Speech Recognition and Un-
derstanding, Keystone, Colorado, 1999.



